Machine Learning-Based Detection of Ransomware Using SDN

Greg Cusack
University of Colorado Boulder
gregory.cusack@colorado.edu

ABSTRACT

The growth of malware poses a major threat to internet users, gov-
ernments, and businesses around the world. One of the major types
of malware, ransomware, encrypts a user’s sensitive information
and only returns the original files to the user after a ransom is paid.
As malware developers shift the delivery of their product from
HTTP to HTTPS to protect themselves from payload inspection,
we can no longer rely on deep packet inspection to extract fea-
tures for malware identification. Toward this goal, we propose a
solution leveraging a recent trend in networking hardware, that is
programmable forwarding engines (PFEs). PFEs allow collection
of per-packet, network monitoring data at high rates. We use this
data to monitor the network traffic between an infected computer
and the command and control (C&C) server. We extract high-level
flow features from this traffic and use this data for ransomware
classification. We write a stream processor and use a random forest,
binary classifier to utilizes these rich flow records in fingerprinting
malicious, network activity without the requirement of deep packet
inspection. Our classification model achieves a detection rate in ex-
cess of 0.86, while maintaining a false negative rate under 0.11. Our
results suggest that a flow-based fingerprinting method is feasible
and accurate enough to catch ransomware before encryption.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; - Net-
works — Network monitoring; « Computing methodologies
— Classification and regression trees;

KEYWORDS

ransomware; malware; software-defined networking; machine learn-
ing; stream processing; programmable forwarding engines

ACM Reference Format:

Greg Cusack, Oliver Michel, and Eric Keller. 2018. Machine Learning-Based
Detection of Ransomware Using SDN. In SDN-NFV Sec’18: 2018 ACM In-
ternational Workshop on Security in Software Defined Networks & Network
Function Virtualization, March 19-21, 2018, Tempe, AZ, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3180465.3180467

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’18, March 19-21, 2018, Tempe, AZ, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5635-0/18/03...$15.00
https://doi.org/10.1145/3180465.3180467

Oliver Michel
University of Colorado Boulder
oliver.michel@colorado.edu

Eric Keller

University of Colorado Boulder
eric.keller@colorado.edu

Layers of proxy
3) Unique asymmetric key pair
‘.—:Y::“’mez b "'I‘," generated for every infection. Private

ocation key never leaves C&C server

C&C server
location

1) Key request

Asymmetric public key

«—
4) Public key seM\to victim for encryption

1) Key request
C&C Server

Internet

Victim computer infected
with ransomware =
5) Information about ransom
payment provided to victim after
encry; Tor Hidden Service
For Ransom Payment
Information

Figure 1: Operation of typical ransomware encryption key
retrieval process [5].

1 INTRODUCTION

In recent years, the prevalence of malware, has increased dramati-
cally. In fact, ransomware has grown into one of the most promi-
nent strains of cybercrime. We’re seeing more cases of ransomware
in 2017 than we have ever seen before due to its ability to au-
tonomously propagate across the network [6]. Clearly, ransomware
mitigation techniques need to be designed in order to prevent suc-
cessful attacks of malware. Luckily, there has been some work in the
detection and mitigation of malware [4, 5, 7]. However, these stud-
ies focus on ransomware identification delivered through HTTP.
Unfortunately, malware delivery is shifting heavily to HTTPS as
37% of all malware now utilizes HTTPS as of June, 2017 [9]. We need
alonger term approach that utilizes network features only available
in TLS traffic. Furthermore, the work in [4] sacrifices the wellbeing
of one computer in order to identify malicious servers sending and
controlling malware. In this paper, we leverage advances in SDN
to address the ransomware problem. Specifically, we utilize the
emergence of PFEs (e.g. P4 switches), write a stream processor, and
implement machine learning to identify and intercept ransomware
before it enters a network.

Ransomware is a software virus that holds a victim’s files at ran-
som. Access to the files is not returned until a ransom is paid. There
are two main types of ransomware in circulation today, crypto and
locker-based ransomware. Crypto ransomware encrypts the files
on a victim’s computer and will only provide the decryption key for
the files if a ransom is paid. On the other hand, locker ransomware
leaves the victim’s computer files intact but locks the user out of
his or her computer, only returning access once a ransom is paid.
Unfortunately, detecting various types of ransomware is an ardu-
ous task. Developing a long term solution to ransomware detection
has proven difficult since ransomware developers are constantly
updating their product to circumvent new detection techniques.
Furthermore, many flavors of ransomware are delivered via bot-
nets [7], and as the IoT sector grows rapidly, the number of avenues

SDN-NFV Sec’18, March 19-21, 2018, Tempe, AZ, USA

for infection are increasing dramatically. We have also seen the
emergence of Ransomware as a Service (RaaS), where a novice
cybercriminal can pay a service and easily customize his or her
own ransomware and have it spread to many computers around
the world [15]. Despite the growing number of ransomware cases,
the underlying method for how the two methods operate are simi-
lar. They both require communication with a C&C server in order
to carry out an attack. This communication between the infected
computer and the C&C server is what we exploit in our classifier.

Figure 1 shows the communication between the infected com-
puter and the C&C server. In order to encrypt the victim’s files, the
victim requests an encryption key from the C&C server through
multiple layers of proxies. The C&C server generates a new asym-
metric key pair, keeps the private key, and returns the public key to
the victim to encrypt its files. After encryption, a Tor hidden service
communicates a method for paying the ransom. By analyzing the
traffic flowing between the victim’s computer and the proxies re-
siding in the greater Internet, we’re able to develop a classification
model that identifies the encryption key retrieval process.

Previous work has shown that even if the victim has received
the initial infection through a phishing email, for example, if the
C&C server cannot deliver the encryption key, the malware cannot
carry out the attack [5]. As a result, we look at the network traffic
between the victim’s computer and the C&C server in hopes that
we can identify malicious communication, and prevent the delivery
of the encryption key.

In order to accurately monitor all traffic going into and out
of the potential victim, we leverage the recent emergence of pro-
grammable forwarding engines (PFEs). PFEs utilize switch hard-
ware and dynamic memory caches to achieve high packet process-
ing speeds while simultaneously providing rich flow records. These
PFE-generated flow records, provide per-packet information and
allow us to extract flow features for ransomware classification at
line rate in an accurate and scalable manner.

The rest of the paper is broken up into sections as follows. Section
2 discusses and outlines previous work in the field of ransomware
detection and PFEs. Section 3 dives into our system architecture,
starting with a description of the framework we used for our stream
processor and finishing with a motive for random forest. We de-
scribe the implementation of our design in Section 4 and analyze the
results of the classifier in Section 5. Finally, Section 6 summarizes
our application and discusses future work.

2 RELATED WORK

Two areas of related work help us in designing our ransomware
detection application. Ransomware detection has been a large area
of study in recent years; however, many of these solutions fall short
as ransomware developers adjust their malware delivery methods.
We also look at the emergence of PFEs, the programmable hardware
we leverage for rapid per-packet, flow processing.

2.1 Ransomware Detection

One method of ransomware detection used machine learning to
identify and classify various types of ransomware during the ran-
somware installation phase on target hosts. The authors mainly

Greg Cusack, Oliver Michel, and Eric Keller

relied on Windows API calls, file system operations, registry op-
erations, etc. to classify malware. Their ransomware classifier, El-
deRAN, was compared to various other machine learning algo-
rithms such as SVM and Néive-Bayes and produced a much higher
true positive rate and a lower false positive rate [13]. However,
EldeRAN requires the infection of a system in order to learn ran-
somware behavior.

Another group of researchers used an SDN approach to ran-
somware identification by utilizing deep packet inspection to track
the packet lengths of HTTP POST messages [4]. Once ransomware
was identified, the command and control server IP addresses were
identified and blocked. However, this technique results in a rela-
tively high false positive rate (up to 4.95%), leaving their method
open to a base rate fallacy issue and falsely blocking valid servers.

In fact, most malware and ransomware detection methods that
look at traffic traces, like the one above, are payload-based [4, 5, 16].
These network-based approaches to ransomware detection all share
the same, previously described problem of relying on DPI, and
therefore, are useless for fingerprinting on encrypted traffic.

2.2 Recent Hardware Trends and PFEs

In recent years, we have seen the development of a few high rate
stream processing systems, which utilize switch hardware to gen-
erate network information-rich flows [3, 8, 10, 14]. PFEs allow com-
modity networking equipment to support the scalable generation of
rich flow records. The recent trend of PFEs and the accompanying
efforts to make programming them more accessible has enhanced
the use and development of PFEs [2].

PFEs allow us to process network data at high rates of speed,
while still extracting vital, per-packet flow information. The growth
of PFEs and rich flow generation systems, provide us with the
data and speed necessary for network, flow-based ransomware
classification.

3 SYSTEM ARCHITECTURE

Our system’s architecture is broken into two main parts, stream
processing and classification. The stream processor reads from a
PCAP, runs and manages a custom flow table, and extracts flow fea-
tures for our classifier. The classifier takes in the extracted features
and trains a model to identify ransomware.

3.1 Stream Processing

In order to process rich flow records, we utilize RaftLib’s stream
processing library to build high-performance, parallel, analytics
applications [1]. Each kernel we wrote using RaftLib runs a step
in the flow processing chain. We link multiple of our kernels to
group incoming packets into their respective flow records based on
each packet’s 5-tuple. The 5-tuple, which consists of the packet’s
protocol, source IP, source port, destination IP, and destination
port, serves as the flow record’s key. The kernel-based approach
allows us to utilize RaftLib’s parallelization feature. Since we read
in network traffic from PCAP files, we use a custom flow table and
implement it as a kernel running in parallel with the other kernels.
We simulate the generation of rich flow records and use the RaftLib
framework to write a parallelized, stream processor for flow feature

Machine Learning-Based Detection of Ransomware Using SDN

Flow Record Key 5-Tuple #of | Total#of | Listof
| Protocol | Src IP |Src Port | Dest IP |Dest Port Packets | Bytes | Packets

Flow Packet 1 Flow Packet 2
[I'meslamp #Byles lFealures‘ [I'lmestamp| #Bytes |Fsatures | [I'imestamp| #Bytes |Feeluresj

IP P

Figure 2: Compact and per packet flow records created in
a hierarchical manner. The 5-tuple serves as the key for
matching packets in the same flow.

Flow Packet N

extraction at line rate. These extracted features are then used for
ransomware classification.

3.2 Classification

We implement a random forest classifier in Python due to the ran-
dom forest’s low computational training cost and its use of bagging
to reduce variance and overfitting. A random forest classifier is an
ensemble algorithm, which utilizes a collection of decision trees to
vote and predict the class of the input data. Each decision tree is cre-
ated from a random subset of the feature set. Each decision tree is
generated using the gini impurity metric, which measures the prob-
ability of mislabeling a randomly chosen element from the training
set if the element was labeled based solely on the distribution of
the binary labels in the set [11].

Three of the main tuning metrics for a random forest classifier
include the number of decision trees in the forest, the depth of each
decision tree, and the maximum number of features that can be
included in each decision tree. The number of trees in the forest
dictate the performance and variance of the classifier. A larger
number of trees results in higher classification accuracy and lower
variance but increases the computational cost of the classifier. The
depth of each tree has a similar cost-benefit situation. As the depth
of each tree increases, the induced bias in the classifier decreases;
however, the added depth comes with a computational penalty.

The last main metric we used for tuning our random forest
classifier is the maximum number of features that can be included
in each decision tree. The maximum number of features is used
to determine the best split when creating a decision tree. Once
again, increasing the number of features increases performance but
comes at a computational cost. In the next section, we discuss our
implemented application starting with our stream processor and
finishing with the ransomware classifier.

4 IMPLEMENTATION

4.1 Flow Records and Processing Kernels

We wrote five kernels on top of the RaftLib framework for pro-
cessing network data and creating compact and rich flow records.
Figure 2 shows the structure of our flow record. The 5-tuple serves
as a key for each flow, which links to the number of packets and
bytes in the flow along with a reference to specific packet features.
The packet features include the packet timestamp and the number
of bytes in the packet. Each flow packet also contains a link to the

SDN-NFV Sec’18, March 19-21, 2018, Tempe, AZ, USA

Raw Packet | 5-Tuple, Packet

PaSa Flow Table
5-Tuple, Flow Record
In: 5-Tuple, Flow Record
Feature Flow Features Python- Dec:slon
Flow Table Extractor Classifier
Out: 5-Tuple, Flow Record

Figure 3: All boxes except the Python-classifier are kernels
we wrote for stream processing. We built the kernels to con-
vert a PCAP to a set of flow records for feature extraction.
Each kernel executes one step in the flow processing system.

PCAP PCAP File Raw Packet
Reader

packet’s IP flags and time to live (TTL). We utilize the data in these
flow records to extract features for our ransomware classifier.

Figure 3 shows the kernels we wrote for flow generation and
feature extraction. Normally, the per packet, flow records seen in
Figure 2 would be generated in PFE hardware, but since we are
reading from a PCAP, we wrote three kernels to simulate the rich,
flow record generation process. The initial PCAP file reading kernel
reads in a PCAP and outputs a raw packet, which is immediately
read in and processed by the raw packet parser. The raw packet
parser extracts the 5-tuple from the packet and sends the 5-tuple
along with the packet features as a key-value pair to the flow table
kernel. We wrote a custom flow table to do most of the packet
processing and memory management. The flow table stores a map
of flow records, where the key is the 5-tuple and the value is a list
of packets that are members of the flow represented by the 5-tuple.
When a new incoming 5-tuple and packet arrive at the input of
the flow table kernel, the kernel looks for the arriving 5-tuple in
its stored flow table. If the 5-tuple is found, the incoming packet
features are appended to the list of packets corresponding to the
packet’s 5-tuple key. If the incoming packet’s key is not found, then
a new entry in the flow table is created.

Unfortunately, flows are direction dependent. In a client’s com-
munication with a server, two flows are extracted. One flow corre-
sponds to the client-to-server communication, and the other flow
correlates with the server-to-client communication. In order to
look at traffic burst patterns and extract other features requiring
knowledge of corresponding flows in opposite directions, we wrote
a bidirectional flow table kernel. Similar to the preceding flow table
kernel, the bidirectional flow table manages a list of flows. However,
flow records are matched with each other when an incoming flow
record’s source IP and source port match another flow record’s
destination IP and destination port and vice versa. If a match is
found, the two flows are exported out of the bidirectional flow table
to the next kernel. If a flow match is not found, the incoming flow
is added to the bidirectional flow table and waits for a match.

After two flows are matched, they are exported to the feature
extraction kernel. The feature extraction kernel takes in both flow
records and performs calculations using the features as seen in Fig-
ure 2. Our classifier makes use of two main types of flow features,
direction independent and direction dependent. Direction indepen-
dent flow features are features that do not require the knowledge
of the corresponding flow traveling in the opposite direction. Flow
independent features include flow duration, packet interarrival

SDN-NFV Sec’18, March 19-21, 2018, Tempe, AZ, USA

times, total number of packets and their respective lengths, and the
number of unique packet lengths.

Direction dependent features are flow features that rely on know-
ing the features of the flow traveling in the opposite direction on
the same connection. Direction dependent features include burst
lengths, the ratio of outgoing to incoming packets, and the ratio of
outgoing to incoming bytes. Burst lengths are defined as a sequence
of outgoing packets which contain no two adjacent incoming pack-
ets. The feature extraction kernel calculates the two classes of flow
features and passes them to the Python-based classifier.

4.2 Ransomware Classifier

As mentioned in Section 3.2, we tune our random forest using three
main parameters: the number of trees in the forest, the depth of
each tree, and the number of features used in each tree. Since the
end goal is to run our classifier at line rate, we want as many trees
as possible without adding significant overhead. As a result, we use
40 trees in the forest, and set the depth of each tree to 15. It should
be noted that increasing the number of trees and the depth of each
tree has diminishing returns. We tested numerous combinations
of total decision trees and decision tree depth and found that in-
creasing the number and depth of trees from 40 and 15 respectively
resulted in minimal classification accuracy gains. Finally, due partly
to convention and mainly to the high computational cost of deci-
sion tree feature splitting, we set our maximum features parameter
to the square root of the total number of features in our dataset.
This reduction in features greatly improves the learning time of the
tree without a noticeable loss in classification performance.

5 RESULTS

In this section, we present the composition of our dataset and the
metrics that define success for our classifier. We also investigate the
performance of our classifier in identifying ransomware as a whole.
We then move on to discuss how well our classifier can identify a
specific type of crypto ransomware.

5.1 Data Collection

We collect over 100MB of ransomware traffic traces from malware-

traffic-analysis.net, resulting in 265 unique bidirectional ransomware-
related flows. We collect another 100MB of network traffic that is

malware free (clean) to use as a baseline. The clean data consists

of flows corresponding to web browsing, file streaming, and file

downloading. When analyzing the ransomware traffic, we analyze

the traffic to and from the infected machine in communication with

the C&C server. We combine both the ransomware and clean traffic

and feed it into our stream processor to extract features for the

classifier.

5.2 Success Metrics

We next discuss our success metrics, which help us determine
whether or not we have produced a strong classifier. For our first
success metric, we look at the recall of our classifier. The recall deals
with the classifier’s false negative rate. In the future, we plan to
implement our system in a real-world setting to catch ransomware
before it encrypts a user’s computer. To do so, we need to ensure that

Greg Cusack, Oliver Michel, and Eric Keller

our false negative rate is as low as possible to prevent misclassifying
ransomware as clean traffic.

We next look at the false positive rate of the classifier in deter-
mining its success. The false positive rate describes how often clean
traffic is misclassified as ransomware. The false positive rate also
needs to be as low as possible to prevent the unwarranted blocking
of clean traffic. Furthermore, a high false positive rate results in a
base rate fallacy issue, which quickly results in a massive number
of falsely identified ransomware traffic.

To measure the classifier’s success, we also look at the F1 score.
The F1 score is a weighted average of the recall and precision scores
and provides an idea of the balance between the false negative and
false positive rates.

5.3 Feature Selection

We select our features based on the nature of the victim computer’s
communication with the C&C server. Since communication with
the C&C server runs through multiple layers of proxy servers,
we expect a higher than normal traffic latency. We extract this
increased latency by measuring packet interarrival times. Further-
more, we also expect more incoming than outgoing traffic from
the victim computer due to the downloading of the initial infec-
tion, the encryption key retrieval process, and the payment method
notification from the Tor hidden service. We collect data to test
this expectation by extracting the inflow to outflow packet ratios
and burst lengths, where a burst length is the number of incoming
packets before two adjacent outgoing packets are registered. The
combination of interarrival times, packet ratios, and burst lengths
can help distinguish a clean download from a malicious download
through proxy servers.

5.4 Initial Classification Model

We first tune our stream processor to extract 28 unique features
from our collected network traffic. These features are fed into the
classifier, which first ensures the data contains the same number of
malicious flows as clean flows in order to prevent classification bias.
The data is then split into two, unequal sets. One set consists of
70% of the data and is used for training and the other set holds the
remaining 30% of traffic and is used for testing the learned model.
A 10-fold cross validation (CV) is performed on our data splitting
to ensure our splitting model is unbiased. The confusion matrix
in Figure 4 shows the results of our classifier using 28 different
features. Even with a smaller set of traffic data, ~200MB, we are
able to achieve a respectable recall of 0.89, a precision of 0.83, and an
F1 score of 0.87. If we take a look at the corresponding ROC curve
in Figure 7a, the area under the curve is 0.935, showing promise
for successful ransomware detection. Furthermore, the average of
the 10-fold CV score for our model is 0.87, indicating that we can
expect similar accuracy results on other datasets.

5.5 Feature Reduction

Feature reduction is a key method used in machine learning to
increase classification accuracy while simultaneously reducing the
computational cost of the model. In order to reduce the number
of feature in our model, we identify the top eight most influential
features in classifying ransomware traffic, as seen in Figure 5. The

Machine Learning-Based Detection of Ransomware Using SDN

Confusion matrix: Random Forest Classifier
Clean Ransomware

Clean True Clean (TN): 89

False Ransomware Pred (FP): 16

True

Ransomware False Clean Pred (FN): 10 ‘True Ransomware (TP): 83

Predicted

Figure 4: The confusion matrix of our 28-feature random
forest classifier shows a recall of 0.89, a precision of 0.83, and
an F1 score of 0.86.

Random Forest Feature Importance

Outflow Minimum
Interarrival Time

Inflow Mean

008 Burst Length
Inflow # Outflow #
of Bytes of Bytes Outflow Flow
06 Duration
Outflow to inflow
. Inflow ¢ packet ratio
H Length
g

Features

Figure 5: The plot above shows the weights of each of the 28
features in classifying ransomware traffic. The top 8 most
important features are circled in red and labeled. We use
these 8 features to train a new classifier.

eight features are made up of mostly inflow and outflow length and
interarrival time metrics. These eight features, which are circled
in red and labeled in Figure 5 are used to develop a new random
forest model for ransomware classification.

After training a model using only the inflow and outflow number
of bytes, inflow and outflow standard deviation of packet lengths,
inflow mean burst length, outflow minimal interarrival time, and
the outflow to inflow packet ratio, we test our model and produce
similar results to our classifier using 28 features. The confusion
matrix of our 8-feature classifier can be seen in Figure 6. It is clear
when comparing Figures 4 and 6 that the reduction in features has
little impact on the classification accuracy. The 8-feature model has
a slightly lower recall score at 0.87 but produces a higher precision
and F1 scores of 0.86 and 0.87, respectively. However, Figure 7b
shows a slightly smaller AUC for the 8-feature ROC indicating
that the 8-feature classifier performs about 1.4% worse than the

SDN-NFV Sec’18, March 19-21, 2018, Tempe, AZ, USA

Confusion matrix: Random Forest Classifier

Clean Ransomware

90
80
70
60
50
40
30
Figure 6: The confusion matrix of our 8-feature classifier

shows similar results to that of our 28-feature classifier with
arecall of 0.87, precision of 0.86, and F1 score of 0.87.

Clean True Clean (TN): 92

True

Ransomware False Clean Pred (FN): 12

Predicted

Random Forest ROC Curve Random Forest ROC Curve

True Positive Rate
True Positive Rate

—— ROC Curve (area = 0.93502) 00 —— ROC Curve (area = 0.91951)

00 02 04 06 o8 10 00 02 04 06 08 10
False Positive Rate False Positive Rate

(a) 28-Feature ROC Curve. AUC: 0.93 (b) 8-Feature ROC Curve. AUC: 0.92

Figure 7: Comparison of ROC Curves for the 28-feature and
8-feature classifiers

28-feature model. This slight performance loss will be worth the
computational savings when running classification at line rate.

5.6 Cerber Ransomware Detection

After running a classifier to detect all types of ransomware commu-
nication with a C&C server, we looked into specifically classifying
Crypto-based Cerber ransomware, a ransomware which infected
over 150,000 users in 2016 [12]. Cerber is a RaaS-type ransomware,
which allows any nontechnical adversary to create and distribute
their own ransomware. We chose to classify Cerber specifically due
to its large infection footprint and its availability to anybody who
wants to deploy ransomware.

We extract Cerber’s eight most important network features,
which include the mean and maximum burst lengths of the inflow
stream, and create a random forest model for predicting Cerber ran-
somware. While we use a smaller sample size than in our previous
tests, we are able to achieve a false negative rate of 0.0% and a false
positive rate of 12.5%. Figure 8 shows the confusion matrix of the
classifier. Furthermore, the ROC curve also attains a high AUC of
~0.987.

SDN-NFV Sec’18, March 19-21, 2018, Tempe, AZ, USA

Confusion matrix: Random Forest Classifier

Clean Ransomware

10

Clean True Clean (TN): 7 False Ransomware Pred (FP): 1

True

Ransomware False Clean Pred (FN): 0

True Ransomware (TP): 10

Predicted °

Figure 8: The confusion matrix of the Cerber classifier
shows zero false negatives with a 12.5% false positive rate
and an F1 score of 0.94. The initial findings are promising as
we move forward in collecting more ransomware traffic.

It should be noted that our 10-fold CV score average comes in
at 0.905, indicating that as we use the Cerber classifier on more
network traffic, we are likely to see a slight rise in false negatives
and false positives.

While we use a small sample size for classifying Cerber traffic,
the results indicate that our machine learning approach may have
more success in classifying specific types of ransomware rather
than ransomware as a whole. While the underlying method for
distributing and launching ransomware is similar, the individual
traffic shapes likely differ slightly across ransomware flavors based
on the ransomware developer. We leave this investigation to future
work.

6 CONCLUSION & FUTURE WORK

In this paper we present a method for detecting ransomware via its
network traffic signature. We utilize the high processing rate of new
hardware-based flow generators in combination with RaftLib’s high
performance and parallel framework to process rich flow records,
extract flow features, and classify ransomware. Since malware com-
munication is moving towards HTTPS for delivery and control, we
only utilize the unencrypted features of HTTPS traffic for model
creation. We write a stream processor using five kernels to process
rich flow records and extract high-level flow features for use in
our random forest classifier. When monitoring the communication
between the infected machine and the C&C server, we are able
to significantly reduce our initial feature set and achieve a detec-
tion accuracy rate of almost 87%, while maintaining a strong false
negative rate close to 10%.

In the future, in order to classify traffic at line rate, we plan to
write our classifier in C++ as a stream processing kernel. By speed-
ing up the classification step, we’ll be able to identify ransomware
before the infected computer receives the encryption key from the
C&C server. Furthermore, some ransomware variants utilize UDP to
communicate with their C&C server. Our current implementation
does not take the UDP protocol into consideration. Adding UDP

Greg Cusack, Oliver Michel, and Eric Keller

traffic features into our machine learning model will likely improve
our classification accuracy and detect ransomware we would other-
wise not catch. Finally, our next step is to run our own ransomware
sandboxes in a controlled environment and collect ransomware
traffic ourselves. Running our own malware in a controlled envi-
ronment will allow us to collect more ransomware traffic; therefore,
providing a more fine-grained feature set for our random forest
classifier.

7 ACKNOWLEDGEMENTS

This work was supported in part by the NSF grants 1652698
(CAREER) and 1406192 (SaTC), and by the NSF and VMWare grant
1700527 (SDI-CSCS).

REFERENCES

[1] Jonathan C Beard, Peng Li, and Roger D Chamberlain. 2017. RaftLib: A C++
template library for high performance stream parallel processing. The Interna-
tional Journal of High Performance Computing Applications 31, 5 (2017), 391-404.
https://doi.org/10.1177/1094342016672542

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87-95. https://doi.org/10.
1145/2656877.2656890

[3] PatBosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM °13). ACM, New
York, NY, USA, 99-110. https://doi.org/10.1145/2486001.2486011

[4] Krzysztof Cabaj, Marcin Gregorczyk, and Wojciech Mazurczyk. 2016. Software-
Defined Networking-based Crypto Ransomware Detection Using HTTP Traffic
Characteristics. CoRR abs/1611.08294 (2016). arXiv:1611.08294 http://arxiv.org/
abs/1611.08294

[5] Krzysztof Cabaj and Wojciech Mazurczyk. 2016. Using Software-Defined
Networking for Ransomware Mitigation: the Case of CryptoWall. ~CoRR
abs/1608.06673 (2016). arXiv:1608.06673 http://arxiv.org/abs/1608.06673

[6] Europol. 2017. Internet Organised Crime Assessment 2016 IOCTA.
(2017). https://www.europol.europa.eu/activities-services/main-reports/
internet-organised- crime-threat-assessment-iocta-2017

[7] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. 2008. BotMiner:
Clustering Analysis of Network Traffic for Protocol-and Structure-Independent
Botnet Detection.. In USENIX security symposium, Vol. 5. 139-154.

[8] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better
NetFlow for Data Centers. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). USENIX Association, Santa Clara, CA, 311
324. https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/
li-yuliang

[9] Arna Magnusardottir. 2017. Malware is Moving Heavily to HTTPS. (2017).

https://www.cyren.com/blog/articles/over-one-third- of-malware-uses-https

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat

Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.

Language-directed hardware design for network performance monitoring. In

Proceedings of the Conference of the ACM Special Interest Group on Data Commu-

nication. ACM, 85-98.

Yanjun Qi. 2012. Random forest for bioinformatics. In Ensemble machine learning.

Springer, 307-323.

[12] Barkly Research. 2017. Cerber Ransomware: Everything You Need to Know.

(2017). https://blog.barkly.com/cerber-ransomware-statistics-2017

Daniele Sgandurra, Luis Mufioz-Gonzalez, Rabih Mohsen, and Emil C. Lupu. 2016.

Automated Dynamic Analysis of Ransomware: Benefits, Limitations and use for

Detection. CoRR abs/1609.03020 (2016). arXiv:1609.03020 http://arxiv.org/abs/

1609.03020

[14] John Sonchack, Adam J. Aviv, Eric Keller, and Jonathon M. Smith. 2017. Tur-

boFlow: Accelerating Flow Collection on Commodity Switches. (2017).

Hilary Tuttle. 2016. Ransomware attacks pose growing threat. Risk Management

63, 4 (2016), 4.

Ting-Fang Yen and Michael K Reiter. 2008. Traffic aggregation for malware

detection. Lecture Notes in Computer Science 5137 (2008), 207-227.

[10

[11

(13

[15

(16

	Abstract
	1 Introduction
	2 Related Work
	2.1 Ransomware Detection
	2.2 Recent Hardware Trends and PFEs

	3 System Architecture
	3.1 Stream Processing
	3.2 Classification

	4 Implementation
	4.1 Flow Records and Processing Kernels
	4.2 Ransomware Classifier

	5 Results
	5.1 Data Collection
	5.2 Success Metrics
	5.3 Feature Selection
	5.4 Initial Classification Model
	5.5 Feature Reduction
	5.6 Cerber Ransomware Detection

	6 Conclusion & Future Work
	7 Acknowledgements
	References

