


SDN-NFV Sec’18, March 19–21, 2018, Tempe, AZ, USA Greg Cusack, Oliver Michel, and Eric Keller

for infection are increasing dramatically. We have also seen the

emergence of Ransomware as a Service (RaaS), where a novice

cybercriminal can pay a service and easily customize his or her

own ransomware and have it spread to many computers around

the world [15]. Despite the growing number of ransomware cases,

the underlying method for how the two methods operate are simi-

lar. They both require communication with a C&C server in order

to carry out an attack. This communication between the infected

computer and the C&C server is what we exploit in our classifier.

Figure 1 shows the communication between the infected com-

puter and the C&C server. In order to encrypt the victim’s files, the

victim requests an encryption key from the C&C server through

multiple layers of proxies. The C&C server generates a new asym-

metric key pair, keeps the private key, and returns the public key to

the victim to encrypt its files. After encryption, a Tor hidden service

communicates a method for paying the ransom. By analyzing the

traffic flowing between the victim’s computer and the proxies re-

siding in the greater Internet, we’re able to develop a classification

model that identifies the encryption key retrieval process.

Previous work has shown that even if the victim has received

the initial infection through a phishing email, for example, if the

C&C server cannot deliver the encryption key, the malware cannot

carry out the attack [5]. As a result, we look at the network traffic

between the victim’s computer and the C&C server in hopes that

we can identify malicious communication, and prevent the delivery

of the encryption key.

In order to accurately monitor all traffic going into and out

of the potential victim, we leverage the recent emergence of pro-

grammable forwarding engines (PFEs). PFEs utilize switch hard-

ware and dynamic memory caches to achieve high packet process-

ing speeds while simultaneously providing rich flow records. These

PFE-generated flow records, provide per-packet information and

allow us to extract flow features for ransomware classification at

line rate in an accurate and scalable manner.

The rest of the paper is broken up into sections as follows. Section

2 discusses and outlines previous work in the field of ransomware

detection and PFEs. Section 3 dives into our system architecture,

starting with a description of the framework we used for our stream

processor and finishing with a motive for random forest. We de-

scribe the implementation of our design in Section 4 and analyze the

results of the classifier in Section 5. Finally, Section 6 summarizes

our application and discusses future work.

2 RELATED WORK

Two areas of related work help us in designing our ransomware

detection application. Ransomware detection has been a large area

of study in recent years; however, many of these solutions fall short

as ransomware developers adjust their malware delivery methods.

We also look at the emergence of PFEs, the programmable hardware

we leverage for rapid per-packet, flow processing.

2.1 Ransomware Detection

One method of ransomware detection used machine learning to

identify and classify various types of ransomware during the ran-

somware installation phase on target hosts. The authors mainly

relied on Windows API calls, file system operations, registry op-

erations, etc. to classify malware. Their ransomware classifier, El-

deRAN, was compared to various other machine learning algo-

rithms such as SVM and Näive-Bayes and produced a much higher

true positive rate and a lower false positive rate [13]. However,

EldeRAN requires the infection of a system in order to learn ran-

somware behavior.

Another group of researchers used an SDN approach to ran-

somware identification by utilizing deep packet inspection to track

the packet lengths of HTTP POST messages [4]. Once ransomware

was identified, the command and control server IP addresses were

identified and blocked. However, this technique results in a rela-

tively high false positive rate (up to 4.95%), leaving their method

open to a base rate fallacy issue and falsely blocking valid servers.

In fact, most malware and ransomware detection methods that

look at traffic traces, like the one above, are payload-based [4, 5, 16].

These network-based approaches to ransomware detection all share

the same, previously described problem of relying on DPI, and

therefore, are useless for fingerprinting on encrypted traffic.

2.2 Recent Hardware Trends and PFEs

In recent years, we have seen the development of a few high rate

stream processing systems, which utilize switch hardware to gen-

erate network information-rich flows [3, 8, 10, 14]. PFEs allow com-

modity networking equipment to support the scalable generation of

rich flow records. The recent trend of PFEs and the accompanying

efforts to make programming them more accessible has enhanced

the use and development of PFEs [2].

PFEs allow us to process network data at high rates of speed,

while still extracting vital, per-packet flow information. The growth

of PFEs and rich flow generation systems, provide us with the

data and speed necessary for network, flow-based ransomware

classification.

3 SYSTEM ARCHITECTURE

Our system’s architecture is broken into two main parts, stream

processing and classification. The stream processor reads from a

PCAP, runs and manages a custom flow table, and extracts flow fea-

tures for our classifier. The classifier takes in the extracted features

and trains a model to identify ransomware.

3.1 Stream Processing

In order to process rich flow records, we utilize RaftLib’s stream

processing library to build high-performance, parallel, analytics

applications [1]. Each kernel we wrote using RaftLib runs a step

in the flow processing chain. We link multiple of our kernels to

group incoming packets into their respective flow records based on

each packet’s 5-tuple. The 5-tuple, which consists of the packet’s

protocol, source IP, source port, destination IP, and destination

port, serves as the flow record’s key. The kernel-based approach

allows us to utilize RaftLib’s parallelization feature. Since we read

in network traffic from PCAP files, we use a custom flow table and

implement it as a kernel running in parallel with the other kernels.

We simulate the generation of rich flow records and use the RaftLib

framework to write a parallelized, stream processor for flow feature





SDN-NFV Sec’18, March 19–21, 2018, Tempe, AZ, USA Greg Cusack, Oliver Michel, and Eric Keller

times, total number of packets and their respective lengths, and the

number of unique packet lengths.

Direction dependent features are flow features that rely on know-

ing the features of the flow traveling in the opposite direction on

the same connection. Direction dependent features include burst

lengths, the ratio of outgoing to incoming packets, and the ratio of

outgoing to incoming bytes. Burst lengths are defined as a sequence

of outgoing packets which contain no two adjacent incoming pack-

ets. The feature extraction kernel calculates the two classes of flow

features and passes them to the Python-based classifier.

4.2 Ransomware Classifier

As mentioned in Section 3.2, we tune our random forest using three

main parameters: the number of trees in the forest, the depth of

each tree, and the number of features used in each tree. Since the

end goal is to run our classifier at line rate, we want as many trees

as possible without adding significant overhead. As a result, we use

40 trees in the forest, and set the depth of each tree to 15. It should

be noted that increasing the number of trees and the depth of each

tree has diminishing returns. We tested numerous combinations

of total decision trees and decision tree depth and found that in-

creasing the number and depth of trees from 40 and 15 respectively

resulted in minimal classification accuracy gains. Finally, due partly

to convention and mainly to the high computational cost of deci-

sion tree feature splitting, we set our maximum features parameter

to the square root of the total number of features in our dataset.

This reduction in features greatly improves the learning time of the

tree without a noticeable loss in classification performance.

5 RESULTS

In this section, we present the composition of our dataset and the

metrics that define success for our classifier. We also investigate the

performance of our classifier in identifying ransomware as a whole.

We then move on to discuss how well our classifier can identify a

specific type of crypto ransomware.

5.1 Data Collection

We collect over 100MB of ransomware traffic traces from malware-

traffic-analysis.net, resulting in 265 unique bidirectional ransomware-

related flows. We collect another 100MB of network traffic that is

malware free (clean) to use as a baseline. The clean data consists

of flows corresponding to web browsing, file streaming, and file

downloading. When analyzing the ransomware traffic, we analyze

the traffic to and from the infected machine in communication with

the C&C server. We combine both the ransomware and clean traffic

and feed it into our stream processor to extract features for the

classifier.

5.2 Success Metrics

We next discuss our success metrics, which help us determine

whether or not we have produced a strong classifier. For our first

success metric, we look at the recall of our classifier. The recall deals

with the classifier’s false negative rate. In the future, we plan to

implement our system in a real-world setting to catch ransomware

before it encrypts a user’s computer. To do so, we need to ensure that

our false negative rate is as low as possible to prevent misclassifying

ransomware as clean traffic.

We next look at the false positive rate of the classifier in deter-

mining its success. The false positive rate describes how often clean

traffic is misclassified as ransomware. The false positive rate also

needs to be as low as possible to prevent the unwarranted blocking

of clean traffic. Furthermore, a high false positive rate results in a

base rate fallacy issue, which quickly results in a massive number

of falsely identified ransomware traffic.

To measure the classifier’s success, we also look at the F1 score.

The F1 score is a weighted average of the recall and precision scores

and provides an idea of the balance between the false negative and

false positive rates.

5.3 Feature Selection

We select our features based on the nature of the victim computer’s

communication with the C&C server. Since communication with

the C&C server runs through multiple layers of proxy servers,

we expect a higher than normal traffic latency. We extract this

increased latency by measuring packet interarrival times. Further-

more, we also expect more incoming than outgoing traffic from

the victim computer due to the downloading of the initial infec-

tion, the encryption key retrieval process, and the payment method

notification from the Tor hidden service. We collect data to test

this expectation by extracting the inflow to outflow packet ratios

and burst lengths, where a burst length is the number of incoming

packets before two adjacent outgoing packets are registered. The

combination of interarrival times, packet ratios, and burst lengths

can help distinguish a clean download from a malicious download

through proxy servers.

5.4 Initial Classification Model

We first tune our stream processor to extract 28 unique features

from our collected network traffic. These features are fed into the

classifier, which first ensures the data contains the same number of

malicious flows as clean flows in order to prevent classification bias.

The data is then split into two, unequal sets. One set consists of

70% of the data and is used for training and the other set holds the

remaining 30% of traffic and is used for testing the learned model.

A 10-fold cross validation (CV) is performed on our data splitting

to ensure our splitting model is unbiased. The confusion matrix

in Figure 4 shows the results of our classifier using 28 different

features. Even with a smaller set of traffic data, ∼200MB, we are

able to achieve a respectable recall of 0.89, a precision of 0.83, and an

F1 score of 0.87. If we take a look at the corresponding ROC curve

in Figure 7a, the area under the curve is 0.935, showing promise

for successful ransomware detection. Furthermore, the average of

the 10-fold CV score for our model is 0.87, indicating that we can

expect similar accuracy results on other datasets.

5.5 Feature Reduction

Feature reduction is a key method used in machine learning to

increase classification accuracy while simultaneously reducing the

computational cost of the model. In order to reduce the number

of feature in our model, we identify the top eight most influential

features in classifying ransomware traffic, as seen in Figure 5. The






	Abstract
	1 Introduction
	2 Related Work
	2.1 Ransomware Detection
	2.2 Recent Hardware Trends and PFEs

	3 System Architecture
	3.1 Stream Processing
	3.2 Classification

	4 Implementation
	4.1 Flow Records and Processing Kernels
	4.2 Ransomware Classifier

	5 Results
	5.1 Data Collection
	5.2 Success Metrics
	5.3 Feature Selection
	5.4 Initial Classification Model
	5.5 Feature Reduction
	5.6 Cerber Ransomware Detection

	6 Conclusion & Future Work
	7 Acknowledgements
	References

