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Abstract

Deep networks have gained immense popularity in Com-
puter Vision and other fields in the past few years due to
their remarkable performance on recognition/classification
tasks surpassing the state-of-the art. One of the keys to their
success lies in the richness of the automatically learned fea-
tures. In order to get very good accuracy, one popular op-
tion is to increase the depth of the network. Training such
a deep network is however infeasible or impractical with
moderate computational resources and budget. The other
alternative to increase the performance is to learn multiple
weak classifiers and boost their performance using a boost-
ing algorithm or a variant thereof. But, one of the problems
with boosting algorithms is that they require a re-training
of the networks based on the misclassified samples. Mo-
tivated by these problems, in this work we propose an ag-
gregation technique which combines the output of multiple
weak classifiers. We formulate the aggregation problem us-
ing a mixture model fitted to the trained classifier outputs.
Our model does not require any re-training of the “weak”
networks and is computationally very fast (takes < 30 sec-
onds to run in our experiments). Thus, using a less expen-
sive training stage and without doing any re-training of net-
works, we experimentally demonstrate that it is possible to
boost the performance by 12%. Furthermore, we present
experiments using hand-crafted features and improved the
classification performance using the proposed aggregation
technique. One of the major advantages of our framework
is that our framework allows one to combine features that
are very likely to be of distinct dimensions since they are
extracted using different networks/algorithms. Our experi-
mental results demonstrate a significant performance gain
from the use of our aggregation technique at a very small
computational cost.

1. Introduction

Deep convolution neural networks (CNNs) have recently
gained immense attention in computer vision and machine
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learning communities mainly because it’s superior perfor-
mance in various applications including image classifica-
tion [15, 19, 21], object detection [14, 17, 28], face detec-
tion/recognition [37, 22, 27, 38] and many others. These
networks usually consist of a stack of convolution layers
and fully connected layers with pooling and non-linearity
in between. By stacking multiple layers, deep network can
essentially extract complex features which are more dis-
criminative than features extracted by traditional machine
learning algorithms [35, 36, 40, 42]. Krizhevsky et al. [19]
proposed a deep CNN architecture (dubbed AlexNet) which
performed exceptionally well on ImageNet image classifi-
cation dataset. The tremendous success of AlexNet lead to
a flurry of research activity in the community resulting in
a variety of deep CNN architectures for face recognition,
action recognition etc. etc.

As there are no specific guidelines regarding the choice
of the depth and width of the network, a significant amount
of research has focused on finding heuristics to determine
these parameters to obtain the “optimal” network for the
target application. This resulted in very deep networks like
DenseNet201 (of depth 201) [17], ResNet50 (of depth 168)
[15], InceptionResnetv2 (of depth 572) [39], Xception (of
depth 126) [5] and others. Though these very deep net-
works perform well on large datasets like ImageNet [10],
JFT dataset [16] and others, retraining these networks for
small datasets or different target applications is difficult due
to their enormous size (in terms of number of parameters).
This raises the question, is it possible to combine multiple
“weak” networks (of smaller depth and hence lower accu-
racy) and boost the performance significantly over each in-
dividual network in the combination?

In response to the above question, recently, several re-
searchers proposed algorithms that construct a combina-
tion of different networks to achieve improved performance.
The basic idea of these methods have been borrowed from
traditional ML algorithms like bagging [|2] and boosting
[31]. Some of these methods rely on a weighted combi-
nation of different networks [33, 34, 29]. While boost-
ing methods like the Diabolo classifier [32] and the multi-

454



column deep network [2, 7] focus on retraining networks
based on the previously misclassified samples. In multi-
column CNN, the authors train multiple CNNs simultane-
ously so that a linear combination of these CNNs boost
the performance and serve as the final predictor. Recently,
the authors in [25] proposed a boosting technique named
BoostCNN where similar to Adaboost [33, 34], they learn
CNNs sequentially on the mistakes from the earlier net-
works in the sequence. Essentially, they built a deep CNN
where the final network output is aligned with the boosting
weights. Though this sequential approach is less expensive
than multi-column deep network, this still needs training of
the CNNs which is time consuming. Very recently, several
significantly deep networks have been proposed in literature
[39, 15]. Though these networks perform very well, training
takes a significant amount of time and hence retraining is
not computationally feasible. Even using transfer learning
[26], sometimes it is not computationally viable to train/fine
tune these networks.

In this work, we propose a novel framework which takes
multiple pre-trained “weak” CNNs as input and outputs
a probabilistic model which is an aggregation of the pre-
trained CNNs. We formulate the problem of combining
weak CNNs as a mixture model of the distributions learned
from the output of the deep networks. Our formulation
can also deal with features of different dimensions and pro-
vide a boosted performance. Hence, we have two sets of
experiments one to show the performance boost on multi-
ple weak deep networks and the other experiment to show
performance boost on multiple popular hand crafted fea-
tures. In practice, our method takes < 30 seconds of ad-
ditional time to achieve the boosted performance. One of
the key advantages of our proposed framework is unlike
previous boosting techniques, it does not require any re-
training of CNNs. We show that our model requires a sim-
ple optimization on a hypersphere which is solved using
a Riemannian gradient descent based approach. We have
incorporated both the parametric and non-parametric mod-
els for representing the combination of networks and have
shown that both these models achieve boosted performance
of the aggregation technique when compared to each of the
weak network classifiers. Through experiments, we show
that on CIFAR-10 data [18], using 20 weak classifiers of
depth < 20, our parametric model improved the accuracy
by about 8% ~ 12%. On MNIST data [20, 11], using 20
weak classifiers of depth 2, our model achieves 2% ~ 3%
improvement in classification accuracy.

Rest of the paper is organized as follows. In section 2,
we present the framework for combination of “weak” net-
works. Section 3 contains various experiments conducted
to depict the performance of the proposed technique for im-
proved performance. In section 4 we draw conclusions.

2. An aggregation of multiple weak networks

In this section, we propose both parametric and non-
parametric models to combine multiple “weak’ networks in
order to boost the overall performance. In any deep network
used for classification, the output is a probability vector cor-
responding to the probability of the given test data belong-
ing to set of classes under consideration. In this paper, we
propose to exploit the geometry of the space of probability
densities. However, this space is a statistical manifold and
the natural metric on it is the well known Fisher-Rao met-
ric [3], which is difficult to compute. Hence, a square root
parameterization of the density is used to map the density
on to a unit Hilbert sphere whose geometry is fully known.
Further, the natural metric on the sphere can be used in all
computations as it is in closed form and is computationally
efficient. We now present the relevant basic concepts of dif-
ferential geometry as applied to the sphere that are needed
in this work.

2.1. Review of Basic Riemannian Geometry of SV

The N-dimensional sphere, S, is a Riemannian mani-
fold with constant positive curvature and is the simplest and
widely encountered manifold in many application domains.
In following paragraph, we will present a very brief review
of the relevant differential geometry concepts of S*.

Geodesic distance: We will use the arc length distance
as the geodesic distance on S™V. The arc length distance,
dare : SV x SN — R is defined as follows:

dure(x,y) = cos ™" (x'y),

where x,y € SV.

Exponential map: Let, x € SV. Let B, (0) C TSV
be an open ball centered at the origin in the tangent space
at x, where r is the injectivity radius of SN [24]. Then, we
can define the Exponential map, Exp, : 7, S" — S¥ as:

. v
Expy (v) = cos ([|v[]) x + sin (|| v]]) ™I
where, v € T4 S™V. The Exponential map maps a tangent

vector v to a point on the great circle along the direction v
and with distance ||v|| from x. Note that on SV, r = 7/2.

Inverse Exponential map: Inside B, (0), Exp, is a dif-
feomorphism, hence, the inverse exists and we can define
the inverse of the Exponential map by Exp;* : U — B, (0)
and is given by

Expyc ' (y) = (y —xcosb),

sin 0

where U = Exp, (B, (0)) and 8 = dy (X,y).
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Shortest Geodesic curve: Let x € SV and y €
Expy (B, (0)). Then, the shortest geodesic curve between
x and y is a function I'Y : R — S given by:

I'Y () = Expy (tExpx ' (¥))

2.2. A parametric model for the aggregation of net-
works

Let, Ny,---, N, be the “weak” networks that we want
to combine to achieve an improved performance. Let [ € Z
be an input image, where Z is the given set of image data.
Let fi1, -+, fm € R be the output of the networks, where
fi is the output of N, i.e., f; = N;(I), and c is the num-
ber of classes. Here f; can be viewed as the probability
vector of size ¢, containing the probabilities of an image
belonging to each of the c classes. We use the square-root
parametrization to map f; on to the hypersphere S¢~!. To
make the notation more concise, for network V;, we define
amap F; : Z — S¢!as

I— /N;(I),

where the square-root is taken element-wise.
Let {Ij}§:1 be the partition of the data Z. We as-

sume that for the i*" network and for the j** class, the
features {F; (I1) |I € Z;,k =1, ...,|Z;|} are independent
and identically distributed with a Gaussian distribution
pij = N (wij,0:;) on S~ with location parameter p1;; €
S¢~! and scale parameter, 045 > 0, 1.e., for each ¢, j,

i.1. d
{Fillilk € Ik = 1, ., [T} "~ N (g, 005) - (1)

On S¢ ! we will use the Gaussian distribution,
N (i, o), as defined in [4]. Let X be an S~ valued ran-

dom variable, then the p.d.f. is given by:

o) = gy (-S). @

where d is the geodesic distance on S¢~!. C(c) is the nor-
malizing constant. This distribution, p;;, gives the probabil-
ity of a feature coming from the i*" network and belonging
to the 7" class.

Let {cy;}[" | be the weights associated with the networks
such that, they satisfy the affine constraint, i.e.,

Zai =1
i=1

Now, we will use these weights to define a mixture to
model the combination of these networks. For each class

J, we define the probability density, p; : Z — R by
p;j = >.; a; (pij o F;). Hence, forall I € Z,

D=3 iy (F(D)

Clearly, p;(I) > 0 for all I € Z. And because of the affine
constraint on {«; }, p; is a valid probability density, for all
j. Each p; will represents an ensemble of the learned mod-
els for all the networks. Now, in the prediction phase, we
will assign the test image to the class which maximizes this
probability value.

We define the prediction by our ensemble classifier p :

T ACh p1(I) pe) V' pi
= £%bypll) = 2p7(1>""szju> - HLis casy o

see that given the image I, this is a probability vector since
“opD) Y m)
= >,piD)  X;pi)

=1.

Training the model: Now we have the training data
denoted by, Zwin 7 that is used to learn the un-
known parameters {a;, f1i;,04;}i ;, and the test data de-
noted by, Z'' C Z. Though, it is possible for one to learn
{15, O'ij}iyj, instead, we use the Fréchet mean (FM)[13] on
{Fi} reqvan 10 get the estimate /1;; and use the sample stan-

dard deviation within {F;};_7wn to get the estimate &;j,
J

ie.,
ﬂl - arg énslcnl Itram Z darc ) (3)
Iez‘[l’dln
&ij = rain Z darc ) “)
It | I1€Z;
1
Afa Az (Fi(D), jui;
C(6i5) = [ Z exp (—W)} 3)
[ Twain ¥

In this work, rather than optimizing the minimization
problem to get the FM, we will use an incremental FM
estimator on S™V presented in [30]. For completeness, we
will give the formulation of the FM estimator here. Given
{x;};_, on SV, the FM of these samples can be estimated
by m,,, where m,, is defined recursively as follows:

m; = Xy

1
g =Dpt ( ——
L . (k T 1>
In [30], the authors provide a proof of weak consistency of
this estimator.
Note that in our case, all entries of F;(I) = +/N;(I)

are positive, so they lie in the positive quadrant of the hy-
persphere. Hence the existence and uniqueness of the FM
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are guaranteed [1]. Given {fi;;,04;}, o we will learn «; by
minimizing the following objective function,
I(rain
1 |z

L({al}) = |Itrain| Z d2(yk»p(-[k)) (6)
k

=1

Training of {c; }: ¢ is the weight on network N;. Since
>, = land oy > 0, we will identify {c;} on the hy-
persphere of dimension m — 1, i.e., on S™=1 and then do
Riemannian gradient descent on the hypersphere. The al-
gorithm to solve for o; by minimizing L is given in Algo.
1.

Algorithm 1: Learning of {c;}s in order to minimize Eq. 6.

Imput: o; = 1/m, forall ¢, {1;;}, {6:;}, 1 >0
Output: {&;}
&; = \/a; and then (d&;) lies on S™1;
while convergence is not achieved do
Compute V5, E € T(5,)S™ " ;
Set (6{1) = Exp(d,) (—’I]V((SLL)E) )
end
&; = a2, foralli;

A 1 A W N -

In the above algorithm Exp is Riemannian Exponential
map on hypersphere. This above algorithm ensures that
{&;} satisfy the affine constraints.

Since labeled images (I,y) are given, without loss of
generality, we can assume that the label y is of the form
y = 1; € R° where I is from jth class and then we can
view y as a degenerated distribution. To be consistent, we
identify these two distributions, y and p(I), with points on
the hypersphere S¢~! and use the arc-length distance as the
distance between y and p(I), i.e.

_ y »{) =cos™! vpld)_
d(y, p(I)) = dare <||y|’ ||;3(I)||) (|y|| ||p(I)||)

Prediction of the class for a new sample I: Given {4},
{5}, {5, }, the predicted class probability is given by,

pi(l) = Z aipij(Fi(I))

N a e [ D) i)
_Zi: ") p( 252 )

j

When a test image [ € 7' is given, we will assign it to a
class 7* for which the prediction probability is maximized,
1.e.,

J* = argmaxp;(I)
J

Now, that we have a model and an algorithm to learn
the model, we will present a framework that can combine
features extracted from different algorithms (deep networks
or hand-crafted) and hence can have different number of
feature dimension.

{fi} as the output from the fully connected layer (or
as hand crafted features): Note that, f; is the output of
the network V; from an intermediate fully connected layer
(or f; be the dimension of hand crafted features). Let,
fi € R% foralli = 1,---,m. We want the features
to be affine invariant, but as none of the networks output
affine invariant features, we quotient out the group of affine
transformations from the features to map each feature on
to the Grassmannian. We want the affine invariance in the
extracted features, so that if two networks (or algorithms to
compute hand crafted features) output features which are re-
lated by an affine transformation, we will not consider these
two networks to be different.

We will use F; to denote the point on the Grassmannian
corresponding to f;, i.e., F; € Gr(1,d;). Observe that each
F; may lie on the Grassmannian of different dimensions
(as d; may be different for different networks). Let, p;; be
the Gaussian distribution which has been fitted to { 7} ;7.
corresponding to IV;, i.e., p;; = N(/Izij, oij), where, fi;; €
Gl‘(l, dl), 05 > 0.

On Gr(1,d;), we will use the Gaussian distribution,
N (pij, 0i5), as defined in [4]. Let ¢ be a Gr(1, d;) valued
random variable, then the p.d.f. is written as:

1 dQ(?vﬂij)
Clo) (‘202 -0

ij

where, d is the canonical geodesic distance on Gr(1,d;).
C(04j) is the normalizing constant. The canonical distance
d on Gr(1,d;) is defined as follows. Let ¢,y € Gr(1,d;)
with the respective orthonormal basis x and y. Then, the
geodesic distance is defined by:

d((x,) = || arccos (diag (%)) [|,

where ULV = Ty is the singular value decomposition.
Note that, though, p; is defined on {F;} ., C Gr(1,d;),
we will use the support of p; as Z, i.e.,

1
Piiz/* Pij
fowe= fx 2w
2
=7 Dij
kz]: {N.(1)|1€Z}}
>
=) pij
B Fhies,

=1 (8)
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The support of p;; over Z is needed to define a mixture of
{pi;} for each j.

We define the mixture of {p;;} as p; == >,
each j*" class.

a;p;; for

Theorem 1. Forall j, p; =,
sity on ;.

a;p;; is a probability den-

Proof. For each j,

/ Saim: = zaz/ -

N;(I)|I€Z;}

:Zalzl

As, pi; > 0and oy; > 0, for all 4, Y, a;p;; > 0. This
completes the proof. O

The above definition of mixture has components defined
on different dimensional spaces, but because of the defi-
nition in Eq. 8, the mixture p; = ) . «;;p;; is a valid
probability density on Z for each j. This is a more general
framework as it allows us to combine output of intermediate
layers of deep networks. As future work, we will explore
utilizing this more general framework to combine outputs
from intermediate network layers. As in our experiments,
we have found that the choice of layer for {f;} is crucial,
a detailed study in this more general direction should be
needed and is beyond the scope of this paper. However, in
this work we showed the performance gain of our proposed
framework on hand crafted features such as Histogram of
Oriented gradients (HOG) [9], SIFT [23] etc.

2.3. Non-parametric model

In the previous subsection, we have assumed a Gaussian
distribution on {F;(I), I € Z{"} for the i'" network and
jt" class. Though this parametric assumption is simple, it is
not very realistic since, the features of those being classified
correctly and those being misclassified are not from a single
Gaussian distribution but maybe a multi-modal distribution.
Hence, in this section, we will estimate {p;;} using kernel
density estimation. We will assume Gaussian kernel and
write p;; as follows. Let F;; := {F;(I)} rezyn be the set of

outputs of N; on Z{j™.

pij(x) =

Z exp( e (2, y))

”| yeFi;

for x € {F;(I),I € I}. Here, b is the bandwidth of the
kernel which we have select?(/i5based on Silverman’s rule
463,

of thumb, i.e., b = where, 6;; is the sample

standard deviation from Eq. 3 and

-1

=] 30 L (D)

J e train | 1J| yEFi;

The rest of the algorithm is same as in the previous sub-
section. We define the mixture of networks model p; =
> ;@i (pij o F;) and then solve for {a;} in order to mini-
mize the objective function in Eq. 6.

The entire procedure of our ensemble method is shown
in Figure 1.

3. Experiments

In this section, we present experiments for both the para-
metric and the non-parametric model on four publicly avail-
able datasets: CIFAR-10, CIFAR-100, MNIST, EMNIST-
letters (with English alphabet only) [8], EMNIST. A brief
description for each of the datasets is given below.

e The CIFAR-10 dataset consists of 60,000 32 x 32 color
images from 10 classes, of which 50,000 are used for
training and the rest are used for testing.

e The CIFAR-100 dataset consists of 60,000 32 x 32
color images from 100 classes, of which 50,000 are
used for training and the rest are used as test data.

e The MNIST dataset consists of 70,000 28 x 28 grey
images of handwritten digits 0 9, of which 60,000 are
used for training and the rest are used as test data.

e The EMNIST-letters dataset consists of 145,600 28 x
28 grey images of handwritten English alphabets (26
classes), of which 124,800 are used for training and
the rest for testing.

e The EMNIST-balanced dataset consists of 131,600
28 x 28 grey images of handwritten alphabets and dig-
its in 47 classes (merging those alphabets with similar
uppercase and lowercase, e.g. C, O), of which 112,800
are used for training and the rest for testing.

An outline of the entire procedure used in the experiments
is presented below:

1. Train 20 CNNs Ny, ..., Nog for each dataset. The
choice of CNN can be arbitrary and in order to show
the power of our proposed ensemble technique, we
trained the networks for only a few epochs to yield
“weak” networks. Here, for the sake of convenience,
we choose the following architectures (all the models
we used in this experiment are based on the models
provided by keras [6] and modified slightly to meet
our needs):
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Outputs from networks

Network 1| = | Fy(l),..., Fy(l,) | ——ep (’;“i: e | D, = (0, (F (1)),

Network 2| =2 | F(I,),..., F(I,) | = L’;"L’, —_— | p=(p,,(E, (1)),
Images \ aasens Gy e

Network 3| = | Fy{l),. Fy(l) | = | 20 e = (py (R

Compute the matrix
of probability for
each network

Compute FM and
standard deviation

Figure 1: Illustration of our ensemble method.

(a) CIFAR-10 We chose ResNet[15] with 20 weight
layers and train these networks for only 3 epochs.
The classification accuracies of these networks
range from 61.6% to 72.8% and the average ac-
curacy is 67.02%.

(b) CIFAR-100 We chose ResNet with 56 weight
layers and train these networks for 50 epochs.
The classification accuracies of these networks
range from 59.1% to 63.5% and the average ac-
curacy is 61.71%.

() MNIST We chose a very simple CNN with only
one convolution layer and one fully-connected
layer and train these networks for only 1 epoch.
The classification accuracies of these networks
range from 89.8% to 93.2% and the average ac-
curacy is 90.89%.

(d) EMNIST-letters We chose a CNN with 2 convo-
lution layer and 2 fully-connected layer and train
these networks for only 1 epoch. The classifi-
cation accuracies of these networks range from
89.8% to 93.2% and the average accuracy is
90.24%.

(e) EMNIST-balanced We chose a CNN with 2
convolution layer and 2 fully-connected layer
and train these networks for only 1 epoch. The
classification accuracies of these networks range
from 82.1% to 83.7% and the average accuracy
is 82.94%.

2. Compute the estimated weights a;, ¢ = 1, ..., 20 using
Algorithm 1.

3. Combine these networks and compute the classifica-
tion accuracy on the test data.

The results are shown in Table 1.

The result shows clearly that the proposed method works
quite well and as we expected, when the networks are strong
there is not much leeway to improve. On the contrary, when

Ave. Acc. | Param. | Non-param.
CIFAR-10 67.02% | 75.99% 79.5%
CIFAR-100 61.71% | 65.71% 73.14%
MNIST 90.89% | 93.55% 93.58%
EMNIST-letters 90.24% | 91.52% 91.61%
EMNIST-balanced | 82.94% | 84.27% 85.66 %

Table 1: Accuracies of the four datasets for parametric and
non-parametric model

the networks are weak, the improvement is very signifi-
cant. We can also see that the difference between paramet-
ric and non-parametric models decreases as the networks
get stronger. Since obviously the features from those being
classified correctly and those being classified incorrectly are
not from the same distribution, in such cases, using a sin-
gle Gaussian is not appropriate. When the networks are
stronger, the difference between a single Gaussian distribu-
tion and the kernel density estimate is smaller. The motiva-
tion to use the parametric model when it performs almost as
good as non-parametric model is clear: the non-parametric
model takes 2 to 5 times longer than the parametric model.

In practice, we would like to know whether this ensem-
ble technique reduces the time needed to achieve a certain
accuracy. To answer this question, we run a experiment
based on CIFAR-10 and the parametric ensemble model.
The experiment goes as follow:

1. We trained 5 networks on CIFAR-10 using the same
architecture as in the previous experiment.

2. Ensemble the intermediate models after running differ-
ent number of epochs.

The result is shown in Figure 2. As we can see, the ensem-
ble network performed constantly better. Since our ensem-
ble method requires multiple networks, when comparing the
efficiency of our method and the traditional CNN, it is better
to consider the effective number of epochs, e.g., if we com-
bine 5 networks and each of them is trained for 10 epochs,
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Figure 2: The comparison between the average accuracy of
5 networks and the accuracy of the ensemble networks: the
dashed line is the ensemble network and the solid line is the
average accuracy of the 5 networks.

Epochs | 20(5 x 4) | 50(5 x 10) | 100(5 x 20)
Ave. 77.86% | 76.66% 77.13%
Ensemble | 78.46% 80.6% 79.91%

Table 2: Average accuracy of networks and the accuracy of
our parametric ensemble network at different effective num-
ber of epochs. The ensemble configuration is indicated in
the parentheses: number of networks X number of epochs
per network.

then the effective number of epochs would be 5 x 10 = 50.
Table 2 shows the result of this experiment in terms of the
effective number of epochs. The table is to be interpreted as
follows: on CIFAR-10, training a network with 50 epochs
gives a classification accuracy 76.66% while training 5 net-
works, each with 10 epochs, and building the ensemble clas-
sifier based on these five networks gives a classification ac-
curacy 80.06%. The message is that if you train multiple
networks and build the ensemble network, you will get a
better performance.

Another advantage of our ensemble method is that we
can run multiple networks on different machines in parallel
and then combine them without any retraining. The extra
optimization step for finding the weights {c;} takes less
than a few minutes in all our experiments.

The third experiment is based ensemble classifiers using
the intermediate features instead of the final outputs. The
experiment is performed on MNIST, using weak classifiers
based on two HOG features [9] (with two different config-
uration) and the Daisy feature [41]. Each weak classifier is
built using the mixture model described in Section 2, i.e.,
the special case when there is only one network. The aver-
age accuracy of these three weak classifiers is 85.16% and

the accuracy of the ensemble classifier is 88.6%. The result
again shows capability of our ensemble method to boost the
performance without re-training.

4. Conclusions

In this paper we presented a novel aggregation tech-
nique to combine “weak” networks/algorithms in order to
boost the classification accuracy over each constituent of
the aggregate. Traditional boosting requires re-training
of every constituent of the aggregate and in contrast,
our aggregation model does not require any re-training.
This makes our aggregation model quite attractive from
a computational cost perspective. ~We presented both
parametric and non-parametric aggregation techniques
and demonstrated via experiments the efficiency of the
proposed methods. Another key advantage of our technique
stems from the fact that it can cope with aggregation of
features of distinct dimensions that are likely to result
from using either different networks or even hand-crafted
features that are extracted from the data. These salient
features make our aggregation model unique. We presented
several experiments demonstrating the performance of our
proposed aggregation technique on widely used image
databases in computer vision literature.
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