


column deep network [2, 7] focus on retraining networks

based on the previously misclassified samples. In multi-

column CNN, the authors train multiple CNNs simultane-

ously so that a linear combination of these CNNs boost

the performance and serve as the final predictor. Recently,

the authors in [25] proposed a boosting technique named

BoostCNN where similar to Adaboost [33, 34], they learn

CNNs sequentially on the mistakes from the earlier net-

works in the sequence. Essentially, they built a deep CNN

where the final network output is aligned with the boosting

weights. Though this sequential approach is less expensive

than multi-column deep network, this still needs training of

the CNNs which is time consuming. Very recently, several

significantly deep networks have been proposed in literature

[39, 15]. Though these networks perform very well, training

takes a significant amount of time and hence retraining is

not computationally feasible. Even using transfer learning

[26], sometimes it is not computationally viable to train/fine

tune these networks.

In this work, we propose a novel framework which takes

multiple pre-trained “weak” CNNs as input and outputs

a probabilistic model which is an aggregation of the pre-

trained CNNs. We formulate the problem of combining

weak CNNs as a mixture model of the distributions learned

from the output of the deep networks. Our formulation

can also deal with features of different dimensions and pro-

vide a boosted performance. Hence, we have two sets of

experiments one to show the performance boost on multi-

ple weak deep networks and the other experiment to show

performance boost on multiple popular hand crafted fea-

tures. In practice, our method takes < 30 seconds of ad-

ditional time to achieve the boosted performance. One of

the key advantages of our proposed framework is unlike

previous boosting techniques, it does not require any re-

training of CNNs. We show that our model requires a sim-

ple optimization on a hypersphere which is solved using

a Riemannian gradient descent based approach. We have

incorporated both the parametric and non-parametric mod-

els for representing the combination of networks and have

shown that both these models achieve boosted performance

of the aggregation technique when compared to each of the

weak network classifiers. Through experiments, we show

that on CIFAR-10 data [18], using 20 weak classifiers of

depth < 20, our parametric model improved the accuracy

by about 8% ∼ 12%. On MNIST data [20, 11], using 20
weak classifiers of depth 2, our model achieves 2% ∼ 3%
improvement in classification accuracy.

Rest of the paper is organized as follows. In section 2,

we present the framework for combination of “weak” net-

works. Section 3 contains various experiments conducted

to depict the performance of the proposed technique for im-

proved performance. In section 4 we draw conclusions.

2. An aggregation of multiple weak networks

In this section, we propose both parametric and non-

parametric models to combine multiple “weak” networks in

order to boost the overall performance. In any deep network

used for classification, the output is a probability vector cor-

responding to the probability of the given test data belong-

ing to set of classes under consideration. In this paper, we

propose to exploit the geometry of the space of probability

densities. However, this space is a statistical manifold and

the natural metric on it is the well known Fisher-Rao met-

ric [3], which is difficult to compute. Hence, a square root

parameterization of the density is used to map the density

on to a unit Hilbert sphere whose geometry is fully known.

Further, the natural metric on the sphere can be used in all

computations as it is in closed form and is computationally

efficient. We now present the relevant basic concepts of dif-

ferential geometry as applied to the sphere that are needed

in this work.

2.1. Review of Basic Riemannian Geometry of SN

The N-dimensional sphere, SN , is a Riemannian mani-

fold with constant positive curvature and is the simplest and

widely encountered manifold in many application domains.

In following paragraph, we will present a very brief review

of the relevant differential geometry concepts of SN .

Geodesic distance: We will use the arc length distance

as the geodesic distance on SN . The arc length distance,

darc : S
N × SN → R is defined as follows:

darc(x,y) = cos−1
(

xty
)

,

where x,y ∈ SN .

Exponential map: Let, x ∈ SN . Let Br (0) ⊂ TxS
N

be an open ball centered at the origin in the tangent space

at x, where r is the injectivity radius of SN [24]. Then, we

can define the Exponential map, Expx : TxS
N → SN as:

Expx (v) = cos (‖v‖)x+ sin (‖v‖) v

‖v‖ ,

where, v ∈ TxS
N . The Exponential map maps a tangent

vector v to a point on the great circle along the direction v

and with distance ‖v‖ from x. Note that on SN , r = π/2.

Inverse Exponential map: Inside Br (0), Expx is a dif-

feomorphism, hence, the inverse exists and we can define

the inverse of the Exponential map by Exp
−1
x : U → Br (0)

and is given by

Exp
−1
x (y) =

θ

sin θ
(y − x cos θ) ,

where U = Expx (Br (0)) and θ = darc (x,y).
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Shortest Geodesic curve: Let x ∈ SN and y ∈
Expx (Br (0)). Then, the shortest geodesic curve between

x and y is a function Γy
x : R → SN given by:

Γy
x (t) = Expx

(

tExp−1
x (y)

)

2.2. A parametric model for the aggregation of net­
works

Let, N1, · · · , Nm be the “weak” networks that we want

to combine to achieve an improved performance. Let I ∈ I
be an input image, where I is the given set of image data.

Let f1, · · · , fm ∈ Rc be the output of the networks, where

fi is the output of Ni, i.e., fi = Ni(I), and c is the num-

ber of classes. Here fi can be viewed as the probability

vector of size c, containing the probabilities of an image I
belonging to each of the c classes. We use the square-root

parametrization to map fi on to the hypersphere Sc−1. To

make the notation more concise, for network Ni, we define

a map Fi : I → Sc−1 as

I 7→
√

Ni(I),

where the square-root is taken element-wise.

Let {Ij}cj=1 be the partition of the data I. We as-

sume that for the ith network and for the jth class, the

features {Fi (Ik) |Ik ∈ Ij , k = 1, ..., |Ij |} are independent

and identically distributed with a Gaussian distribution

pij = N (µij , σij) on Sc−1 with location parameter µij ∈
Sc−1 and scale parameter, σij > 0, i.e., for each i, j,

{Fi(Ik)|Ik ∈ Ij , k = 1, ..., |Ij |} i.i.d∼ N (µij , σij) (1)

On Sc−1, we will use the Gaussian distribution,

N (µ, σ), as defined in [4]. Let X be an Sc−1 valued ran-

dom variable, then the p.d.f. is given by:

fX(x) =
1

C(σ)
exp

(

−d2(x, µ)

2σ2

)

, (2)

where d is the geodesic distance on Sc−1. C(σ) is the nor-

malizing constant. This distribution, pij , gives the probabil-

ity of a feature coming from the ith network and belonging

to the jth class.

Let {αi}mi=1 be the weights associated with the networks

such that, they satisfy the affine constraint, i.e.,

(∀i)αi ≥ 0
m
∑

i=1

αi = 1

Now, we will use these weights to define a mixture to

model the combination of these networks. For each class

j, we define the probability density, pj : I → R by

pj =
∑

i αi (pij ◦ Fi). Hence, for all I ∈ I,

pj(I) =
∑

i

αipij(Fi(I)).

Clearly, pj(I) ≥ 0 for all I ∈ I. And because of the affine

constraint on {αi}, pj is a valid probability density, for all

j. Each pj will represents an ensemble of the learned mod-

els for all the networks. Now, in the prediction phase, we

will assign the test image to the class which maximizes this

probability value.

We define the prediction by our ensemble classifier p :

I → △c by p(I) =
(

p1(I)∑
j
pj(I)

, ..., pc(I)∑
j
pj(I)

)t

. It is easy to

see that given the image I , this is a probability vector since

c
∑

i=1

pi(I)
∑

j pj(I)
=

∑c
i=1 pi(I)
∑

j pj(I)
= 1.

Training the model: Now we have the training data

denoted by, I train ⊂ I, that is used to learn the un-

known parameters {αi, µij , σij}i,j , and the test data de-

noted by, I test ⊂ I. Though, it is possible for one to learn

{µij , σij}i,j , instead, we use the Fréchet mean (FM)[13] on

{Fi}I∈I train
j

to get the estimate µ̂ij and use the sample stan-

dard deviation within {Fi}I∈I train
j

to get the estimate σ̂ij ,

i.e.,

µ̂ij = arg min
µ∈Sc−1

1
∣

∣I train
j

∣

∣

∑

I∈I train
j

d2arc(Fi(I), µ) (3)

σ̂ij =

√

√

√

√

1
∣

∣I train
j

∣

∣

∑

I∈Ij

d2arc(Fi(I), µ̂ij) (4)

Ĉ(σ̂ij) =

[

∑

I∈I train

exp

(

−d2arc(Fi(I), µ̂ij)

2σ̂2
ij

)]−1

(5)

In this work, rather than optimizing the minimization

problem to get the FM, we will use an incremental FM

estimator on SN presented in [30]. For completeness, we

will give the formulation of the FM estimator here. Given

{xi}ni=1 on SN , the FM of these samples can be estimated

by mn, where mn is defined recursively as follows:

m1 = x1

mk+1 = Γ
xk+1

mk

(

1

k + 1

)

In [30], the authors provide a proof of weak consistency of

this estimator.

Note that in our case, all entries of Fi(I) =
√

Ni(I)
are positive, so they lie in the positive quadrant of the hy-

persphere. Hence the existence and uniqueness of the FM
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are guaranteed [1]. Given {µ̂ij , σ̂ij}i,j , we will learn αi by

minimizing the following objective function,

L ({αi}) =
1

|I train|

|I train|
∑

k=1

d2(yk, p(Ik)). (6)

Training of {αi}: αi is the weight on network Ni. Since
∑

i αi = 1 and αi ≥ 0, we will identify {αi} on the hy-

persphere of dimension m − 1, i.e., on Sm−1 and then do

Riemannian gradient descent on the hypersphere. The al-

gorithm to solve for αi by minimizing L is given in Algo.

1.

Algorithm 1: Learning of {αi}s in order to minimize Eq. 6.

Input: αi = 1/m, for all i, {µ̂ij}, {σ̂ij}, η > 0
Output: {α̂i}

1 α̃i =
√
αi and then (α̃i) lies on Sm−1;

2 while convergence is not achieved do

3 Compute ∇(α̃i)E ∈ T(α̃i)S
m−1 ;

4 Set (α̃i) = Exp(α̃i)

(

−η∇(α̃i)E
)

;

5 end

6 α̂i = α̃2
i , for all i ;

In the above algorithm Exp is Riemannian Exponential

map on hypersphere. This above algorithm ensures that

{α̂i} satisfy the affine constraints.

Since labeled images (I, y) are given, without loss of

generality, we can assume that the label y is of the form

y = 1j ∈ Rc where I is from jth class and then we can

view y as a degenerated distribution. To be consistent, we

identify these two distributions, y and p̂(I), with points on

the hypersphere Sc−1 and use the arc-length distance as the

distance between y and p̂(I), i.e.

d(y, p(I)) = darc

(

y

‖y‖ ,
p(I)

‖p̂(I)‖

)

= cos−1

(

yT p(I)

‖y‖ ‖p(I)‖

)

Prediction of the class for a new sample I: Given {α̂i},

{µ̂ij}, {σ̂ij}, the predicted class probability is given by,

p̂j(I) =
∑

i

α̂ipij(Fi(I))

=
∑

i

α̂i
1

Ĉ(σ̂ij)
exp

(

−d2arc(Fi(I), µ̂ij)

2σ̂2
ij

)

.

When a test image I ∈ I test is given, we will assign it to a

class j∗ for which the prediction probability is maximized,

i.e.,

j∗ = argmax
j

p̂j(I)

Now, that we have a model and an algorithm to learn

the model, we will present a framework that can combine

features extracted from different algorithms (deep networks

or hand-crafted) and hence can have different number of

feature dimension.

{fi} as the output from the fully connected layer (or

as hand crafted features): Note that, fi is the output of

the network Ni from an intermediate fully connected layer

(or fi be the dimension of hand crafted features). Let,

fi ∈ Rdi , for all i = 1, · · · ,m. We want the features

to be affine invariant, but as none of the networks output

affine invariant features, we quotient out the group of affine

transformations from the features to map each feature on

to the Grassmannian. We want the affine invariance in the

extracted features, so that if two networks (or algorithms to

compute hand crafted features) output features which are re-

lated by an affine transformation, we will not consider these

two networks to be different.

We will use Fi to denote the point on the Grassmannian

corresponding to fi, i.e., Fi ∈ Gr(1, di). Observe that each

Fi may lie on the Grassmannian of different dimensions

(as di may be different for different networks). Let, pij be

the Gaussian distribution which has been fitted to {Fi}I∈Ij

corresponding to Ni, i.e., pij = N (µij , σij), where, µij ∈
Gr(1, di), σij > 0.

On Gr(1, di), we will use the Gaussian distribution,

N (µij , σij), as defined in [4]. Let x be a Gr(1, di) valued

random variable, then the p.d.f. is written as:

fX(x) =
1

C(σij)
exp

(

−d2(x, µij)

2σ2
ij

)

, (7)

where, d is the canonical geodesic distance on Gr(1, di).
C(σij) is the normalizing constant. The canonical distance

d on Gr(1, di) is defined as follows. Let x, y ∈ Gr(1, di)
with the respective orthonormal basis x and y. Then, the

geodesic distance is defined by:

d((x, y) = ‖ arccos (diag (Σ)) ‖,

where UΣV T = xT y is the singular value decomposition.

Note that, though, pi is defined on {Fi}I∈I ⊂ Gr(1, di),
we will use the support of pi as I, i.e.,

∫

I

pi : =

∫

I

1

k

∑

j

pij

: =
1

k

∑

j

∫

{Ni(I)|I∈Ij}

pij

: =
1

k

∑

j

∫

{Fi}I∈Ij

pij

= 1 (8)
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The support of pij over I is needed to define a mixture of

{pij} for each j.

We define the mixture of {pij} as pj :=
∑

i αipij for

each jth class.

Theorem 1. For all j, pj =
∑

i αipij is a probability den-

sity on Ij .

Proof. For each j,

∫

Ij

∑

i

αipij : =
∑

i

αi

∫

{Ni(I)|I∈Ij}

pij

=
∑

i

αi = 1

As, pij ≥ 0 and αi ≥ 0, for all i,
∑

i αipij ≥ 0. This

completes the proof.

The above definition of mixture has components defined

on different dimensional spaces, but because of the defi-

nition in Eq. 8, the mixture pj =
∑

i αijpij is a valid

probability density on I for each j. This is a more general

framework as it allows us to combine output of intermediate

layers of deep networks. As future work, we will explore

utilizing this more general framework to combine outputs

from intermediate network layers. As in our experiments,

we have found that the choice of layer for {fi} is crucial,

a detailed study in this more general direction should be

needed and is beyond the scope of this paper. However, in

this work we showed the performance gain of our proposed

framework on hand crafted features such as Histogram of

Oriented gradients (HOG) [9], SIFT [23] etc.

2.3. Non­parametric model

In the previous subsection, we have assumed a Gaussian

distribution on
{

Fi(I), I ∈ I train
j

}

for the ith network and

jth class. Though this parametric assumption is simple, it is

not very realistic since, the features of those being classified

correctly and those being misclassified are not from a single

Gaussian distribution but maybe a multi-modal distribution.

Hence, in this section, we will estimate {pij} using kernel

density estimation. We will assume Gaussian kernel and

write pij as follows. Let Fij := {Fi(I)}I∈I train
j

be the set of

outputs of Ni on I train
j .

pij(x) =
1

C(b) |Fij |
∑

y∈Fij

exp

(

−d2arc(x, y)

2b2

)

for x ∈ {Fi(I), I ∈ I}. Here, b is the bandwidth of the

kernel which we have selected based on Silverman’s rule

of thumb, i.e., b =
(

4σ̂5
ij

3|Fij |

)1/5

, where, σ̂ij is the sample

standard deviation from Eq. 3 and

Ĉ(b) =





∑

I∈I train

1

|Fij |
∑

y∈Fij

exp

(

−d2arc(Fi(I), y)

2b2

)





−1

.

The rest of the algorithm is same as in the previous sub-

section. We define the mixture of networks model pj =
∑

i αi (pij ◦ Fi) and then solve for {αi} in order to mini-

mize the objective function in Eq. 6.

The entire procedure of our ensemble method is shown

in Figure 1.

3. Experiments

In this section, we present experiments for both the para-

metric and the non-parametric model on four publicly avail-

able datasets: CIFAR-10, CIFAR-100, MNIST, EMNIST-

letters (with English alphabet only) [8], EMNIST. A brief

description for each of the datasets is given below.

• The CIFAR-10 dataset consists of 60,000 32×32 color

images from 10 classes, of which 50,000 are used for

training and the rest are used for testing.

• The CIFAR-100 dataset consists of 60,000 32 × 32
color images from 100 classes, of which 50,000 are

used for training and the rest are used as test data.

• The MNIST dataset consists of 70,000 28 × 28 grey

images of handwritten digits 0 9, of which 60,000 are

used for training and the rest are used as test data.

• The EMNIST-letters dataset consists of 145,600 28 ×
28 grey images of handwritten English alphabets (26

classes), of which 124,800 are used for training and

the rest for testing.

• The EMNIST-balanced dataset consists of 131,600

28×28 grey images of handwritten alphabets and dig-

its in 47 classes (merging those alphabets with similar

uppercase and lowercase, e.g. C, O), of which 112,800

are used for training and the rest for testing.

An outline of the entire procedure used in the experiments

is presented below:

1. Train 20 CNNs N1, ..., N20 for each dataset. The

choice of CNN can be arbitrary and in order to show

the power of our proposed ensemble technique, we

trained the networks for only a few epochs to yield

“weak” networks. Here, for the sake of convenience,

we choose the following architectures (all the models

we used in this experiment are based on the models

provided by keras [6] and modified slightly to meet

our needs):
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Figure 1: Illustration of our ensemble method.

(a) CIFAR-10 We chose ResNet[15] with 20 weight

layers and train these networks for only 3 epochs.

The classification accuracies of these networks

range from 61.6% to 72.8% and the average ac-

curacy is 67.02%.

(b) CIFAR-100 We chose ResNet with 56 weight

layers and train these networks for 50 epochs.

The classification accuracies of these networks

range from 59.1% to 63.5% and the average ac-

curacy is 61.71%.

(c) MNIST We chose a very simple CNN with only

one convolution layer and one fully-connected

layer and train these networks for only 1 epoch.

The classification accuracies of these networks

range from 89.8% to 93.2% and the average ac-

curacy is 90.89%.

(d) EMNIST-letters We chose a CNN with 2 convo-

lution layer and 2 fully-connected layer and train

these networks for only 1 epoch. The classifi-

cation accuracies of these networks range from

89.8% to 93.2% and the average accuracy is

90.24%.

(e) EMNIST-balanced We chose a CNN with 2

convolution layer and 2 fully-connected layer

and train these networks for only 1 epoch. The

classification accuracies of these networks range

from 82.1% to 83.7% and the average accuracy

is 82.94%.

2. Compute the estimated weights αi, i = 1, ..., 20 using

Algorithm 1.

3. Combine these networks and compute the classifica-

tion accuracy on the test data.

The results are shown in Table 1.

The result shows clearly that the proposed method works

quite well and as we expected, when the networks are strong

there is not much leeway to improve. On the contrary, when

Ave. Acc. Param. Non-param.

CIFAR-10 67.02% 75.99% 79.5%

CIFAR-100 61.71% 65.71% 73.14%

MNIST 90.89% 93.55% 93.58%

EMNIST-letters 90.24% 91.52% 91.61%

EMNIST-balanced 82.94% 84.27% 85.66 %

Table 1: Accuracies of the four datasets for parametric and

non-parametric model

the networks are weak, the improvement is very signifi-

cant. We can also see that the difference between paramet-

ric and non-parametric models decreases as the networks

get stronger. Since obviously the features from those being

classified correctly and those being classified incorrectly are

not from the same distribution, in such cases, using a sin-

gle Gaussian is not appropriate. When the networks are

stronger, the difference between a single Gaussian distribu-

tion and the kernel density estimate is smaller. The motiva-

tion to use the parametric model when it performs almost as

good as non-parametric model is clear: the non-parametric

model takes 2 to 5 times longer than the parametric model.

In practice, we would like to know whether this ensem-

ble technique reduces the time needed to achieve a certain

accuracy. To answer this question, we run a experiment

based on CIFAR-10 and the parametric ensemble model.

The experiment goes as follow:

1. We trained 5 networks on CIFAR-10 using the same

architecture as in the previous experiment.

2. Ensemble the intermediate models after running differ-

ent number of epochs.

The result is shown in Figure 2. As we can see, the ensem-

ble network performed constantly better. Since our ensem-

ble method requires multiple networks, when comparing the

efficiency of our method and the traditional CNN, it is better

to consider the effective number of epochs, e.g., if we com-

bine 5 networks and each of them is trained for 10 epochs,
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Figure 2: The comparison between the average accuracy of

5 networks and the accuracy of the ensemble networks: the

dashed line is the ensemble network and the solid line is the

average accuracy of the 5 networks.

Epochs 20(5× 4) 50(5× 10) 100(5× 20)

Ave. 77.86% 76.66% 77.13%

Ensemble 78.46% 80.6% 79.91%

Table 2: Average accuracy of networks and the accuracy of

our parametric ensemble network at different effective num-

ber of epochs. The ensemble configuration is indicated in

the parentheses: number of networks × number of epochs

per network.

then the effective number of epochs would be 5× 10 = 50.

Table 2 shows the result of this experiment in terms of the

effective number of epochs. The table is to be interpreted as

follows: on CIFAR-10, training a network with 50 epochs

gives a classification accuracy 76.66% while training 5 net-

works, each with 10 epochs, and building the ensemble clas-

sifier based on these five networks gives a classification ac-

curacy 80.06%. The message is that if you train multiple

networks and build the ensemble network, you will get a

better performance.

Another advantage of our ensemble method is that we

can run multiple networks on different machines in parallel

and then combine them without any retraining. The extra

optimization step for finding the weights {αi} takes less

than a few minutes in all our experiments.

The third experiment is based ensemble classifiers using

the intermediate features instead of the final outputs. The

experiment is performed on MNIST, using weak classifiers

based on two HOG features [9] (with two different config-

uration) and the Daisy feature [41]. Each weak classifier is

built using the mixture model described in Section 2, i.e.,

the special case when there is only one network. The aver-

age accuracy of these three weak classifiers is 85.16% and

the accuracy of the ensemble classifier is 88.6%. The result

again shows capability of our ensemble method to boost the

performance without re-training.

4. Conclusions

In this paper we presented a novel aggregation tech-

nique to combine “weak” networks/algorithms in order to

boost the classification accuracy over each constituent of

the aggregate. Traditional boosting requires re-training

of every constituent of the aggregate and in contrast,

our aggregation model does not require any re-training.

This makes our aggregation model quite attractive from

a computational cost perspective. We presented both

parametric and non-parametric aggregation techniques

and demonstrated via experiments the efficiency of the

proposed methods. Another key advantage of our technique

stems from the fact that it can cope with aggregation of

features of distinct dimensions that are likely to result

from using either different networks or even hand-crafted

features that are extracted from the data. These salient

features make our aggregation model unique. We presented

several experiments demonstrating the performance of our

proposed aggregation technique on widely used image

databases in computer vision literature.

Acknowledgements: This research was funded in part

by the NSF grant IIS-1525431 and IIS-1724174 to BCV.

References

[1] B. Afsari. Riemannian ˆ{} center of mass: existence, unique-

ness, and convexity. Proceedings of the American Mathemat-

ical Society, 139(2):655–673, 2011. 4

[2] F. Agostinelli, M. R. Anderson, and H. Lee. Adaptive multi-

column deep neural networks with application to robust im-

age denoising. In Advances in Neural Information Process-

ing Systems, pages 1493–1501, 2013. 2

[3] S.-i. Amari. Information geometry and its applications.

Springer, 2016. 2

[4] R. Chakraborty and B. Vemuri. Statistics on the (compact)

stiefel manifold: Theory and applications. arXiv preprint

arXiv:1708.00045, 2017. 3, 4

[5] F. Chollet. Xception: Deep learning with depthwise separa-

ble convolutions. arXiv preprint, 2016. 1

[6] F. Chollet et al. Keras, 2015. 5

[7] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column

deep neural networks for image classification. In Computer

vision and pattern recognition (CVPR), 2012 IEEE confer-

ence on, pages 3642–3649. IEEE, 2012. 2

[8] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. Emnist:

an extension of mnist to handwritten letters. arXiv preprint

arXiv:1702.05373, 2017. 5

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In Computer Vision and Pattern Recogni-

460



tion, 2005. CVPR 2005. IEEE Computer Society Conference

on, volume 1, pages 886–893. IEEE, 2005. 5, 7

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009. 1

[11] L. Deng. The mnist database of handwritten digit images for

machine learning research [best of the web]. IEEE Signal

Processing Magazine, 29(6):141–142, 2012. 2

[12] T. G. Dietterich. Ensemble methods in machine learning. In

International workshop on multiple classifier systems, pages

1–15. Springer, 2000. 1
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