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The growing amount of longitudinal data for a large population of patients has necessitated the 

application of algorithms that can discover patterns that inform patient management. This study 

demonstrates how temporal patterns generated from a combination of clinical and imaging meas-

urements improve residual survival prediction in glioblastoma patients. Temporal patterns were 

identified with sequential pattern mining using data from 304 patients. Along with patient covari-

ates, the patterns were incorporated as features in logistic regression models to predict 2-, 6-, or 9-

month residual survival at each visit. The modeling approach that included temporal patterns 

achieved test performances of 0.820, 0.785, and 0.783 area under the receiver operating character-

istic curve for predicting 2-, 6-, and 9-month residual survival, respectively. This approach signif-

icantly outperformed models that used tumor volume alone (p < 0.001) or tumor volume combined 

with patient covariates (p < 0.001) in training. Temporal patterns involving an increase in tumor 

volume above 122 mm3/day, a decrease in KPS across multiple visits, moderate neurologic symp-

toms, and worsening overall neurologic function suggested lower residual survival. These patterns 

are readily interpretable and found to be consistent with known prognostic indicators, suggesting 

they can provide early indicators to clinicians of changes in patient state that inform management 

decisions. 

  



 3 

Introduction 

Glioblastoma (GBM) is an aggressive neoplasm associated with poor prognosis and cognitive de-

cline1. The mean survival is 14.6 months, and 90% of patients experience tumor recurrence2–4. As 

such, patients are routinely followed up to evaluate health changes and assess the quality of life. 

However, predicting prognosis in GBM has been a longstanding challenge. Each tumor is biolog-

ically heterogeneous; neurologic symptoms can fluctuate; pseudo-progression and tumor progres-

sion features overlap, and other complications can differentially affect patients1,5. Therefore, the 

ability to automatically flag individuals with early signs of poor prognosis would benefit clinicians 

who must decide if treatment strategies should be initiated or changed. 

While studies have identified prognostic clinical, imaging, and molecular traits5–8, they are typi-

cally analyzed at a single time point or based on observations not routinely available in the clinic 

(e.g., multimodal genomic data). The importance of capturing the longitudinal evolution of a dis-

ease—the disease trajectory—has been recognized. The Levin criteria assess a combination of 

qualitative changes in computed tomography or magnetic resonance (MR) images and neurologic 

function compared to prior visits9. Changes in tumor volume combined with stable neurological 

scores and the use of corticosteroids are important factors in evaluating treatment response10–12. 

While changes are documented, recognizing the patterns’ significance is left to the clinician. 

Machine learning algorithms are well suited for discovering predictive patterns from large, com-

plex data. One effort involved discovering sequential events in clinical workflow logs to expose 

medical behaviors that could improve patient care13. Sequential patterns have also been applied to 

patients’ medical data to predict outcomes such as thrombocytopenia14, cardiovascular-related 

diagonses14, and diabetes medication prescriptions15. Other investigators used sequential pattern 
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mining to identify treatment pathways in GBM patients that were predictive of one-year overall 

survival16 using data from The Cancer Genome Atlas (TCGA); they focused on drug treatment 

patterns and multimodal molecular traits. However, the TCGA dataset is inherently limited in tem-

poral resolution, has inconsistently collected multicenter institutional data that provides a varied 

amount of information, and does not use imaging information. 

We developed and evaluated a method to mine longitudinal patterns, termed temporal patterns, 

from clinical and imaging data to determine residual survival at an individual patient encounter. 

Residual survival is defined as the remaining number of days until death for a patient at a given 

clinical visit. We applied machine learning to select temporal patterns that are predictive of 2-, 6-

, or 9-month residual survival. Our objective was to eventually develop a decision support tool that 

aids clinicians when assessing patients to identify patterns that predict death. 

 

Materials and Methods 

Patients and Data Collection 

We included patients with pathologically confirmed GBM that underwent standard chemoradio-

therapy (i.e., radiotherapy with concomitant temozolomide2) in whom complete neurological and 

imaging data available December 1999 – May 2015. Each visit was defined by one or more events. 

An event was a surgical procedure, radiation treatment, neurological exam, or tumor measurement 

(Supplementary Figure S3). Data was cleaned by removing 762 events with missing information 

and 14 events with invalid values (e.g., typographical errors). The final cohort included 304 pa-

tients (Table 1) with 7078 visits and 24989 events. Patients had an average of 695.7 follow-up 
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days, 28.4 days between visits, and 23.3 visits (Supplementary Figure S2). The archival and re-

search use of patient’s clinical, biological, and image data were approved by UCLA Institutional 

Review Board (Medical IRB2). All patients signed the institutional review board–approved in-

formed consent.  All methods were carried out in accordance with relevant guidelines and regula-

tions. All experimental protocols were approved by the named institutional committee.  

Clinical Data 

Patient covariates that were considered static without change over time, included sex, race/ethnic-

ity, MGMT promoter methylation status, and initial tumor location and laterality; dynamic varia-

bles subject to change during follow-up included age (the only dynamic patient covariate), inter-

ventions, neurologic evaluations, and tumor volumes (Table 2). For radiation treatment and chem-

otherapy, only initiation dates were considered. Neurologic evaluations included Karnofsky per-

formance status (KPS), neurologic function, mental status, and overall neurologic function (based 

on the Levin criteria). Discretization of continuous variables was necessary for subsequent steps 

in machine learning (see Supplementary Methods).  

 

MR Imaging and Post-processing 

Anatomic MR images were acquired for all patients using a 1.5T or 3T clinical MR scanner with 

pulse sequences supplied by their respective manufacturers and according to routine care proto-

cols. Standard anatomic images were obtained with the axial T1-weighted fast spin-echo sequence 

or magnetization-prepared rapid acquisition gradient-echo (MPRAGE) sequence (repetition time 

= 400–3209 msec; echo time = 3.6–21.9 msec; inversion time = 0–1238 msec; slice thickness = 

1–6.5 mm; intersection gap = 0–2.5 mm; number of averages = 1–2; matrix size = 176–512 × 256–

512; and field of view = 24–25.6 cm).  
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Parameter-matched T1-weighted images enhanced with gadopentetate dimeglumine (Magnevist; 

Berlex), 0.1 mmol/kg, were acquired shortly after contrast material injection. Contrast-enhanced 

T1-weighted subtraction maps were created with techniques previously used to define contrast-

enhancing tumor volume in the presence of changes in vascular permeability17,18. Estimates of 

tumor volume (in mm3) included areas of contrast enhancement on T1 subtraction maps plus any 

areas of central necrosis.  

In addition to examining actual tumor volumes (in mm3), we explored four other representations 

of tumor volume: baseline volume, the rate of change, percent change, and the volumetric-equiv-

alent RANO response criteria12,19–21, all calculated by comparing the current and previous tumor 

measurements (Table 2). 

 

Temporal Patterns 

Temporal patterns were generated using a sequential pattern mining algorithm called cSPADE22,23. 

Figure 1A illustrates the overall process for identifying temporal patterns. cSPADE used all vari-

ables in Table 2. Each event was considered a single item. Each clinical visit was considered a 

“transaction” (i.e., a collection of items). A patient’s history can be seen as a distinct ordering of 

transactions called a “sequence.”  

cSPADE requires the following set of input parameters to constrain the types of patterns discov-

ered by the algorithm. Minimum support requires a pattern to be observed in at least a certain 

percentage of patients. For example, the event “KPS significantly decreased” was observed in 133 

of 304 patients and achieved a support of 0.44 (44% of patients). If minimum support were set to 

0.2, the event would be considered a frequent sequence. Maximum gap limits the number of days 

between any two consecutive visits in a pattern and was set based on the typical follow-up schedule 
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for patients. Maximum length specifies the maximum number of visits in an identified pattern. 

Maximum size defines the maximum number of events that would be considered for any given 

visit. A pool of 1009 parameter combinations was explored to identify optimal values (see Sup-

plementary Materials). 

 

Modeling 

Model Generation 

A logistic regression model was formulated to estimate each of three prognostic tasks—2-, 6-, or 

9-month residual survival—given events observed in recent clinical visits. Both patient covariates 

and temporal patterns were used as features in the logistic model. To train a model, labels were 

assigned to each clinical visit. For example, to train the 2-month prognostic model, visits were 

labeled as “residual survival ≤ 2 months” if observed within two months of death; otherwise, the 

visit was labeled as “residual survival > 2 months.” Temporal patterns were converted into binary 

features to indicate—with a value of 0 (not observed) or 1 (observed)—whether the sequence was 

observed at each clinical visit. For example, in Figure 1C, the pattern was observed if at a current 

visit the patient had a rate of volume change [122–371) mm3/day preceded by a visit within 60 

days where the neurologic function was 2 (moderate symptoms), and overall neurologic function 

was 0 (unchanged compared to prior observation). Given a large number of possible temporal 

patterns, the number of features included in the regression model was limited using the least abso-

lute shrinkage and selection operator (LASSO)24. 

Many logistic models were trained; each used a set of temporal patterns generated from each com-

bination of cSPADE parameters. Visits with insufficient prior observations were not classified. 

For example, if the maximum length was set to 3 visits and the maximum gap was set to 60 days, 



 8 

cSPADE would search for patterns with maximally 3 clinical visits and maximally 60 days be-

tween any two consecutive visits in the set of 3. To definitively determine whether these patterns 

occurred, a minimum of 120 days of documented prior history was required.  

 

Model Training 

Patients were randomly split into 75% training and 25% testing sets. The following two-step split-

ting method was used to ensure a balanced distribution of clinical visits and gender in each set. 

Patients were first separated based on whether their overall survival was lower than the mean 

overall survival and resulted in two subgroups. For each survival subgroup, patients were split into 

75% training and 25% testing partitions while conserving the proportion of males to females in 

each part. The training and testing partitions of each survival subgroup were merged to create the 

overall training and testing sets. Thus, each patient’s set of clinical visits were either used for 

training or testing, but not both. Observed proportions of “residual survival > x-months” and “re-

sidual survival ≤ x-months” classes in the total dataset were relatively maintained across the train-

ing and testing sets. The testing set was set aside for a final evaluation of the fully trained models.  

With the training partitions, 10-fold cross-validation was used to identify the model parameters 

with the highest discrimination. The 10-fold split was patient-based, where patients in the valida-

tion fold did not have clinical visits in the remaining training folds. Model performance was meas-

ured using the area under the receiver operating characteristic curve (AUC) and the area under the 

precision-recall curve (average precision). There were more observations categorized as residual 

survival > x-months than residual survival ≤ x-months by a ratio of 19:1, 3.4:1, and 2:1 for pre-

dicting 2-, 6-, and 9-month survival, respectively. To address this data imbalance, down-sampling 

was performed during training by randomly selecting a subset of the larger class. This process 
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created a balanced class ratio for training. The 10-fold cross-validation procedure was performed 

three times with different seeds for random fold splits, and the performance was averaged. The 

model with the highest averaged cross-validated AUC was re-trained on the entire training set to 

derive the final coefficients. The final model was then evaluated using the held-out testing set. 

This process was repeated for each model predicting 2-, 6-, and 9-month residual survival. 

 

Evaluation 

We compared three different approaches to predict residual survival at each clinical visit (see Fig-

ure 1B). In the first approach, only tumor volume information was used. Visits, where patients 

had tumor volume measurements above a specified threshold, were predicted as residual survival 

≤ x-months. AUC was evaluated across all possible volume thresholds. In the second approach, 

we built logistic regression models using tumor volume and patient covariates as features. Lastly, 

we developed another set of logistic regression models that used patient covariates and temporal 

patterns as features.  

The top performer was taken from each approach and their AUC on the training partition was used 

for pair-wise comparisons. The 95% confidence intervals (CI) of individual training AUCs were 

obtained by bootstrapping25 with 2000 stratified replicates. Statistical differences between training 

AUCs of these approaches were evaluated with bootstrap tests25 using 2000 replicates. Univariate 

analyses were performed for the top ten patterns for residual survival ≤ x-months and residual 

survival > x-months. Patterns were ranked based on their adjusted odds ratios from the final model. 

Fisher’s exact test was used to compute the univariate odds ratio, its 95% CI, and whether it sig-

nificantly differed from an odds ratio of 1 for each pattern. An α level of 0.05 was considered 

significant for all statistical tests. 
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Data Availability 

The dataset utilized for this study was extracted from a research database consisting of patients 

seen at our institution and has not been made publicly available due to the presence of protected 

health information (e.g., dates of follow-up to track sequence and days between observations). 

 
Results 

Predicting Survival with Tumor Volume Measurements 

Of 304 patients, 289 had one or more tumor volume measurements after completion of initial 

chemoradiotherapy, resulting in a total of 3917 usable measurements. Alternative representations 

of tumor volume measurements (continuous volume, baseline volume, rate change, and percent 

change; see Table 2) were each evaluated individually. Among these, continuous volume measured 

in mm3 achieved the highest performance in the training partition with AUCs of 0.769 (95% CI: 

0.726–0.810), 0.750 (95% CI: 0.728–0.772), and 0.745 (95% CI: 0.726–0.764) for predicting 2-, 

6-, and 9-month survival, respectively (Supplementary Figures S4–S5). 

 

Predicting Survival with Discretized Tumor Volume and Patient Covariates 

Models incorporating tumor volume measured in mm3 or discretized rate change had similar per-

formances and were the top-performing models in predicting 2-, 6-, and 9-month survival (Sup-

plementary Figure S6). The addition of patient covariates had little or no improvement over the 

first approach defined earlier for tumor volumes in mm3 and rate change. In repeated cross-vali-

dation, models using covariates only improved if the prediction AUC was around or below 0.5 

(i.e., no better or worse than random guesses) with using just tumor volume information. The use of 
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either the volumetric RANO response criteria, percent volume change, or baseline volume con-

sistently had lower classification performances for 2-, 6-, and 9-month survival with respective 

average AUCs in the ranges of 0.518–0.776, 0.489–0.744, and 0.524–0.646. Continuous volume 

measures in 2- and 6-month survival had the highest averaged AUC, while discretized rate change 

was the best predictor in the 9-month survival model. These models had an AUC of 0.779 (95% 

CI: 0.739–0.817), 0.750 (95% CI: 0.724–0.774), and 0.762 (95% CI: 0.741–0.782), respectively 

in the training partition. 

 

Predicting Survival with Temporal Patterns and Patient Covariates 

Supplementary Figure S7 visualizes the classification performance across the top 15 cSPADE 

parameter combinations out of 1009 explored during repeated cross-validation. Among the differ-

ent tumor volume measurements used in creating temporal patterns, discretized rate change had 

consistently higher performance in all three survival prediction tasks. Subsequently, these temporal 

patterns achieved an AUC of 0.879 (95% CI: 0.858–0.897), 0.868 (95% CI: 0.856–0.880) and 

0.854 (95% CI: 0.842–0.866), respectively for 2, 6, and 9 months in the training partition.  

The top-performing model for 2-month survival had 41 variables in the logistic regression model. 

These variables were selected from a pool of patient covariates and the 3758 temporal patterns 

generated from a minimum support of 0.3, a maximum gap of 60 days between visits, a maximum 

length of 3 visits, and a maximum size of 3 events per visit. For this cSPADE combination, there 

were 5166 visits available for modeling. This approach outperformed the top performers from 

using tumor volume alone (AUC: 0.879 vs. 0.769; p < 0.001) and tumor volume with patient co-

variates (AUC: 0.879 vs. 0.777; p < 0.001) for predicting 2-month survival in the training partition.  
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Similarly, the top models for 6 and 9 months used 115 and 94 variables, respectively. The top 6-

month survival model selected from a pool of patient covariates and 5944 temporal patterns gen-

erated from a support of 0.25, a gap of 60 days, a length of 3 visits, and a size of 4 events as 

parameters. The top 9-month model considered 4420 patterns generated from a different support 

of 0.30, but the same gap, length, and size from the top 6-month model. Since the gap and length 

parameters are the same among the top models for each 2-, 6- and 9-month prediction, all three 

models had the same number of visits left for modeling. The 6-month model outperformed the top 

performers that used tumor volume alone (AUC: 0.868 vs. 0.750; p < 0.001) and tumor volume 

with patient covariates (AUC: 0.868 vs. 0.745; p < 0.001). The 9-month model also outperformed 

approaches using tumor volume alone (AUC: 0.854 vs. 0.747; p < 0.001) and tumor volume with 

patient covariates (AUC: 0.854 vs. 0.761; p < 0.001). This approach produced models with the 

highest performance for all three prediction tasks (Figure 2A) and was selected as the final models 

for testing evaluation.  

  

Performance of the Final Model 

The final models had testing AUCs of 0.820 (95% CI: 0.777–0.859), 0.785 (95% CI: 0.757–0.811), 

and 0.783 (95% CI: 0.759–0.807) for 2-, 6-, and 9-month survival, respectively (Figure 2B). The 

9-month model had the highest average precision in testing. Of the many variables that were ulti-

mately selected by each of these logistic regression models, Tables 3—5 reports the highest con-

tributing variables, ranked by their adjusted odds ratio (OR) for predicting each class, where an 

OR > 1 indicates the model’s belief that the patient will not survive the upcoming months. Con-

versely, an OR < 1 increases the model’s belief that the patient will survive the upcoming months.  
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The top patterns included every category of variables listed in Table 2. While neurologic evalua-

tions were clinically related to each other, the correlation between exams showed non-overlapping 

information (see Supplementary Materials). Often, the rate of volume change was an event in 

patterns with adjusted ORs above 2. A majority of the top ten patterns were significant in univariate 

analysis, indicating that prominent patterns were selected into the models and provided comple-

mentary information for residual survival prediction. After adjusting for other temporal patterns 

and patient covariates, the top patterns for residual survival ≤ x-months generally had lower ad-

justed ORs than univariate ORs. Similarly, the models estimated higher ORs than univariate anal-

yses for residual survival > x-months.  

Figure 3 illustrates one patient’s disease trajectory, as estimated by the 9-month model. The pa-

tient received initial chemoradiotherapy and began routine clinical visits 78 days later. The model 

had a maximum length of 3 visits and a maximum gap of 60 days between visits; therefore, the 

first possible prediction occurred on day 203. The model accurately classified the patient’s status 

for a many of the observations. Temporal patterns occurring within 9 months of death were all 

correctly classified as residual survival ≤ 9-months. However, the model made the following key 

mistakes found across predictions tasks: 

If a negative pattern was observed, the information can influence residual survival prediction in 

subsequent visits. For example, there was a KPS decrease on day 455 followed by slightly negative 

neurological scores on days 476, and 511, see Figure 3. This sequence of events led the model to 

estimate a higher probability of residual survival ≤ 9-months. For visits 476 and 511, the model 

maintained a lower probability of residual survival due to the KPS decrease and not observing 

signs of good health. In reality, the patient likely had minor to moderate symptoms but recovered. 
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Thus, the model misclassified the patient to have residual survival ≤ 9-months for several visits 

after 455.  

If a patient had additional interventions, the model estimated lower residual survival. This is likely 

due to the frequent observation that patients in decline are given secondary treatments or switch 

treatment plans and such events occur towards the end of life. Thus, the model will misclassify a 

patient if additional treatment was given and it was effective, resulting in the patient having longer 

residual survival.  

If a patient has series of tumor volume rate increases, the models have a high estimation of death 

in upcoming months. This was particularly true in Figure 3, where the patient had a high proba-

bility of death for a year prior to the death date. 

A detailed description of this patient case can be found in Supplementary Figure S8. Supplemen-

tary Figures S9–S11 show additional patient cases with varying degrees of classification accuracy. 

Some patient covariates were included in the final models. Gender and MGMT promoter methyl-

ation were both selected into the 6- and 9-month models. The adjusted odds ratios were 1.37 and 

1.16 for males, and 1.54 and 1.3 for unmethylated promoters, respectively, for the two models. 

The odds ratios are higher than 1.0, indicating males and unmethylation statuses had a slightly 

higher relative risk (for lower residual survival) than females and methylated statuses. Various age 

decades were also selected into the final models. Ages above 50 had contributed to 6- and 9- month 

death probability and age above 70 contributed the most to 2-month death probability. Tumor 

location was considered by all models; tumors located in the frontal lobe had ORs greater than 1, 

while parietal lobe and other locations had ORs smaller than 1. Lastly, patients with tumors on the 

right side a top-ranked feature in all three models. In general, the effect of covariates was small, 
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as there were over 50 variables in the models and the top variables have greater or smaller ORs 

and subsequently has more effect on residual survival probability. 

Discussion 

An unprecedented amount of clinical information can now be captured by clinicians for research 

purposes and by electronic medical records. However, clinicians are presented with the challenge 

of interpreting this data and identifying trends to inform individualized decision-making. Machine 

learning techniques can help identify patterns buried in longitudinal data. Here, we present an 

approach to detect recurring patterns in patient records that are predictive of prognosis. We demon-

strate the potential for combining patient covariates with temporal patterns generated from changes 

in tumor volume and neurological scores to predict residual survival for GBM patients initially 

treated with standard chemoradiotherapy. 

Our experiments underscore the importance of considering tumor volume as a key prognostic 

marker of survival, as it appears in many of the top-ranked patterns in all residual survival predic-

tion tasks. For 2-month predictions, the pattern associated with about a 2-fold increase in death 

(adjusted odds ratio, adj. OR: 2.07) was tumor volume change above 371 mm3/day; this rate change 

translates to a tumor volume increase of up to 22.26 cm3 between two consecutive visits within 60 

days. The highest contributor to death was a significant decline in KPS to below a score of 60. 

Also associated with a two-fold increase in death over survival were a sustained decrease in KPS 

(e.g., KPS decreased and remained unchanged in a subsequent visit) and an overall neurologic 

function of −1 (moderate decline) after a series of no symptoms changes. Conversely, patients who 

were observed to have mild or no impairment in neurologic function had lowered odds of death. 
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Other patterns that were associated with a 2-fold decrease in odds of death over survival include 

series of unchanging KPS, small changes in tumor volumes, and normal mental status. 

The observation of shrinking tumors followed by unchanged KPS and neurologic function had a 

1.45-fold relative increase in death over survival. While counterintuitive at first, these patterns 

may reflect patients that had an initial response to treatment, but the tumor recurred. A similar 

scenario is also found in the 6-month model, where an increasing volume rate increase is followed 

by shrinking tumor volume rates (response to secondary treatment) within 60 days of each other. 

However, these patients were likely to have a residual survival of fewer than 6 months (adj. OR: 

1.92). 

 A key difference in the 6-month model, compared to the 2-month model, was that twice as 

many variables selected into the model. Tumor volume rate increases above 122 mm3/day were 

often indicative of poorer 6-month residual survival, as were observations of patients that are less 

active, i.e., a neurological function of 3. Indicators of residual survival longer than 6-month, small 

decreases in tumor volume rate (likely representative of successful drug therapy), and neutral/nor-

mal neurological evaluations. Unlike the 2-month model, this model had tolerance to a decreased 

in KPS if the patient was observed with normal or unchanged neurological exams (adj. OR: 0.55). 

In the 9-month model, patterns of unchanged or asymptomatic clinical visits followed by a nega-

tive change were associated with some of the largest increased odds of death. For example, these 

temporal patterns included unchanged KPS followed by a significant decrease in KPS (adj. OR: 

1.82). The event of an additional surgery was the second highest contributing feature to death in 

9-months and was not observed in 2- or 6-month models. Patterns associated with improved OR 

for residual survival greater than 9 months included patients who were fully active without 
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assistance at home or work and small changes in tumor volume. Lastly, ages ≥ 50, male, and un-

methylated MGMT promoter status were selected features in the final models and had ORs ≥ 1, 

which is similar to other reports3.  An unmethylated MGMT promoter had a higher relative risk 

for lower survival. This finding was consistent with current literature, where patients with an un-

methylated MGMT promoter have shorter overall survival than patients with methylation as the 

former do not benefit from temozolomide (currently the most effective chemotherapeutic for these 

patients). The inclusion of covariates indicates complementary information to the combination of 

tumor volume and various neurologic examinations. 

These results demonstrate the value of systematically and regularly capturing features to facilitate 

the training of predictive models. Particularly in GBM, outcomes such as recurrence, treatment 

efficacy, and survival are manually assessed at each clinical visit. In contrast, an algorithm could 

be applied in real-time from regularly updated patient observations, allowing automated detection 

of decline. Timely actions such as increasing the follow-up frequency to adjusting treatment plans 

could be vital for a disease with low overall survival. Building from our work, a clinical decision 

support system could be developed to visualize data trends (e.g., view patients with similar treat-

ment pathways and tumor growth patterns) or model trends (e.g., estimated probabilities of patient 

outcomes). The system could incorporate this information into electronic health records to enable 

streamlined data collection to for analyses such as the work presented here.  

There were several limitations of this study. We considered a limited number of variable types, 

where several provided some mutual information. We were unable to include IDH1 and IDH2 

mutation information, as they have been found to be prognostic biomarkers in GBM. Likewise, 

there are other biomarkers, such as G-CIMP, hTERT, EGFRviii that was not readily available for 

our study population, but potentially could be incorporated in future analyses. Furthermore, 
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cSPADE was dependent on discrete variables and event frequencies; models were influenced by 

the discretization methods and the uniqueness of our patient cohort, impacting the model’s trans-

lation to other datasets. In future work, we will focus on temporal patterns that are indicative of 

chemotherapy failure; explore additional variables, such as more detailed imaging-based features; 

and use other statistical (e.g., Cox regression), probabilistic (e.g., Markov model), and machine 

learning–based models. 

In summary, we demonstrate the value of using tumor volumetric measurements and temporal 

patterns in predicting patient prognosis at a clinical visit. We show that analyzing longitudinal 

patient data using sequential pattern mining yields temporal patterns that are intuitively meaningful 

and are prognostically useful. The models allow a more holistic, yet quantitative approach for 

assessing relatively short-term patient prognosis. The predictions are based on a window of time 

and subsequently, change as patient observations change. The outcome of our framework can be 

used as one indicator of how well a patient is doing and can facilitate clinical decisions about 

subsequent care, such as continued therapy versus palliative care. 
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Table 1. Patient characteristics (n=304). There were seven bilateral tumors and eleven that 

spanned two locations. 

Category Trait N % 

Overall Survival Mean 721.2 - 

  Standard deviation 534.1 - 

Status Deceased 257 84.5% 

  Alive 47 15.5% 

Initial age Mean 54.6 - 

  Standard deviation 11.9 - 

Gender Male 188 61.8% 

  Female 116 38.2% 

Ethnicity White 217 71.4% 

  Hispanic 24 7.9% 

  Asian 17 5.6% 

  Middle eastern 4 1.3% 

  Black 2 0.7% 

  Other 15 4.9% 

  Unknown 25 8.2% 

MGMT promoter status Methylated 103 33.9% 

  Unmethylated 201 66.1% 

Initial tumor laterality Right 162 53.3% 

  Left 149 49.0% 

Initial tumor location Frontal lobe 114 37.5% 

  Temporal lobe 91 29.9% 

  Parietal lobe 76 25.0% 

  Occipital lobe 18 5.9% 

  Thalamus 8 2.6% 

  Corpus callosum 4 1.3% 

  Cerebellum 1 0.3% 

  Pineal gland 1 0.3% 

  Midbrain 1 0.3% 
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Table 2. Variables used by sequential pattern mining to generate the temporal patterns. The * de-

notes continuous variable which were discretized into ten states with equal frequency. D = days 

since baseline. 

Variable State Definition 
Surgery Occurred Patient underwent a surgical procedure. 
Radiation Occurred Patient began receiving radiotherapy. 
KPS Initial First KPS observed 

Decreased KPS has dropped but remains above 60 
  Significant decrease KPS has dropped to or below 60 
  Increase KPS was above 60 and has increased 
 Significant increase KPS was at or below 60 and has increased 
  Unchanged All other KPS values 
Mental status 0 Normal function 
  1 Minor mental confusion 
  2 Gross confusion but awake 
Neurological  
function 

0 No symptoms, fully active at home/work without assistance 
1 Minor symptoms, fully active at home/work without  

assistance 
2 Moderate symptoms, fully active at home/work without  

assistance 
3 Moderate symptoms, less than fully active at home/work 

without assistance 
4 Severe symptoms, totally inactive requiring complete  

assistance, unable to work 
Overall neurologi-
cal status 

+2 Definitely better compare to prior observation 
+1 Possibly better compared to prior observation 
0 Unchanged compared to prior observation 
–1 Possibly worse compared to prior observation 
–2 Definitely worse compared to prior observation 

Tumor volume     
Volume (V) * Tumor volume (mm3) 
Baseline volume * First tumor volume (mm3) measured after completion of 

chemoradiation 
Rate change * V2–V1/D2–D1 (mm3/day); between two sequential visits 
Percent change * 100% x (V2–V1)/V1 (%); between two sequential visits 
Response criteria Complete  Resolution of all enhancement 

  Partial ≥ 65% decrease in volume 
  Progression ≤ 40% increase in volume 
  Stable All others 



 24 

Table 3. The top ten patterns used to predict residual survival of ≤ 2-months or > 2-months (itali-

cized). Patterns were ranked by adjusted odds ratio (adj. OR) from regression modeled with 5825 

visits (see Supplementary Methods). S=support, the proportion of patients with the pattern. †=p 

< 0.05; *=p<0.001. 

 
S 

Adj. 
OR 

Univariate  
OR [95% CI] 

 
Pattern 

0.45 2.65 11.8 [8.34, 16.7]* KPS significantly decreased 
0.42 2.24 3.17 [2.08, 4.72]* overall neurologic status of 0 → KPS unchanged → overall neurologic 

status of −1 
0.31 2.21 3.13 [2.06, 4.63]* volume rate change [371–5878] → KPS unchanged 
0.46 2.07 7.18 [5.19, 9.85]* volume rate change [371–5878] 
0.31 1.92 3.59 [2.10, 5.88]* neurologic function of 1, mental status of 0 → overall neurologic status 

of −1 
0.31 1.54 2.48 [1.54, 3.87]* overall neurologic status of 0, KPS unchanged → KPS decreased → 

KPS unchanged 
- 1.51 1.96 [1.51, 2.55]* right-sided tumor 
0.37 1.45 0.76 [0.37, 1.41] volume rate change [−167– −46) → KPS unchanged → KPS unchanged 
0.33 1.32 1.73 [1.10, 2.64]† overall neurologic status of −1 → KPS unchanged → KPS unchanged 
0.52 1.28 2.11 [1.40, 3.09]* KPS decreased → KPS unchanged 
0.31 0.30 0.00 [0.00, 0.21]* volume rate change [−4–0.17) 
0.30 0.46 0.10 [0.01, 0.35]* volume rate change [7.7–40) → KPS unchanged → KPS unchanged 
0.32 0.46 0.11 [0.00, 0.64]* overall neurologic status of 0 → overall neurologic status of 0 → vol-

ume rate change [7.7–40) 
0.40 0.47 0.06 [0.00, 0.36]* volume rate change [−13– −4) 
0.38 0.52 0.16 [0.00, 0.90]† KPS increased 
0.78 0.53 0.19 [0.14, 0.25]* KPS unchanged, mental status of 0 
0.72 0.60 0.24 [0.16, 034]* neurologic function of 1 
0.33 0.65 0.06 [0.00, 0.33]* volume rate change [0.17–7.7) 
0.86 0.69 0.16 [0.11, 0.22]* overall neurologic status of 0, KPS unchanged 
0.34 0.70 0.16 [0.07, 0.31]* neurologic function of 0, overall neurologic status of 0 
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Table 4. The top ten patterns used to predict residual survival of ≤ 6-months or > 6-months (itali-

cized). Patterns were ranked by adjusted odds ratio (adj. OR) from regression modeled with 5155 

visits. S=support, the proportion of patients with the pattern. †=p < 0.05, *=p<0.001. 

 
S 

Adj. 
OR 

Univariate  
OR [95% CI] 

 
Pattern 

0.46 2.65 7.00 [5.37, 9.16]* volume rate change [371–5878] 
0.30 2.28 2.36 [1.79, 3.10]* volume rate change [122–371) → overall neurologic status of 0 
- 1.95 1.67 [1.46, 1.91]* right-sided tumor 
0.49 1.94 3.19 [2.45, 4.14]* volume rate change [122–371) 
0.25 1.92 4.01 [2.74, 5.87]* volume rate change [371–5878] → volume rate change [−26,700– 

−167) 
0.26 1.76 2.07 [1.53, 2.79]* overall neurologic status of −1, mental status of 0 → mental status of 0 

→ KPS unchanged 
0.39 1.72 4.02 [3.22, 5.03]* neurologic function of 3 
0.31 1.72 2.90 [2.21, 3.81]* volume rate change [371–5878] 
0.27 1.67 2.91 [2.17, 3.88]* mental status of 0 → overall neurologic status of −1, KPS unchanged 
0.28 1.61 2.51 [1.71, 3.65]* overall neurologic status of 0, KPS unchanged → overall neurologic 

status of 0, KPS unchanged → volume rate change [122–371) 
0.28 0.23 0.29 [0.10, 0.66]* overall neurologic status of 0 → KPS increased 
0.31 0.24 0.14 [0.07, 0.25]* volume rate change [−4–0.17) 
0.34 0.28 0.00 [0.00, 0.83]† neurologic function of 1, initial KPS → mental status of 0 → mental 

status of 0 
0.47 0.44 0.00 [0.00, 2.01] initial KPS → neurologic function of 1 
0.78 0.49 0.27 [0.23, 0.31]* KPS unchanged, mental status of 0 
0.33 0.54 0.22 [0.13, 0.36]* volume rate change [0.17–7.7)  
0.28 0.55 1.00 [0.72, 1.36] neurologic function of 0 
0.38 0.55 0.16 [0.11, 0.22]* KPS decreased → overall neurologic status of 0, mental status of 0 → 

mental status of 0 
0.92 0.57 0.30 [0.26, 0.34]* KPS unchanged 
0.34 0.59 0.13 [0.09, 0.18]* neurologic function of 0, overall neurologic status of 0 
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Table 5. The top ten patterns used to predict residual survival of ≤ 9-months or > 9-months (itali-

cized). Patterns were ranked by adjusted odds ratio (adj. OR) from regression modeled with 5166 

visits. S=support, the proportion of patients with the pattern. †=p < 0.01, *=p < 0.001. 

 
S 

Adj. 
OR 

Univariate  
OR [95% CI] 

 
Pattern 

0.46 4.97 7.79 [5.78, 10.6]* volume rate change [371–5878] 
0.33 2.57 2.82 [1.87, 4.28]* Surgery 
0.49 2.35 3.67 [2.82, 4.81]* volume rate change [122–371) 
0.35 2.18 2.77 [2.19, 3.50]* volume rate change [122–371) → KPS unchanged 
0.31 2.03 2.77 [2.11, 3.63]* volume rate change [371–5878] → KPS unchanged 
- 2.00 1.61 [1.43. 1.81]* right-sided tumor 
0.33 1.82 7.04 [4.65, 10.9]* KPS unchanged→ KPS significantly decreased 
0.31 1.81 3.99 [2.73, 5.91]* mental status of 0 → overall neurologic status of −1, KPS unchanged 
0.33 1.79 2.06 [1.46, 2.61]* overall neurologic status of −1 → KPS unchanged → KPS unchanged 
0.32 1.76 3.44 [2.49, 4.77]* KPS unchanged → KPS unchanged, mental status of 0 →  overall neu-

rologic status of −1 
0.57 0.25 0.00 [0.00, 0.89]* initial KPS → KPS unchanged, mental status of 0 
0.31 0.36 0.12 [0.00, 0.80]† neurologic function of 1, initial KPS → neurologic function of 1, KPS 

unchanged → neurologic function of 1 
0.31 0.38 0.16 [0.10, 0.25]* volume rate change [−4–0.17) 
0.34 0.39 0.13 [0.10, 0.18]* volume rate change [−13– −4) 
0.34 0.44 0.00 [0.00, 0.48]† neurologic function of 1, initial KPS → mental status of 0 → mental 

status of 0 
0.33 0.51 0.22 [0.14, 0.32]* volume rate change [0.17–7.7) 
0.40 0.62 0.33 [0.23, 0.47]* volume rate change [−13– −4) 
0.92 0.65 0.31 [0.28, 0.47]* KPS unchanged 
0.38 0.69 0.17 [0.13, 0.22]* neurologic function of 0 
0.60 0.77 0.42 [0.36, 0.48]* neurologic function of 1, KPS unchanged, mental status of 0 
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Figure 1. (A) An overview of the study using data mining and machine learning to model residual sur-

vival. (B) The three approaches used to predict residual survival given tumor volume, k patient covariates 

and p temporal patterns. (C) An example of a temporal pattern mined from longitudinal patient data.  
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Figure 2. (A) The training performance of the best performers from each approach. Error bars are AUC 

standard deviations if cross validation was used, where performance scores were averaged across folds.  

(B) The performance of the selected models after fitting on the entire training partition. (C) Density plots 

showing the models’ predictions compared to the ground truth in test cases. Complete separation (no 

overlap) of the two class distributions signifies a model with perfect classification. 
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Figure 3. An example of a white male initially diagnosed in his 60’s. (A) MR imaging showing tumor at 

baseline, regrowth, and remote recurrence near end of life. (B) The 9-month residual survival model’s es-

timates given patient covariates and temporal patterns observed at each clinical visit. Gray horizontal line 

is a threshold (see Supplemental Methods) used for classifying residual survival from the predicted 

probabilities. The vertical green dash line is 9 months (270 days) from the vertical red line (day of death).  
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