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our proposed strategy to incorporate the tags in the framework to

learn an improved embedding (Section 3.3).

3.1 Network Structure and Input Feature

Network Structure: We learn our joint embedding model using

a deep neural network framework. As shown in Fig. 3, our model

has three different branches for utilizing image, sentence, and tags.

Each branch has different expert network for a specific modality

followed by two fully connected embedding layers. The idea is that

the expert networks will focus on identifying modality-specific

features at first and the embedding layers will convert the modality-

specific features to modality-robust features. The parameters of

these expert networks can be fine-tuned together with training the

embedding layers. For simplicity, we keep image encoder (e.g., pre-

trained CNN) and tag encoder (e.g., pre-trained Word2Vec model)

fixed in this work. The word embedding and the GRU for sentence

representation are trained end-to-end.

Text Representation: For encoding sentences, we use Gated

Recurrent Units (GRU) [5], which has been used for representing

sentence in many recent works [8, 30]. We set the dimensionality

of the joint embedding space, D, to 1024. The dimensionality of the

word embeddings that are input to the GRU is 300.

Image Representation: For encoding image, we adopt a deep

CNNmodel trained on ImageNet dataset as the encoder. Specifically,

we experiment with state-of-the-art 152 layer ResNet model [14]

and 19 layer VGGmodel [45] in this work.We extract image features

directly from the penultimate fully connected layer. The dimension

of the image embedding is 2048 for ResNet152 and 4096 for VGG19.

We first re-scale the image to 256x256 and 224x224 center crop is

feed into CNNs as inputs.

Tag Representation: We generate the feature representation

of tags by summing over the Word2Vec [38] embeddings of all tags

associated with an image and then normalizing it by the number of

tags. Averaged word vectors has been shown to be a strong feature

for text in several tasks [26, 27, 57].

3.2 Train Joint Embedding with Ranking Loss

We now describe the basic framework for learning joint image-

sentence embedding based on bi-directional ranking loss. Many

prior approaches have utilized pairwise ranking loss as the objective

for learning joint embedding between visual input and textual

input [24, 30, 55, 59]. Specifically, these approaches minimize a

hinge-based triplet ranking loss in order to maximize the similarity

between an image embedding and corresponding text embedding

and minimize similarity to all other non-matching ones.

Given a image feature representation i (i ∈ RV ), the projection

on the joint space can be derived as i =W (i)i (i ∈ RD ). Similarly,

the projection of input text embedding s (s ∈ RT ) to joint space

can be derived by s =W (s)s (s ∈ RD ). Here,W (i) ∈ RD×V is the

transformation matrix that maps the visual content into the joint

space and D is the dimensionality of the space. In the same way,

W (s) ∈ RD×T maps input sentence embedding to the joint space.

Given feature representation for words in a sentence, the sentence

embedding s is found from the hidden state of the GRU. Here, given

the feature representation of both images and corresponding text,

the goal is to learn a joint embedding characterized by θ (i.e.,W (i),

W (s) and GRU weights) such that the image content and semantic

content are projected into the joint space. Now, the image-sentence

loss function LI S can be written as,

LI S =

∑

(i,s)

{
∑

s−

max
[

0,∆ − f (i, s) + f (i, s−)
]

+

∑

i−

max
[

0,∆ − f (s, i) + f (s, i−)
]

}
(1)

where s− is a non-matching text embedding for image embedding i ,

and s is the matching text embedding. This is similar for image em-

bedding i and non-matching image embedding i−. ∆ is the margin

value for the ranking loss. The scoring function f (i, s) measure the

similarity between the images and text in the joint embedded space.

In this work, we use cosine similarity in the representation space

to calculate similarity, which is widely used in learning image-text

embedding and shown to be very effective in many prior works

[8, 30, 59]. However, note that our approach does not depend on

any particular choice of similarity function.

The first term in Eq. (1) represent the sum over all non-matching

text embedding s− which attempts to ensure that for each visual

feature, corresponding/matching text features should be closer than

non-matching ones in the joint space. Similarly, the second term

attempts to ensure that text embedding that corresponds to the

image embedding should be closer in the joint space to each other

than non-matching image embeddings.

Recently, focusing on hard-negatives has been shown to be ef-

fective in image-text embedding task for achieving high recall

[8, 33, 59]. Subsequently, the loss in Eq. 1 is modified to focus

on hard negatives (i.e., the negative closest to each positive (i, s)

pair) instead of sum over all negatives in the formulation. For a pos-

itive pair (i, s), the hardest negative sample can be identified using

î = argmax
i−

f (s, i−) and ŝ = argmax
s−

f (i, s−). The loss function can

be written as following,

LI S =

∑

(i,s)

{

max
[

0, ∆ − f (i, s) + f (i, ŝ)
]

+ max
[

0, ∆ − f (s, i) + f (s, î)
]

}

(2)

We name Eq. 1 as VSE loss and Eq. 2 as VSEPP loss. We utilize

both of these loss functions in evaluating our proposed approach.

3.3 Training Joint Embedding with Web Data

In this work, we try to utilize image-tag pairs from the web for

improving joint embeddings trained using a clean dataset with

images-sentence pairs. Our aim is to learn a good representation for

image-text embedding that ideally ignores the data-dependent noise

and generalizes well. Utilization of web data effectively increases

the sample size used for training our model and can be considered

as implicit data augmentation. However, it is not possible to directly

update the embedding (Sec. 3.2) using image-tag pairs. GRU based

approach is not suitable for representing tags since tags do not have

any semantic context as in the sentences.

Our task can also be considered from the perspective of learning

with side or privileged information strategies [44, 51], as in our
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case an additional tag modality is available at training time and we

would like to utilize this extra information to train a stronger model.

However, directly employing LUPI strategies are also not possible

in our case as the training data do not provide three modality

information at the same time. The training datasets (e.g., MSCOCO,

Flickr30K) provide only image-sentence pairs and does not provide

tags. On the other hand, web source provides images with tags,

but no sentence descriptions. To bridge this gap, we propose a

two-stage approach to train the joint image-text representation.

In the first stage, we leverage the available clean image-text pairs

from a dataset to learn an aligned representation that can be shared

across three modalities (e.g., image, tag, text). In the second stage,

we adapt the model trained in the first stage with web data.

Stage I: Training initial Joint Embedding.We leverage image-

text pairs from an annotated dataset to learn a joint embedding for

image, tag and text. As tags are not available directly in the datasets,

we consider nouns and verbs from relevant sentence as dummy

tags for an image (Fig. 3). For learning the shared representation,

we combine the image-text ranking loss objective (Sec. 3.2), with

image-tag ranking loss objective. We believe combining image-tag

ranking loss objective provides a regularization effect in training

that leads to more generalized image-text embedding.

Now the goal is to learn a joint embedding characterized by

θ (i.e., W (i), W (t ), W (s) and GRU weights) such that the image,

sentence and tags are projected into the joint space. Here,W (t )

projects the representation of tags t on the joint space as, t =W (t )t .

The resulting loss function can be written as following,

L = λ1LI S + λ2LIT (3)

where, LIT represent image-tag ranking loss objective, which

is similar to image-sentence ranking loss objective LI S in Sec. 3.2.

Similar to VSEPP loss in Eq. 2, LIT can be written as,

LIT =

∑

(i,t )

{

max
[

0, ∆ − f (i, t) + f (i, t̂)
]

+ max
[

0, ∆ − f (t , i) + f (t , î)
]

}

(4)

where for a positive image-tag pair (i, t), the hardest negative sam-

ple tag representation can be identified as t̂ . Note that all tags

associated with a image is considered for generating tag represen-

tation in creating a image-tag pair rather than considering a single

tag related to that image. In Eq. 3, λ1 and λ2 are predefined weights

for different losses. In the first training stage, both losses are used

(λ1 = 1 and λ2 = 1) while in the second stage, image-text loss is

not used (λ1 = 0 and λ2 = 1).

Stage II: Model Adaptation with Web Data. After Stage I

converges, we have a shared representation of image, sentence

description and tags with a learned image-tag embedding model.

In Stage II, we utilize weakly-annotated image-tags pairs from

Flickr to update the previously learned embedding network using

LIT loss. This enables us to transfer knowledge from thousands of

freely available weakly annotated images in learning the embedding.

We utilize a smaller learning rate in Stage II, as network achieves

competitive performance after Stage I and tuning the embedding

network with a high learning rate from weakly-annotated data may

lead to catastrophic forgetting [25].

As web data is very prone to label noise, we found it is extremely

hard to learn good representation for our task in many cases. Hence,

in Stage II, we adopt a curriculum learning-based strategy in train-

ing. Curriculum learning allows the model to learn from easier

instances first so they can be used as building blocks to learn more

complex ones, which leads to a better performance in the final task.

It has been shown in many previous works that appropriate curricu-

lum strategies guide the learner towards better local minima [1].

Our idea is to gradually inject difficult information to the learner

such that in the early stages of training, the network is presented

with images related to frequently occurring concepts/keywords in

the clean training set. Images related to rarely occurring concepts

are presented at a later stage. Since the network trained in Stage

I is more likely to have learned well about frequently occurring

concepts, label noise is less likely to affect the network.

4 EXPERIMENTS

Goal.We perform extensive experiments on two standard bench-

mark datasets with the main goal of analyzing the performance

of different supervised methods by utilizing large scale web data

using our curriculum guided webly supervised approach. Ideally,

we would expect an improvement in performance irrespective of

the loss function and features used to learn the embedding in Sec. 3.

We first describe the details on the datasets in Sec. 4.1 and train-

ing details in Sec. 4.2. We report the results of different methods

on MSCOCO dataset in Sec. 4.3 and results on Flickr30K dataset in

Sec. 4.4.

4.1 Datasets and Evaluation Metric

Wepresent experiments on standard benchmark datasets for sentence-

based image description:MSCOCODataset [3] and Flickr30K dataset

[42] to evaluate the performance of our proposed framework.

MSCOCO. The MSCOCO is a large-scale image description

dataset. This is the largest image captioning dataset in terms of the

number of sentences and the size of the vocabulary. This dataset

contains around 123K images. Each image comes with 5 captions.

Following [23], we use the training, testing and validation split. In

this split, the training set contains 82, 783 images, 5000 validation

images and 5000 test images. However, there are also 30, 504 images

from the original validation set of MS-COCO which have been left

out in this split. We refer to this set as restval(RV). Some papers use

RV with training set for training to improve accuracy. We report

results using RV. In most of the previous works, the results are

reported by averaging over 5 folds of 1K test images [7, 30, 54].

Flickr30K. Flickr30K is another very popular image description

dataset. Flickr30K has a standard 31, 783 images for training. Each

image comes with 5 captions, annotated by AMT workers. We

follow the dataset division provided in [23]. In this dataset split,

the training set contains 29,000 images, 1000 validation images and

1000 test images.

Web Image Collection. We use photo-sharing website Flickr

to retrieve web images with tags and use those images without any

additional manual labeling. To collect images, we create a list of 1000

most occurring keywords in MSCOCO and Flickr30K dataset text

descriptions and sort them in descending order based on frequency.
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Table 1: Image-to-Text Retrieval Results on MSCOCO Dataset.

# Method Image-to-Text Retrieval Text-to-Image Retrieval

R@1 R@10 Med R R@1 R@10 Med R

1.1

Embedding-Net 54.9 92.2 - 43.3 87.5 -

2Way-Net 55.8 - - 39.7 - -

Sm-LSTM 53.2 91.5 1.0 40.7 87.4 2.0

Order-Embedding 46.7 88.9 2.0 37.9 85.9 2.0

1.2

VSE –VGG19 46.8 89.0 1.8 34.2 83.6 2.6

VSEPP -VGG19 51.9 90.4 1.0 39.5 85.6 2.0

VSE--ResNet152 52.7 91.8 1.0 36.0 85.5 2.2

VSEPP-ResNet152 58.3 93.3 1.0 43.6 87.8 2.0

1.3

Ours (VSE –VGG19) 47.2 90.9 1.6 35.1 85.3 2.

Ours( VSEPP -VGG19) 53.7 92.5 1.0 41.2 89.7 2.0

Ours( VSE--ResNet152) 52.9 94.3 1.0 42.2 89.1 2.0

Ours (VSEPP-ResNet152) 61.5 96.1 1.0 46.3 89.4 2.0

We remove stop-words and group similar words together after

performing lemmatization. We then use this list of keywords to

query Flickr and retrieve around 200 images per query, together

with their tags. In this way, we collect about 210,000 images with

tags. We only collect images having at least two English tags and

we don’t collect more than 5 images from a single owner. We also

utilize first 5 tags to remove duplicate images.

Evaluation Metric. We use the standard evaluation criteria

used in most prior work on image-text retrieval task [6, 8, 30]. We

measure rank-based performance byR@K andMedian Rank(MedR).

R@K (Recall at K) calculates the percentage of test samples for

which the correct result is ranked within the top-K retrieved re-

sults to the query sample. We report results for R@1 and R@10.

Median Rank calculates the median of the ground-truth results in

the ranking.

4.2 Training Details

We start trainingwith a learning rate of 0.0002 and keep the learning

rate fixed for 10 epochs. We then lower the learning rate by a factor

of 10 every 10 epochs and continue training for 30 epochs. During

updating the learned model in Stage I with web images in Stage II,

we start training with a learning rate of 0.00002. The embedding

networks are trained using ADAM optimizer [29]. Gradients are

clipped when the L2 norm of the gradients(for the entire layer)

exceeds 2. We tried different values for margin ∆ in training and

empirically choose ∆ as 0.2, which we found performed well consis-

tently on the datasets. We evaluate the model on the validation set

after every epoch. The best model is chosen based on the sum of

recalls in the validation set to deal with the over-fitting issue. We

use a batch-size of 128 in the experiment. We also tried with other

mini-batch sizes of 32 and 64 but didn’t notice significant impact on

the performance. We used two Telsa K80 GPUs and implemented

the network using PyTorch toolkit.

4.3 Results on MSCOCO Dataset

We report the result of testing on MSCOCO dataset [36] in Table 1.

To understand the effect of the proposedwebly supervised approach,

we divide the table in 3 rows (1.1-1.3). We compare our results with

several representative image-text retrieval approaches, Embedding-

Net [53], 2Way-Net [7], Sm-LSTM [19], Order-Embedding [52], VSE

[30] and VSEPP [8]. For these approaches, we directly cite scores

from respective papers when available and select the score of the

best performing method if score for multiple models are reported.

In row-1.2, we report the results on applying two different vari-

ants of pair-wise ranking loss based baseline VSE and VSEPP with

two different feature representation from [8]. VSE[30] is based on

the basic triplet ranking loss similar to Eq. 1 and VSEPP[8] is based

on the loss function that emphasizes on hard-negatives as shown

in Eq. 2. We consider VSE and VSEPP loss based formulation as

the baseline for this work. Finally, in row-1.3, results using the

proposed approach are reported. To enable a fair comparison, we

apply our webly supervised method using the same VSE and VSEPP

loss used by methods in row-1.2.

Effect of Proposed Webly Supervised Training. For evaluating the

impact of our approach, we compare results reported in row-1.2 and

row-1.3. Our method utilizes the same loss functions and features

used in row-1.2 for a fair comparison. From Table 1, We observe that

the proposed approach improves performance consistently in all

the cases. For image-to-text retrieval task, the average performance

increase in text-to-image retrieval is 7.5% in R@1 and 3.2% in R@10.

Effect of Loss Function. While evaluating the performance of dif-

ferent ranking loss, we observe that our webly supervised approach

shows performance improvement for both VSE and VSEPP based

formulation, and the performance improvement rate is similar for

both VSE and VSEPP (See row-1.2 and row-1.3). Similar to the pre-

vious works [8, 59], we also find that methods using VSEPP loss

performs better than VSE loss. We observe that in the image-to-text

retrieval task, the performance improvement using VSEPP based

formulation is higher and in the text-to-image retrieval task, the

performance improvement for VSE based formulation is higher.

Effect of Feature. For evaluating the impact of different image

feature in our web-supervised learning, we compare VGG19 feature

based results with ResNet152 feature based results. We find consis-

tent performance improvement using both VGG19 and ResNet152
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Table 2: Image-to-Text Retrieval Results on Flickr30K Dataset.

# Method Image-to-Text Retrieval Text-to-Image Retrieval

R@1 R@10 Med R R@1 R@10 Med R

2.1

VSE -VGG19 29.8 71.9 3.0 23.0 61.0 6.0

VSEPP -VGG19 31.9 68.0 4.0 26.8 66.8 4.0

VSE-ResNet152 38.2 80.8 2.0 26.6 67.0 4.0

VSEPP-ResNet152 43.7 82.1 2.0 32.3 72.1 3.0

2.2

Ours (VSE -VGG19) 32.4 74.1 3.0 24.9 64.3 5.0

Ours( VSEPP -VGG19) 37.8 77.1 3.0 27.9 68.9 4.0

Ours( VSE--ResNet152) 41.4 84.5 2.0 29.7 71.9 4.0

Ours (VSEPP-ResNet152) 47.4 85.9 2.0 35.2 74.8 3.0

Ours-VSEPP-ResNet: (1) A

man holding a glass speaking to

someone.

VSEPP-ResNet: (4) Two people

sitting close to one another

talking on cell phones

.

GT: A man holds a glass in a

room with many other people.

1

Ours-VSEPP-ResNet: (1) A

group of two women and one

man sitting at a table.

VSEPP-ResNet: (3) The class is

enjoying reading the various

books.

GT: Two men and a woman sit at

a table that is in front of a large

bookshelf

2

Ours-VSEPP-ResNet: (1) Many

people are their tables smiling for

the camera.

VSEPP-ResNet: (1) Something

in the room has everyones

attention at the tables.

GT: Many people are sitting at

tables for a reception

3

Ours-VSEPP-ResNet:(1) Pitcher

in the motion of starting to pitch

the ball to the plate.

VSEPP-ResNet: (2) A boy

swinging his baseball bat at a

baseball field.

GT: A pitcher on the ground is

getting ready to throw the ball

4

Figure 4: Examples of 4 test images from Flickr30K dataset and the top 1 retrieved captions for our web supervised VSEPP-

ResNet and standard VSEPP-ResNet as shown in Table. 2. The value in brackets is the rank of the highest ranked ground-truth

caption in retrieval. GroundTruth (GT) is a sample from the ground-truth captions. Image 1,2 and 4 showa few exampleswhere

utilizing our approach helps to match the correct caption, compared to using the typical approach.

feature. However, the performance improvement is slightly more

when ResNet152 feature is used. In image-to-text retrieval, the av-

erage performance improvement in R@1 using ResNet152 feature

is 4%, compared to 2.3% using VGG19 feature. In text-to-image re-

trieval task, the average performance improvement in R@1 using

ResNet152 feature is 11.18%, compared to 3.5% using VGG19 feature.

4.4 Results on Flickr30K Dataset

Table 2 summarizes the results on Flickr30K dataset [42]. From

Table 2, we have the following key observations: (1) Similar to the

results on MSCOCO dataset, our proposed approach consistently

improves the performance of different supervised method in image-

to-text retrieval by a margin of about 3%-6% in R@1 and 3%-9% in

R@10. The maximum improvement of 6%-9% is observed in the

VSEPP-VGG19 case while the least mean improvement of 4.8% is

observed in VSE-VGG19 case. (2) In text-to-image retrieval task,

the average performance improvement using our webly-supervised

approach are 2.25% and 3.25% in R@1 and R@10 respectively. These

improvements once again show that learning by utilizing large scale

web data covering a wide variety of concepts lead to a robust em-

bedding for cross-modal retrieval tasks. In Fig. 4, we show examples

of few test images from Flickr30K dataset and the top 1 retrieved

captions for the VSEPP-ResNet based formulations.

5 CONCLUSIONS

In this work, our goal is to leverage web images with tags to assist

training robust image-text embedding models for target task of

image-text retrieval that has limited labeled data. We attempt to

address the challenge by proposing a two-stage approach that can

augment a typical supervised pair-wise ranking loss based formula-

tion with weakly-annotated web images to learn better image-text

embedding. Our approach has benefits in both performance and

scalability. Extensive experiments demonstrate that our approach

significantly improves the performance in image-text retrieval task
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in two benchmark datasets. Moving forward, we would like to im-

prove our method by utilizing other types of metadata (e.g., social

media groups, comments) while learning the multi-modal embed-

ding. Furthermore, the objective of webly supervised learning may

suffer for instance when the amount of noisy tags associated with

web images is unexpectedly high compared to clean relevant tags.

In such cases, we plan to improve our method by designing loss

functions or layers specific to noise reduction as in [47], providing

a more principled way for learning the multi-modal embedding in

presence of significant noise.
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