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Abstract. Tensor decompositions are used in various data mining ap-
plications from social network to medical applications and are extremely
useful in discovering latent structures or concepts in the data. Many real-
world applications are dynamic in nature and so are their data. To deal
with this dynamic nature of data, there exist a variety of online tensor
decomposition algorithms. A central assumption in all those algorithms
is that the number of latent concepts remains fixed throughout the en-
tire stream. However, this need not be the case. Every incoming batch
in the stream may have a different number of latent concepts, and the
difference in latent concepts from one tensor batch to another can pro-
vide insights into how our findings in a particular application behave and
deviate over time. In this paper, we define “concept” and “concept drift”
in the context of streaming tensor decomposition, as the manifestation
of the variability of latent concepts throughout the stream. Furthermore,
we introduce SeekAndDestroy , an algorithm that detects concept drift in
streaming tensor decomposition and is able to produce results robust to
that drift. To the best of our knowledge, this is the first work that inves-
tigates concept drift in streaming tensor decomposition. We extensively
evaluate SeekAndDestroy on synthetic datasets, which exhibit a wide va-
riety of realistic drift. Our experiments demonstrate the effectiveness of
SeekAndDestroy , both in the detection of concept drift and in the allevia-
tion of its effects, producing results with similar quality to decomposing
the entire tensor in one shot. Additionally, in real datasets, SeekAnd-
Destroy outperforms other streaming baselines, while discovering novel
useful components.
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1 Introduction

Data comes in many shapes and sizes. Many real world applications deal with
data that is multi-aspect (or multi-dimensional) in nature. An example of multi-
aspect data would be interactions between different users in a social network over
period of time. Interactions like who messages whom, who liked whose posts or
who shared (re-tweet) whose post. This can be modeled as a three-mode tensor,
user-user being two modes of the tensor and time being the third mode, where
each data point can be considered as an interaction between two users.
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Tensor decomposition has been used in many data mining applications and
is an extremely useful tool for finding latent structures in tensor in an unsuper-
vised fashion. There exist a wide variety of tensor decomposition models and
algorithms available, interested readers can refer to [9,13] for details. In this pa-
per, our main focus is on CP/PARAFAC decomposition [7] (henceforth refered
to as CP for brevity), which decomposes a tensor into a sum of rank-one tensors,
each one being a latent factor (or concept) in the data. CP has been widely used
in many applications, due to its ability to uniquely uncover latent components
in a variety of unsupervised multi-aspect data mining applications [13].

In today’s world data is not static, data keeps on evolving over time. In real
world applications like stock market and e-commerce websites hundred of trans-
action (if not thousands) takes place every second, or in applications like social
media where every second, thousands of new interactions take place forming new
communities of users who interact with each other. In this example, we consider
each community of people within the graph as a concept.

There has been a considerable amount of work in dealing with online or
streaming CP decomposition [16,6,11], where the goal is to absorb the updates
to the tensor in the already computed decomposition, as they arrive, and avoid
recomputing the decomposition every time new data arrives. However, despite
the already existing work in the literature, a central issue has been left, to the
best of our knowledge, entirely unexplored. All of the existing online/streaming
tensor decomposition literature assumes that the concepts in the data (whose
number is equal to the rank of the decomposition) remains fixed throughout the
lifetime of the application. What happens if the number of components changes?
What if a new component is introduced, or an existing component splits into two
or more new components? This is an instance of concept drift in unsupervised
tensor analysis, and this paper is a look at this problem from first principles.

Our contributions in this paper are the following:

– Characterizing concept drift in streaming tensors: We define concept
and concept drift in time evolving tensors and provide a quantitative method
to measure the concept drift.

– Algorithm for detecting and alleviating concept drift in streaming

tensor decomposition: We provide an algorithm which detects drift in
the streaming data and also updates the previous decomposition without
any assumption on the rank of the tensor.

– Experimental evaluation on real & synthetic data: We extensively
evaluated our method on both synthetic and real datasets and out-perform
state of the art methods in cases where the rank is not known a priori and
perform on par in other cases.

– Reproducibility: Our implementation is made publicly available1 for re-
producibility of experiments.

1 https://github.com/ravdeep003/conceptDrift
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2 Problem Formulation

2.1 Tensor Definition and Notations

Tensor X is collection of stacked matrices (X1,X2, . . .XK) with dimension
R

I×J×K , where I and J represents rows and columns of matrix and K represents
number of views. In other words, a tensor is a higher order abstraction of a
matrix. For simplicity, we call the term “dimension” as “mode” of tensor, where
“modes” are the numbers of views used to index the tensor. The rank of a tensor
X = R is defined as the minimum number of rank-1 tensors computed from its
latent components which are required to re-produce X as their sum. Table 1
represents the notations used throughout the paper.

Symbols Definition

X,X,x, x Tensor, Matrix, Column vector, Scalar
R Set of Real Numbers
◦ Outer product

‖A‖F , ‖a‖2 Frobenius norm, ℓ2 norm

X(:, r) rth column of X

⊙ Khatri-Rao product (column-wise Kronecker product [13])

Table 1: Table of symbols and their description

Tensor Batch: A batch is a (N-1)-mode partition of tensor X ∈ R
I×J×K

where size is varied only in one mode and other modes remain unchanged. Here,
tensor Xnew is of dimension R

I×J×tnew and existing tensor Xold is of dimension
R

I×J×told . The full tensor X = [Xold;Xnew] where its temporal mode K =
told+tnew. The tensorX can be partition into horizontalX(I,:,:) , lateralX(:,J,:),
and frontal X(:,:,K) mode.

CP decomposition: The most popular and extensively used tensor decom-
positions is the Canonical Polyadic or CANDECOMP/PARAFAC decomposi-
tion, referred to as CP decomposition henceforth. Given a 3-mode tensor X of
dimension R

I×J×K , and rank at most R can be written

X =

R
∑

r=1

(ar ⊙ br ⊙ cr) ⇐⇒ X(i, j, k) =

R
∑

r=1

A(i, r)B(j, r)C(k, r)

∀ i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J} , k ∈ {1, 2, . . . ,K} andA ∈ R
I×R,B ∈ R

J×R

and C ∈ R
K×R. For tensor approximation, we adopted minimizing least square

criteria as L ≈ min 1
2
||X − A(C ⊙ B)T ||2F where ||X||2F is the sum of squares

of its all elements and ||.||F is Frobenius (norm). The CP model is nonconvex
in A,B and C. We refer interested readers to popular surveys [9,13] on tensors
decompositions and its applications for more details.

2.2 Problem Definition

Let us consider a social media network like Facebook, where a large number
of users (≈ 684K) update information every single minute, and Twitter, where
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about ≈ 100K users tweet every minute2. Here, we have interactions arriving
continuously at high velocity, where each interaction consists of User Id, Tag
Ids , Device, and Location information etc. How can we capture such dynamic
user interactions? How to identify concepts which can signify a potential newly
emerging community, complete disappearance of interactions, or a merging of
one or more communities to a single one? When using tensors to represent such
dynamically evolving data, our problem falls under “streaming” or “online” ten-
sor analysis. Decomposing streaming or online tensors is challenging task, and
concept drift in incoming data makes the problem significantly more difficult,
especially in applications where we care about characterizing the concepts in the
data, in addition to merely approximating the streaming tensor adequately.

Before we conceptualize the problem that our paper deals with, we define
certain terms which are necessary to set up the problem. Consider X and Y be
two incremental batches of a streaming tensors of rank R and F respectively.
Let X be the initial tensor at time t0 and Y be the batch of the streaming tensor
which arrives at time t1 such as t1 > t0. The CP decomposition for these two
tensors is given as follows:

X ≈

R
∑

r=1

A(:, r) ◦B(:, r) ◦C(:, r) (1)

Y ≈

F
∑

r=1

A(:, r) ◦B(:, r) ◦C(:, r) (2)

Concept: In case of tensors, we define concept as one latent component; a sum
of R such components make up the tensor. In above equations tensor X and Y

has R and F concepts respectively.
Concept Overlap: We define concept overlap as the set of latent concepts that
are common or shared between two streaming CP decompositions. Consider
Figure 1 where R and F both are equal to three, which means both tensors X
and Y have three concepts. Each concept of X corresponds to each concept of
Y. This means that there are three concepts that overlap between X and Y.
The minimum and maximum number of concept overlaps between two tensors
can be zero and min(R,F ) respectively. Thus, the value of concept overlap lies
between 0 and min(R,F ). In Section 3 we propose an algorithm for detecting
such overlap.

0 ≤ Concept Overlap ≤ min(R,F ) (3)

New Concept: If there exists a set of concepts which are not similar to any
of the concepts already present in the most recent prior tensor batch, we call all
such concepts in that set as new concepts. Consider Figure 2(a), where X has
two concepts (R = 2) and Y has three concepts (F = 3). We see that at time
t1 tensor Y batch has three concepts, out of which, two match with tensor X

2 https://mashable.com/2012/06/22/data-created-every-minute/



5

Y

X

R=3

a1 a2

b1 b2

c1
c2

+

a3

b3

c3

+

Concept 1 Concept 2 Concept 3

Concept 1 Concept 2

Overlap Concept

J

I

J

I

F=3

A=

B

Bt0

t1

a1 a2

b1 b2

c1
c2

+

a3

b3

c3

+

Concept 3

A=

B

B

Fig. 1: Complete overlap of concepts

concepts and one concept(namely concept 3) does not match with any concept
of X. In this scenario we say that concept 1 and 2 are overlapping concepts and
concept 3 is a new concept.
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Fig. 2: (a)Concept Appears (b) Concept disappears

Missing Concept: If there exists a set of concepts which was present at
time t0, but was missing at future time t1, we call the concepts in the set missing

concepts. For example, consider Figure 2(b), at time t0, the CP decomposition of
X has three concepts, and at time t1 CP decomposition of Y has two concepts.
Two concepts of X and Y match with each other and one concept, present at
t0, is missing at t1; we label that concept, as missing concept.
Running Rank: Running Rank (runningRank) at time t is defined as the total
number of unique concepts (or latent components) seen until time t. Running
Rank is different from tensor rank of a tensor batch. It may or may not be equal
to rank of the current tensor batch. Consider Figure 1, runningRank at time t1 is
three, since the total unique number of concepts seen until t1 is three. Similarly
runningRank of Figure 2(b) at time t1 is three, even though rank of Y is two,
since the number unique concepts seen until t1 is three.

Let us assume rank of the initial tensor batch X at time t0 is R and rank of
next subsequent tensor batch Y at time t1 is F . Then runningRank at time t1
is sum of running rank at t0 and number of new concepts discovered from t0 to
t1. At time t0 running rank is equal to initial rank of the tensor batch in this
case R.

runningRankt1 = runningRankt0 + num(newConcept)t0−t1 (4)
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Concept Drift: Concept drift is usually defined in terms of supervised learn-
ing [3,14,15]. In [14], authors define concept drift in unsupervised learning as the
change in probability distribution of a random variable over time. We define
concept drift in the context of latent concepts, which is based on rank of the
tensor batch. We first give an intuitive description of concept in terms of running
rank, and then define concept drift.
Intuition: Consider running rank at time t1 be runningRankt1 and running at
time t2 be runningRankt2 . If runningRankt1 is not equal to runningRankt2 , then
there is a concept drift i.e. either a new concept has appeared, or a concept
has disappeared. However, this definition does not capture every single case. As-
sume if runningRankt1 is equal to runningRankt2 . In this case, there is no drift
only for when there is a complete overlap. However there may be concept drift
present even if runningRankt1 is equal to runningRankt2 , since a concept might
disappear while runningRank remains the same.
Definition: Whenever a new concept appears, a concept disappears, or both
from time t1 to t2, this phenomenon is defined as concept drift.

In a streaming tensor application, a tensor batch arrives at regular intervals
of time. Before we decompose a tensor batch to get latent concepts, we need to
know the rank of the tensor. Finding tensor rank is a hard problem [8] and it
is beyond the scope of this paper. There has been considerable amount of work
which approximates rank of a tensor[12,10]. In this paper we employ AutoTen
[12] to compute a low rank of a tensor. As new advances in tensor rank estimation
happen, our proposed method will also benefit.

Problem 1. Given (a) tensor X of dimensions I×J×K1 and rank R, (b) Y
of dimensions I × J ×K2 of rank F at time t0 and t1 respectively as shown
in figure 3. Compute Xnew of dimension I × J × (K1 +K2) of rank equal
to runningRank at time t1 as shown in equation (7) using factor matrices
ofXandY.

Xnewt1

≈

runningRank
∑

r=1

A(:, r) ◦B(:, r) ◦C(:, r) (5)

Fig. 3: Problem formulation
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3 Proposed Method

Consider a social media application where thousands of connections are formed
every second like who follows whom or who interacts with whom. These con-
nections formed can be viewed as forming communities. Over a period of time
communities disappear, new communities appear or some communities re-appear
after sometime. Number of communities at any given point of time is dynamic.
There is no way of knowing what communities will appear or disappear in fu-
ture. When this data stream is captured as a tensor, communities refer to latent
concepts and appearing and disappearing of communities over a period of a time
is referred to as concept drift. Here we need a dynamic way of figuring out num-
ber of communities in a tensor batch rather than assuming constant number of
communities in all tensor batches.

To the best of our knowledge, there is no algorithmic approach that detects
concept drift in streaming tensor decomposition. As we mentioned in Section 1,
there has been considerable amount of work [6,16,11] which deals with streaming
tensor data and applies batch decomposition on incoming slices and combine the
results. But these methods don’t take change of rank in consideration, which
could reveal new latent concept in the data sets. Even if we know the rank(latent
concept) of the complete tensor, the tensor batches of that tensor might not have
same rank as the complete tensor.

In this paper we propose SeekAndDestroy, a streaming CP decomposition
algorithm that does not make assumption on the rank of the tensor. SeekAnd-
Destroy detects the rank of every incoming batch in order to decompose it,
and finally, updates the existing decomposition after detecting and alleviating
concept drift, as defined in Section 2.

An integral part of SeekAndDestroy is detecting different concepts and iden-
tifying concept drift in streaming tensor. In order to do this successfully, we need
to solve following problems:
P1: Finding the rank of a tensor batch.
P2: Finding New Concept, Concept Overlap and Missing Concept between two

consecutive tensor batch decomposition.
P3: Updating the factor matrices to incorporate the new and missing concepts

along with concept overlaps.
Finding number of latent concepts: Finding rank of a tensor is a hard

problem [8] and is not in the scope of this work. There has been work, such
as [12] and [10] which tries to approximately estimate the rank of a tensor.
Our algorithm employs AutoTen [12], which is an automatic and unsupervised
algorithm to find the rank of an tensor. As this part is not our contribution,
in Section 4, we perform our experiments on synthetic data where we know
the rank (and use that information as given to us by an “oracle”) and repeat
those experiments using AutoTen, comparing the error between them; the gap
in quality signifies room for improvement that SeekAndDestroy will reap, if rank
estimation is solved more accurately in the future.

Finding Concept overlap: Given a rank of tensor batch, we compute its
latent components using CP decomposition. Consider Figure 3 as an example.



8

At time t1, the number of latent concepts we computed is represented by F ,
and we already had R components before new batch Y arrived. In this scenario,
there could be three possible cases: (1) R = F (2) R > F (3) R < F .

For each one of the cases mentioned above, there may be a new concepts ap-
pear at t1, or concepts disappear from t0 to t1, or there could be shared concepts
between two decompositions. In Figure 3. we see that, even though R is equal to
F , we have one new concept, one missing concept and two shared/overlapping
concepts. Now, at time t1, we have four unique concepts, which means our
runningRank at t1 is four.

In order to discover which concepts are shared, new, or missing we use the
Cauchy-Schwartz inequality which states for two vectors a and b we have aTb ≤
||a||2||b||2. Algorithm 2 provides the general outline of technique used in finding
concepts. It takes a column-normalized matrix Aold and Abatch of size I × R

and I × batchRank respectively as input. We compute the dot product for all
permutations of columns between two matrices, as shown below

AT
old

(:, coli) ·Abatch(:, colj)

coli and colj are the respective columns. If the computed dot product is higher
than the threshold value, the two concepts match, and we consider them as
shared/overlapping between Aold and Abatch. If the dot product between a
column in Abatch and with all the columns in Aold has a value less than the
threshold, we consider it as a new concept. This solves problem P2. In the
experimental evaluation, we demonstrate the behavior of SeekAndDestroy with
respect to that threshold.

SeekAndDestroy: This is our overall proposed algorithm, which detects
concept drift between the two consecutive tensor batch decompositions, as illus-
trated in Algorithm 1 and updates the decomposition in a fashion robust to the
drift. SeekAndDestroy takes factor matrices(Aold, Bold, Cold) of previous ten-
sor batch (say at time t0), running rank at t0(runningRankt0

) and new tensor
batch(Xnew) (say at time t1) as inputs. Subsequently, SeekAndDestroy computes
the tensor rank for the batch (batchRank) for Xnew using AutoTen. Using the
estimated rank batchRank, SeekAndDestroy computes the CP decomposition
of Xnew, which returns factor matrices A,B,C. We normalize the columns of
A,B,C to unit ℓ2 norm and we store the normalized matrices into normMatA,
normMatB, and normMatC, as shown by lines 3-4 of Algorithm 1. Both
Aold and normalized matrix A are passed to findConceptOverlap function as
described above. This returns the indexes of new concept and indexes of over-
lapping concepts from both matrices. Those indexes inform SeekAndDestroy,
while updating the factor matrices, where to append the overlapped concepts.
If there are new concepts, we update A and B factor matrices simply by adding
new columns from normalized factor matrices of Xnew as shown in lines 9-10
of Algorithm 1. Furthermore, we update the running rank by adding number of
new concept discovered to the previous running rank. If there is only overlapping
concepts and no new concepts, then A and B factor matrices does not change.
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Algorithm 1: SeekAndDestroy for Detecting & Alleviating Concept Drift

Input: Tensor Xnew of size I × J ×Knew , Factor matrices Aold,Bold,Cold of size
I ×R, J ×R and Kold ×R respectively, runningRank, mode.

Output: Factor matrices Aupdated,Bupdated,Cupdated of size I × runningRank,
J × runningRank and (Knew +Kold)× runningRank, ρ, runningRank.

1: batchRank ← getRankAutoten(Xnew, runningRank)
2: [A,B,C,λ] = CP(Xnew , batchRank).
3: colA, colB, colC← Compute Column Normalization of A,B,C.
4: normMatA,normMatB,normMatC← Absorb λ and Normalize A,B,C.
5: rhoV al← colA . ∗ colB . ∗ colC

6: [newConcept, conceptOverlap, overlapConceptOld]←
findConceptOverlap(Aold,normMatA)

7: if newConcept then
8: runningRank← runningRank + len(newConcept)
9: Aupdated←

[

Aold normMatA(:,newConcept)
]

10: Bupdated←
[

Bold normMatB(:,newConcept)
]

11: Cupdated← update C depending on the New Concept,
Concept Overlap, overlapConceptOld indices and runningRank

12: else
13: Aupdated← Aold

14: Bupdated← Bold

15: Cupdated← update C depending on the New Concept,
Concept Overlap, overlapConceptOld indices and runningRank

16: end if
17: Update ρ depending on the New Concept and Concept Overlap indices
18: if newConcept or (len(newConcept) + len(conceptOverlap) < runningRank)

then
19: Concept Drift Detected
20: end if

Updating Factor Matrix C: In this paper, for simplicity of exposition, we
are focusing on streaming data that are increasing only on one mode. However,
our proposed method readily generalizes to cases where more than one modes
grow over time.

In order to update the “evolving” factor matrix (C in our case), we use a
different technique from the one used to update A and B. If there is a new
concept discovered in normMatC then

Cupdated =

[

Cold zeroCol

zerosM normMatC(:, newConcept)

]

where zeroCol is of size Kold × len(newConcept), zerosM is of size Knew × R

and Cupdated is of size (Kold +Knew)× runningRank.
If there are overlapping concepts, then we update C accordingly as shown below;
in this case Cupdated is again of size (Kold +Knew)× runningRank.
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Cupdated =

[

Cold(:, overlapConceptOld)
normMatC(:, conceptOverlap)

]

If there are missing concepts we append an all-zeros matrix (column vector) to
those indexes.

The scaling factor ρ: When we reconstruct the tensor from updated factor
(normalized) matrices, we need a way to re-scale the columns of those those
factor matrices. In our approach we compute element wise product on normalized
columns of factor matrices (A, B, C) of Xnew as shown in line 5 of Algorithm
1. We use the same technique as the one used in updating C matrix, in order
to match the values between two consecutive intervals, and we add this value to
previously computed values. If it is a missing concept. we simply add zero to it.
While reconstructing the tensor we take the average of vector over the number
of batches received and we re-scale the components as follows

Xr =

runningRank
∑

r=1

ρrAupd.(:, r) ◦Bupd.(:, r) ◦Cupd.(:, r).

Algorithm 2: Find Concept Overlap

Input: Factor matrices Aold,normMatA of size I ×R, I × batchRank respectively.
Output: newConcept, conceptOverlap, overlapConceptOld
1: THRESHOLD← 0.6
2: if R == batchRank then
3: Generate all the permutations for [1:R]
4: foreach permutation do

Compute dot product of Aold and normMatA(:,permutation)
end

5: else if R > batchRank then
6: Generate all the permutations(1:R, batchRank)
7: foreach permutation do

Compute dot product of Aold(:, permutation) and normMatA
end

8: else if R < batchRank then
9: Generate all the permutations (1:batchRank, R)
10: foreach permutation do

Compute dot product of Aold and normMatA(:,permutation)
end

11: end if
12: Select the best permutation based on the maximum sum.
13: If dot product value of a column is less than threshold it a New Concept
14: If dot product value of a column id more than threshold then its a

Concept Overlap.
15: Return column index’s of New Concept and Concept Overlap for both matrices
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4 Experimental Evaluation

We evaluate our algorithm on the following criteria:
Q1: Approximation quality: We compare SeekAndDestroy’s approximation
accuracy against state-of-the-art streaming baselines, in data that we generate
synthetically so that we observe different instances of concept drift. In cases
where SeekAndDestroy outperforms the baselines, we argue that this is due to
the detection and alleviation of concept drift.
Q2: Concept Drift detection accuracy: We evaluate how effectively SeekAnd-
Destroy is able to detect concept drift in synthetic cases, where we control the
drift patterns.
Q3: Sensitivity analysis: As shown in Section 3, SeekAndDestroy expects the
matching threshold as a user input. Furthermore, its performance may depend
on the selection of the batch size. Here, we experimentally evaluate SeekAndDe-

stroy’s sensitivity along those axes.
Q4: Effectiveness on real data: In addition to measuring SeekAndDestroy’s
performance in real data, we also evaluate its ability to identify useful and in-
terpretable latent concepts in real data, which elude other streaming baselines.

4.1 Experimental Setup

We implemented our algorithm in matlab using tensor toolbox library [2] and
we evaluate our algorithm on both synthetic and real data. We use [12] method
available in literature to find rank of incoming batch.

In order to have full control of the drift phenomena, we generate synthetic
tensors with different rank for every tensor batch, we control the batch rank of
the tensor with factor matrix C. Table 2 shows the specification of the datasets
created. For instance dataset SDS2 has a initial tensor batch whose tensor rank
is 2 and last tensor batch whose tensor rank is 10(full rank). The batches in
between the initial and final tensor batch can have any rank between initial and
final rank(in this case 2-10). The reason we assign the final batch rank as the
full rank is to make sure the tensor created is not rank deficient. We make the
synthetic tensor generator available as part of our code release.

DataSet Dimension Initial Rank Full Rank Batch Size Matching Threshold

SDS1
100 x 100 x 100 2

5
10 0.6

SDS2 10

SDS3
300 x 300 x 300 2

5
50 0.6

SDS4 10

SDS5
500 x 500 x 500 2

5
100 0.6

SDS6 10

Table 2: Table of Datasets analyzed
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In order for us to obtain robust estimates of performance, we require all
experiments to either 1) run for 1000 iterations, or 2) the standard deviation
converges to a second significant digit (whichever occurs first). For all reported
results, we use the median and the standard deviation.

4.2 Evaluation Metrics

We evaluate SeekAndDestroy and the baselines methods using relative error.
Relative Error provides the measure of effectiveness of the computed tensor
with respect to the original tensor and is defined as follows:

RelativeError =
( ||Xoriginal −Xcomputed||

2
F

||Xoriginal||
2
F

)

(6)

The lower the value of a relative error the better the fitness of the tensor com-
puted.

4.3 Baselines for Comparison

To evaluate our method, we compare SeekAndDestroy with two state-of-the-art
streaming baselines: OnlineCP [16] and SamBaTen [6]. Both baselines assume
that the rank remains fixed throughout the entire stream. When we evaluate
the approximation accuracy of the baselines, we run two different versions of
each method, with different input ranks: 1) Initial Rank, which is the rank of
the initial batch, same as the one that SeekAndDestroy uses, and 2) Full Rank,
which is the “oracle” rank of the full tensor, if we assume we could compute that
in the beginning of the stream. Clearly, Full Rank offers a great advantage to
the baselines since it provides information from the future.

4.4 Q1: Approximation quality

The first dimension that we evaluate is the approximation quality. More specif-
ically, we evaluate whether SeekAndDestroy is able to achieve good approxima-
tion of the original tensor (in the form of low error) in case where concept drift
is occurring in the stream. Table 3 contains the general results of SeekAndDe-

stroy’s accuracy, as compared to the baselines. We observe that SeekAndDestroy

outperforms the two baselines, in the pragmatic scenario where they are given
the same starting rank as SeekAndDestroy (Initial Rank). In the “oracle” case,
OnlineCP performs better than SamBaTen and SeekAndDestroy, however this
case is not realistic and can be seen an very advantageous lower bound on the
error for OnlineCP.

Through extensive experimentation we made the following interesting obser-
vation: in the cases where most of the concepts in the stream appear in the begin-
ning of the stream (e.g., in batches 2 and 3), SeekAndDestroy was able to further
outperform the baselines. This is due to the fact that, if SeekAndDestroy has
already “seen” most of the possible concepts early-on in the stream, it is more
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DataSet OnlineCP
(Initial Rank)

OnlineCP
(Full Rank)

SamBaTen
(Initial
Rank)

SamBaTen
(Full Rank)

SeekAndDestroy

SDS1 0.2782±0.0221 0.197±0.086 0.261±0.048 0.317±0.058 0.283±0.075
SDS2 0.2537±0.0125 0.168±0.507 0.244±0.028 0.480±0.051 0.253±0.0412
SDS3 0.2731±0.0207 0.205±0.164 0.385±0.021 0.445±0.164 0.266±0.081

SDS4 0.245±0.013 0.171±0.537 0.299±0.045 0.402±0.049 0.221±0.0423

SDS5 0.2719±0.0198 0.206±0.022 0.559±0.046 0.519±0.0219 0.256±0.105

SDS6 0.238±0.013 0.171±0.374 0.510±0.036 0.547±0.0276‘0.208±0.0433

Table 3: Approximation error for SeekAndDestroy and the baselines. SeekAndDestroy

outperforms the baselines in the realistic case where all methods start with the same
rank.

likely to correctly match concepts in later batches of the stream, since there
already exists an almost-complete set of concepts to compare against. Indica-
tively,in this case SeekAndDestroy achieved 0.1176± 0.0305 where as OnlineCP
achieved 0.1617± 0.0702.

4.5 Q2: Concept drift detection accuracy

The second dimension along which we evaluate SeekAndDestroy is its ability to
successfully detect concept drift. Figure 4 shows the rank discovered by SeekAnd-

Destroy at every point of the stream, plotted against the actual rank. We observe
that SeekAndDestroy is able to successfully identify changes in rank, which, as
we have already argued, signify concept drift. Furthermore, Table 4(b) shows
three example runs that demonstrate the concept drift detection accuracy.

Fig. 4: SeekAndDestroy is able to successfully detect concept drift, which is
manifested as changes in the rank throughout the stream.

4.6 Q3: Sensitivity analysis

The results we have presented so far for SeekAndDestroy have used a matching
threshold of 0.6. The reason why this threshold was chosen is because it is in-
tuitively larger than a 50% match, which is a reasonable matching threshold. In
this experiment, we investigate the sensitivity of SeekAndDestroy to the match-
ing threshold parameter. Table 4(a) shows exemplary approximation errors for
thresholds of 0.4, 0.6, and 0.8. We observe that 1) the choice of threshold is fairly
robust for values around 50%, and 2) the higher the threshold, the better the
approximation, with threshold of 0.8 achieving the best performance.



14

Threshold SDS2 SDS4

0.4 0.253±0.041 0.221 ± 0.042

0.6 0.253±0.041 0.221 ± 0.042

0.8 0.101 ±0.040 0.033 ± 0.011

R
unning Actual Predicted Approximation Error

Rank Rank Rank Actual Rank Predicted Rank

6 [2,4,3,4,3,3,5,3,3,5] [2,4,3,4,3,3,5,3,3,6] 0.185 0.194
6 [2,4,3,4,3,3,5,3,3,5] [2,4,3,4,3,3,5,3,3,6] 0.185 0.197
7 [2,4,3,4,3,3,5,3,3,5] [2,4,3,5,3,3,6,3,3,6] 0.185 0.278

Table 4: (a)Experimental results for error of approximation of incoming batch
with different matching threshold values. Dataset SDS2 and SDS4 are of dimension
R

100×100×100 and R
300×300×300 , respectively. We see that the threshold is fairly robust

around 0.5, and a threshold of 0.8 achieves the highest accuracy (b) Experimental re-
sults on SDS1 for error of approximation of incoming slices with known and predicted
rank.

4.7 Q4: Effectiveness on real data

To evaluate effectiveness of our method on real data, we use the Enron time-
evolving communication graph dataset [1]. Our hypothesis is that in such com-
plex real data, there exists concept drift in streaming tensor decomposition. In
order to validate that hypothesis, we compare the approximation error incurred
by SeekAndDestroy against the one incurred by the baselines, shown in Table
5. We observe that the approximation error of SeekAndDestroy is lower than
the two baselines. Since the main difference between SeekAndDestroy and the
baselines is that SeekAndDestroy takes concept drift into consideration, and
strives to alleviate its effects, this result 1) provides further evidence that there
exists concept drift in the Enron data, and 2) demonstrates SeekAndDestroy’s
effectiveness on real data.

The final rank for Enron as computed by SeekAndDestroy was 7, indicating
the existence of 7 time-evolving communities in the dataset. This number of
communities is higher than what previous tensor-based analysis has uncovered
[1,5]. However, analyzing the (static) graph using a highly-cited method [4], we
were able to detect 7 communities, therefore SeekAndDestroy may be discover-
ing subtle communities that have eluded previous tensor analysis. In order to
verify that, we delved deeper into the communities and we plot their temporal
evolution (taken from matrix C) along with their annotations (when inspecting
the top-5 senders and receivers within each community). Indeed, a subset of the
communities discovered matches with the ones already known in the literature
[1,5]. Additionally, SeekAndDestroy was able to discover community #3, which
refers to a group of executives, including the CEO. This community appears to
be active up until the point that the CEO transition begins, after which point it
dies out. This behavior is indicative of concept drift, and SeekAndDestroy was
able to successfully discover and extract it.

5 Related Work

In this section, we provide review of the literature related to our method. Broadly,
online tensor methods can be categorized into following main categories:
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R
unning Predicted Batch Approximation Error
Rank Full Rank Size SeekAndDestroy SambaTen OnlineCP

7±0.88 4±0.57 22 0.68 ± 0.002 0.759± 0.059 0.941± 0.001

Table 5: Evaluation on Real dataset
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Fig. 5: Timeline of concepts discovered in Enron.

Tensor decomposition:Tensor decomposition techniques are widely used for
static data. With the explosion of big data, data grows at a rapid speed and an ex-
tensive study required on the online tensor decomposition problem. Sidiropoulos
[11] introduced two well-known PARAFAC based methods namely RLST (recur-
sive least square) and SDT (simultaneous diagonalization tracking) to address
the online 3-mode tensor decomposition. Zhou et al. [16] proposed OnlineCP
for accelerating online factorization that can track the decompositions when
new updates arrived for N-mode tensors. Gujral et al. [6] proposed Sampling-
based Batch Incremental Tensor Decomposition algorithm which updates online
computation of canonical parafac and perform all computations in the reduced
summary space. However, all of them are not directly applicable to concept drift
situations.
Concept Drift: The survey paper [14] provides the qualitative definitions of
characterizing the drifts on data streammodels.They formally defined drift based
on Subject, Frequency, Transition, Re-occurrence and Magnitude of data. Fur-
thermore, they evaluated various scenarios for supervised and un-supervised pure
class and variance drift with given magnitude and results were very promising.
To the best of our knowledge, this is the first work to discuss concept drift in
tensor decomposition.

6 Conclusions

In this paper we defined ‘concept’ and ‘concept drift’ in context of stream-
ing tensors and provide an Algorithm SeekAndDestroy which detects drift
and alleviates it without making any assumption on the rank of the tensor.
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We demonstrate the effectiveness of our algorithm against other state-of-the-art
methods by out performing them when the rank of tensor is unknown. Further-
more, we demonstrate SeekAndDestroy’s effectiveness in detecting concept drift.
Finally, we apply SeekAndDestroy on a real time-evolving dataset, discovering
novel drifting concepts.
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