
Incremental Task Modification via Corrective Demonstrations

Reymundo A. Gutierrez1 Vivian Chu2 Andrea L. Thomaz3 and Scott Niekum1

Abstract— In realistic environments, fully specifying a task
model such that a robot can perform a task in all situations
is impractical. In this work, we present Incremental Task
Modification via Corrective Demonstrations (ITMCD), a novel
algorithm that allows a robot to update a learned model by
making use of corrective demonstrations from an end-user in
its environment. We propose three different types of model
updates that make structural changes to a finite state automaton
(FSA) representation of the task by first converting the FSA
into a state transition auto-regressive hidden Markov model
(STARHMM). The STARHMM’s probabilistic properties are
then used to perform approximate Bayesian model selection
to choose the best model update, if any. We evaluate ITMCD
Model Selection in a simulated block sorting domain and the
full algorithm on a real-world pouring task. The simulation
results show our approach can choose new task models that
sufficiently incorporate new demonstrations while remaining
as simple as possible. The results from the pouring task show
that ITMCD performs well when the modeled segments of the
corrective demonstrations closely comply with the original task
model.

I. INTRODUCTION

Robots deployed into real-world environments will in-

evitably encounter situations not covered by their initial task

models and will need to incorporate new information to

handle these unanticipated circumstances (e.g. an engineer

cannot anticipate all conditions needed for a robot deployed

with a set of preprogrammed household task models). Due

to the intractability of enumerating all scenarios the robot

may encounter, it is advantageous to have mechanisms that

allow robots to interact with end users to update and adapt

task models by providing corrective demonstrations in the

environment in which the robot operates. This leads to the

question: How can a task model be efficiently updated to

incorporate new information when that information may or

may not fit into the policy defined by the existing model?

Learning from demonstration (LfD) allows robots to learn

new skills from example task executions provided by hu-

mans [1, 2]. While much work has focused on learning

single policies for skill execution [3, 4] or sequencing a

set of learned policy primitives [5, 6], recent efforts have

focused on learning task models by jointly reasoning over

action primitives and their sequences while tackling the

problem of incremental learning of such task models [7]–

[12]. However, these methods require an explicit reward

1 Department of Computer Science, University of Texas at Austin, Austin,
Texas 78712 Email: {ragtz,sniekum}@cs.utexas.edu

2 School of Interactive Computing, Georgia Institute of Technology,
Atlanta, Georgia 30332-0250 Email: vchu@gatech.edu

3 Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, Texas 78712 Email:
athomaz@ece.utexas.edu

Fig. 1. ITMCD was evaluated on a pouring task, where the pitcher can
be either open or closed. Starting from a task model that can complete the
pouring task in the open condition, the objective is to learn the task model
to operate in the closed condition given corrective demonstrations.

function definition [8, 9], utilize computationally expensive

processes such as a simulated evaluation [12] or Markov

chain Monte Carlo (MCMC) sampling [10, 11], or require

hand-coded segments [7]. Utilizing a parametric method with

closed-form inference could remove the need for a reward

function while decreasing the computational overhead.

In this work, we present Incremental Task Modification

via Corrective Demonstrations (ITMCD), a new method

that utilizes corrective demonstrations to inform incremental

changes to a task model represented as a finite-state au-

tomaton (FSA) whose primitives are specified by initiation,

termination, dynamics, and policy models. Given a new

demonstration, a set of model updates are proposed that

make specified structural changes to the FSA. These changes

are instantiated through conversion into a state transition

auto-regressive hidden Markov model (STARHMM) [13].

The STARHMM’s probabilistic properties are then used

to perform approximate Bayesian model selection, which

chooses the best update to incorporate into the model.

We evaluate the ITMCD Model Selection step on a

simulated block sorting domain and the full algorithm on

a real-world pouring task. Given corrective demonstrations,

ITMCD Model Selection is able to select the simplest good-

fit model from a set of candidate FSA updates. Although

the primitive representation used was sensitive to small

variations in the modeled trajectories, ITMCD is able to

appropriately add new primitives to the task model when the

modeled segments of the corrective demonstrations comply

with the original task model.

• parent(i): returns the parents of primitive i
• children(i): returns the children of primitive i

A full policy execution is computed by selecting a primi-

tive and executing its policy at each time step. The primitive

selection follows the structure of the graph such that if the

current primitive is zi, the most likely primitive from the

set Z = {zj |j ∈ {{i} ∪ children(i)}} is selected as the

primitive in the next time step.

B. State Transition Auto-Regressive Hidden Markov Model

A state transition auto-regressive hidden Markov model

(STARHMM) [13] is a probabilistic graphical model that

captures the entry and exit conditions that represent the

subgoals of multi-phase tasks. In addition to the state and

action variables outlined in Section III, a STARHMM has

hidden states, which we refer to as phases (ρt ∈ {1, . . . , κ}),

and termination states (εt ∈ {0, 1}). Hidden phases are

similar to nodes within an FSA in that they index a primitive.

The termination state governs when a phase can transition.

A STARHMM models the state dynamics with the distri-

bution P(st+1|st,at, ρt), which is similar to the FSA, except

it also depends on the hidden phase, ρ. The phase transitions

(ρt → ρt+1) depend on the current state st+1, the previous

phase ρt, and the termination status of the previous phase

εt. These dependencies are modeled with the distribution

P(ρt+1|st+1, ρt, εt). Phase transition can only occur when

the previous phase has terminated, which constrains the

phase transition distribution in the following manner.

P(ρt+1|st+1, ρt, εt = 0) =

{

1 ρt+1 = ρt

0 ρt+1 6= ρt
(2)

When εt = 1 (i.e. when pt has terminated), phase

transitions are governed by the initiation distribution

P(ρt+1|st+1, ρt, εt = 1). Finally, phase termination εt de-

pends on the current phase ρt and the next state st+1. This is

modeled by the distribution P(εt|st+1, ρt). The incorporation

of this auxiliary variable allows for the explicit modeling of

each phase’s state-dependent exit conditions. The graphical

representation of this model can be seen in Fig. 3.

Given the above distribution definitions, the probability of

observing a sequence of states s1:N+1, actions a1:N , phases

ρ1:N+1, and phase terminations ε0:N−1 is

P(s1:N+1,a1:N , ρ1:N+1, ρ0:N−1) = P(ε0, ρ1, s1)·
N
∏

t=1

P(st+1|st,at, ρt)P(at)

N
∏

t=2

P(ρt, εt−1|st, ρt−1)
(3)

where P(ε0, ρ1, s1) = P(s1, ε0)P(ρ1|s1, ε0) and

P(ρt, εt−1|st, ρt−1) = P(ρt|st, ρt−1, εt−1)P(εt−1|st, ρt−1).

IV. APPROACH

As described earlier, the goal of this work is to take a

model of a task and make use of corrective demonstrations

to inform incremental changes to this model. We present

the Incremental Task Modification via Corrective Demonstra-

tions (ITMCD) algorithm, which uses the following two-step

method for incremental task model updates: (1) searching for

model updates defined by a set of candidate corrections and

(2) selecting the best model from this set. The high-level

depiction of this algorithm can be seen in Fig. 2.

We assume that there exists an original task model FSA.

Given a new situation in which this task model is not able

to be applied successfully, we want to allow an end-user to

provide corrective demonstrations that show how the task

should be achieved in this new setting. Given a set of such

corrective demonstrations, we generate a set of candidate

corrections to the task model, corresponding to structural

changes to the FSA: node modification, node addition, and

edge addition. A candidate correction is a set of decisions

over these edit types, covering a range of transformations

needed to correct different modeling errors. For example,

a small change such as modifying the initiation conditions

of a node, may only require modifying an existing node,

while learning new sub-skills would require additional nodes.

In this way, each candidate correction defines a search

direction in the space of possible FSAs. For each candidate

correction, we find an associated model update through a

search procedure that learns the parameters of a STARHMM

that is created by converting the FSA into a STARHMM. The

search is constrained to modifications specific to the candi-

date correction (e.g. allowing only node modification). We

use the corrective demonstrations to instantiate these models

through the Expectation-Maximization (EM) algorithm for

STARHMMs [13]. Then ITMCD chooses the most likely

correction through approximate Bayesian model comparison.

The remainder of this section details each of these steps.

A. FSA-STARHMM Conversion

In order to instantiate the model updates needed for

model comparison, the original FSA must be converted to

an equivalent STARHMM. The initiation and termination

classifiers of the FSA are modeled using logistic regression,

where ωinit
i ∈ R

d and ωterm
i ∈ R

d are the weights for the

initiation and termination classifiers and φ(st) ∈ R
d is the

feature vector for state st.

P
init
i (st) =

1

1 + e−ωinitT

i
φ(st)

(4)

P
term
i (st) =

1

1 + e−ωtermT

i
φ(st)

(5)

The dynamics of each primitive are represented as linear

Gaussian models

P
dyn
i (st+1|st,at) = N (Aist +Biat,Σi) (6)

where Ai ∈ R
n×n, Bi ∈ R

n×m, and Σi ∈ R
n×n are

specific to each primitive zi.The policy of each primitive

πi can be derived with any algorithm that can be trained on

trajectory segments (e.g. dynamic motion primitives [4]).

Each phase in the STARHMM indexes a primitive in the

FSA. Using the FSA models, we parameterize the termina-

tion and state transition distributions of the STARHMM as

P(εt|st+1, ρt = i) =

{

1− P
term
i (st+1) εt = 0

P
term
i (st+1) εt = 1

(7)

P(st+1|st,at, ρt = i) = P
dyn
i (st+1|st, at) (8)

thus directly mapping the termination classifier and dynamics

model of each primitive in the FSA to the termination

distribution and state transition distribution of the associated

phase in the STARHMM, respectively.

The initiation distribution P(ρt+1|st+1, ρt, εt = 1) takes

on different parameterizations depending on the edit type

during model learning and the structure of the FSA during

model selection. These parameterizations all take the follow-

ing form

P(ρt+1 = j|st+1, ρt, εt = 1) =

{

p j ∈ T (ρt)

0 j /∈ T (ρt)

p =
P
init
j (st+1)P(ρt+1 = j|ρt)

∑

k∈T (i) P
init
k (st+1)P(ρt+1 = j|ρt)

(9)

where T is a function that takes a phase and returns the set

of allowable transitions. Sections IV-B and IV-D define T
for the model learning and selection steps respectively. The

distribution P(ρt+1|ρt) defines the prior probability of transi-

tioning from ρt to ρt+1. In the general case, this distribution

can be estimated by keeping a running count of all transitions

seen. In the simplest case, the allowable transitions can all be

given an equal prior probability. With this parameterization,

the phase transition distribution for ρt can be constructed

from the initiation classifiers of the primitives in T (ρt).
In other words, the transition probabilities for primitives

in T (ρt) are governed by the initiation classifiers of all

primitives in T (ρt), while all primitives not in T (ρt) have

a transition probability of zero. With these definitions, a

traversal of the FSA corresponds to a ρ sequence assignment

in the STARHMM.

B. Candidate Correction Application

A candidate correction is defined as a set of decisions over

the following edit types: node modification, node addition,

and edge addition. Specifically, a candidate correction can

allow node modification; allow the addition of K ≥ 1
new nodes; and/or allow the addition of new edges. This

leads to a total of 4K + 3 possible candidate corrections.

Note that the candidate corrections do not specify which

subset of nodes/edges are being modified. The decisions over

the edit types define the free parameters Γ = {Θ, T} for

the model learning procedure, where Θ is the set of node

model parameters and T is a function that returns the set of

allowable transitions for each phase.

1) Edit Types: Each edit type defines its own set of

free parameters γ = {θ, τ}. In the following, κ is

the current number of nodes and the notation θi =
{ωinit

i ,ωterm
i ,Ai,Bi,Σi} is used to denote the set of

model parameters in a STARHMM for node zi. We describe

each edit type in detail below. The full set of free parameters

for a candidate correction is the union over the edit type

free parameters (Θ = θnmod ∪ θnadd ∪ θeadd and T (i) =
τfsa(i) ∪ τnmod(i) ∪ τnadd(i) ∪ τeadd(i), where τfsa(i) =
{i} ∪ children(i)).

• Node Modification: Allowing node modification sets

all current node model parameters as free (θnmod =
{θi|i ∈ {1, . . . , κ}}). If node modification is not

allowed, there are no free node model parameters

(θnmod = {}). In both cases, τnmod(i) = {}.

• Node Addition: Allowing node addition creates a set

of free parameters for each new node (θnadd = {θi|i ∈
{κ + 1 . . . , κ + K}}) and allows all transitions to

and from these new nodes. Concretely, if i ≤ κ then

τnadd(i) = {j|j ∈ {κ+ 1, . . . , κ +K}}; if i > κ then

τnadd(i) = {j|j ∈ {1, . . . , κ+K}}. If node addition is

not allowed, θnadd = {} and τnadd(i) = {}.

• Edge Addition: Allowing edge addition does not create

new free node model parameters (θeadd = {}) but

allows for potential transitions between all current nodes

(τeadd(i) = {j|j ∈ {1, . . . , κ}}). Several new edges

could be added, provided the demonstration dictates

their necessity. If edge addition is not allowed, θeadd =
{} and τeadd(i) = {}.

2) Model Learning: For each candidate correction, a new

STARHMM is instantiated with its parameters initialized

according to the FSA-STARHMM conversion procedure

outlined in Section IV-A. The union of the set of prior

demonstrations and the new set of corrective demonstrations

is used to train the STARHMMs according to the candidate

correction, using the Expectation-Maximization algorithm

for STARHMMs [13] to update the parameters Θ with

transitions governed by T .

C. FSA Updates

For each of the STARHMMs learned in the previous step,

the corresponding FSA can be constructed by first replacing

the initiation, termination, and dynamics models of all prim-

itives in the current FSA with the corresponding models in

the new STARHMM as defined in Section IV-A. Then, the

new STARHMM is used to infer the maximum likelihood

primitive sequence given the corrective demonstrations by

setting T according to the candidate correction (Section IV-

B) and running the Viterbi algorithm. The resultant sequence

is a combination of primitives in the current FSA and the

new learned primitives. After removing redundancies in the

sequence (e.g. 1, 2, 2, 2, 3, 3 → 1, 2, 3), a new FSA is defined

by iteratively merging the sequence with the current FSA

using a process similar to the one outlined by [8]: elements in

the sequence are merged with the nodes they index, with new

edges and nodes defined through the unmerged elements. As

an example, suppose that the subsequence 2, 7, 4 appears in

counterbalance the increase in parameters.

3) Edge Addition Experiment: For the third experiment,

an initial model was constructed that can sort red blocks

but could only sort blue blocks if they were placed in the

gripper. An expert corrective demonstration was provided

that moved a blue block from the table to the blue bin

and returned the gripper to the start location. Then, ITMCD

Model Selection was used to select between two plausible

model updates: adding an edge from the grasp to sort blue

primitive or adding a new grasp blue primitive. The FSAs

used in this experiment can be seen in Fig. 5(c). The AIC

scores for each model are shown in Fig. 6(c). As can be seen,

ITMCD opted to add a new edge (RB) since the increase

in likelihood achieved when adding a new primitive wasn’t

enough to counterbalance the increase in parameters.

B. Robot Experiments

Having demonstrated the ability ITMCD Model Selection

to make use of corrective demonstrations appropriately in

simulation for node/edge addition and node modification,

next we validate the full ITMCD algorithm with an experi-

ment on a physical robot.

1) Platform: The demonstrations were gathered on the

Poli mobile manipulator through kinesthetic teaching, see

Fig. 1. Poli has a pan/tilt head with a Kinect v2 for perception

and a 6 degree-of-freedom (DoF) Kinova JACO arm with

a Robotiq 2-finger adaptive gripper. The arm is gravity

compensated to aid in gathering kinesthetic demonstrations.

2) Task: The robot learns to pour from a pitcher to a mug

and return the pitcher to the table upon completion (Fig. 1).

The pitcher can be in one of two conditions: lid closed or lid

open. Under the closed condition, the lid must be removed

before the pouring can continue. This creates a need for

correction, since the robot first learns its model of the task

having only seen the lid open. Thus when encountering a

closed lid, there is need for a corrective demonstration. We

evaluate the ability of ITMCD to successfully modify the

initial model to account for this new portion of the skill.

The state space of this environment consists of the pair-

wise distances between the gripper e, pitcher p, and mug m;

the vertical distances between the table t and the gripper,

pitcher, and mug; 3 histogram features h = (h0, h1, h2)
over the dot product between the pitcher normals and table

normal; and the distance between the gripper fingertips k:

S = (‖e− p‖, ‖e−m‖, ‖p−m‖, ‖t− g‖z, ‖t− p‖z, ‖t−
m‖z,h, k). The action at each time step is the gripper

velocity with respect to both Cartesian coordinates and the

fingertip distance: A = (vgx, v
g
y , v

g
z , v

g
k).

3) Data Collection: We collected a set of 5 demonstra-

tions of the full pouring task under the closed lid condition.

From this we created a set of 5 initial demonstrations of the

scenario where the lid is already open, by manually trimming

each demonstration to start after the lid has been opened.

Then each of the 5 full demonstrations can be consid-

ered corrective demonstrations to a model learned from the

trimmed demonstrations that have never seen the closed lid

condition. These set of demonstrations were used to construct

25 datasets by selecting sets of 4 initial demonstrations and

4 corrective demonstrations.

4) Results: For each of the 25 datasets, the initial trajec-

tories with the already open lid were used to construct an

FSA, using the second of the two methods outlined in IV-E.

The corrective closed lid trajectories are then passed as input

to ITMCD. All 25 experimental conditions resulted in node

addition. The resultant FSA models fall into 3 categories:

• Correct: chain of new primitives for lid removal (4/25)

• Partially correct: correct update if one sequence is

removed during graph construction (9/25)

• Incorrect: loops in graph due to primitive confu-

sion/repetition (12/25)

Some examples of correct and incorrect updated FSAs can

be seen in Fig. 7. Though the correct models always add

primitives to the beginning of the chain, different numbers

of nodes are added.

Upon inspecting the demonstration sets that result in cor-

rect vs. partial vs. incorrect updates, we find a pattern. Recall

that our initial demonstrations set is created by trimming the

longer closed-lid corrective demonstrations. We find that if

the corrective closed-lid demonstrations represent the same

set of demonstrations trimmed to create the initial open-lid

demonstrations, a successful model update is achieved 4 out

of 5 times. If the corrective closed-lid demonstrations contain

one demonstration that was not used to construct the open lid

set, the resultant model either results in primitive confusion

(12/21) or can be corrected if this one demonstration is

removed (9/21). This suggests a bias in the model towards

classifying small changes in the trajectories as part of a new

primitive. Given that ITMCD achieves good performance

if the modeled segments of the corrective demonstrations

comply with the current task model, its overall performance

could be improved by increasing the generalizability of

the learned primitives. Explicitly modeling the execution

trajectories over time, as opposed to single time step updates

encoded in the dynamics, could be one way to achieve this.

VI. CONCLUSION

As robots enter unstructured real-world environments, they

will require a way to incrementally update and adapt their

task models in order to account for unforeseen scenarios.

We introduce the Incremental Task Modification via Cor-

rective Demonstrations (ITMCD) algorithm that discovers

such model updates through iterative constrained search and

selection. Given corrective demonstrations, model updates

are found that make specified changes to the task model,

after which the best among these updates is automatically

selected for incorporation into the original task model. In this

work, we evaluated ITMCD Model Selection with simulated

tasks and began an investigation of the full algorithm within

a real-world task designed to induce node addition.

We showed that given demonstrations of un-modeled

behavior, ITMCD Model Selection chooses the simplest task

model that fits the demonstrations. This then served as an

update to the original task model. Each of the experiments

resulted in the selection of the simplest good-fit model. Thus,

	Introduction
	Related Work
	Background
	Finite State Automaton
	State Transition Auto-Regressive Hidden Markov Model

	Approach
	FSA-STARHMM Conversion
	Candidate Correction Application
	Edit Types
	Model Learning

	FSA Updates
	Model Selection
	Initial FSA Construction
	User-Defined
	Automated

	New Primitive Initialization

	Experiments
	Simulation Experiments
	Node Addition Experiment
	Node Modification Experiment
	Edge Addition Experiment

	Robot Experiments
	Platform
	Task
	Data Collection
	Results

	Conclusion
	References

