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Abstract—Learning from demonstration algorithms, such as
Inverse Reinforcement Learning, aim to provide a natural mecha-
nism for programming robots, but can often require a prohibitive
number of demonstrations to capture important subtleties of a
task. Rather than requesting additional demonstrations blindly,
active learning methods leverage uncertainty to query the user
for action labels at states with high expected information gain.
However, this approach can still require a large number of labels
to adequately reduce uncertainty and may also be unintuitive,
as users are not accustomed to determining optimal actions
in a single out-of-context state. To address these shortcomings,
we propose a novel trajectory-based active Bayesian inverse
reinforcement learning algorithm that 1) queries the user for
critiques of automatically generated trajectories, rather than
asking for demonstrations or action labels, 2) utilizes trajectory
segmentation to expedite the critique / labeling process, and
3) predicts the user’s critiques to generate the most highly
informative trajectory queries. We evaluated our algorithm in
simulated domains, finding it to compare favorably to prior work
and a randomized baseline.

I. INTRODUCTION

Robots have successfully been used to automate tasks

such as manufacturing, in which the environment is strictly

controlled. However, as automation begins to expand to homes

and less structured workplaces, it is not feasible for robotics

engineers to program general-purpose robots to perform highly

variable tasks in many different environments. In response to

this challenge, recent learning from demonstrations (LfD) [4]

algorithms aim to provide an intuitive interface that allows

end-users to program robots without the use of code or expert

knowledge. Inverse Reinforcement Learning (IRL) is a form

of LfD that focuses on recovering the underlying reward

function that generates an expert’s demonstrations [1]. Using

reinforcement learning in conjunction with this learned reward

function typically provides superior generalization compared

to supervised policy learning, as it captures the underlying

intention of the demonstrator, which transfers well to unseen

states and environments.

A significant problem for existing IRL algorithms is that

they often require a large number of demonstrations to be

robust, while at the same time, it is difficult for users to

determine what types of demonstrations are most informative

to show the robot. Active learning is a framework in which

the learning agent selects its own input data, leveraging

uncertainty and expected information gain. A closely related

active IRL technique [15] allows a robot to query the user

Fig. 1: Proposed active learning process with an example showing
a Toyota Human Support Robot (HSR) interacting with a human
user by proposing a trajectory and updating its belief over reward
functions, leveraging the labeled segments.

for demonstrations at states with highest uncertainty over

actions, which can still require substantial human effort and

is unintuitive for certain types of problems where it is hard to

determine the optimal action at a single out-of-context state.

It is also desirable to have a method that can work when the

user does not understand the action space of the robot, or is

not physically present to provide additional demonstrations—

for example, a robot encountering an error while deployed

may contact a remote call center for assistance. Finally, the

algorithm should minimize the amount of human feedback

required, in order to reduce user burden. To address these

shortcomings, we propose a novel trajectory-based algorithm,

Active Reward learning from Critiques (ARC).

As shown in Figure1, the proposed method automatically

generates a trajectory per interaction with an user, which the

user is then asked to critique by marking segmentation points

along the trajectory and labeling the resulted segments. Instead

of asking the user to critique the trajectory as a whole, our

method allows the user to segment the trajectory into good

and bad sections, since trajectories are rarely purely optimal

or pessimal. This approach enables users to understand actions



in the context of a trajectory, while also allowing for the

collection of many state-action labels from a small number

of segmentation points. By proposing trajectories and being

able to leverage both positive and negative critiques, ARC

also allows undesired behaviors to be addressed explicitly

during learning. To generate trajectories that are likely to result

in high information gain, ARC builds on Bayesian Inverse

Reinforcement Learning (BIRL) [18], which samples from a

belief distribution over possible reward functions under a given

set of demonstrations. These reward samples can be used to

predict an expected segmentation of any given trajectory, and

in turn, predict the expected change in the reward function

distribution, and thus the information gain that will result from

the query. While exactly finding an information-maximizing

trajectory is infeasible in practice, we present an approximate

algorithm for doing so, and show that it compares favorably

to prior work and a random baseline in terms of policy loss,

data efficiency, and required labeling effort.

II. RELATED WORK

Inverse Reinforcement Learning (IRL), a subtype of Learn-

ing from Demonstration [4], is the process of inferring a

reward function from observed behavior [1]. In contrast to

approaches that aim to directly mimic the expert’s behavior,

such as max margin planning [19], IRL algorithms learn a

reward function that describes the task and therefore is often

transferable to new environments. However, recovering the

exact reward function is an ill-posed problem since many

reward functions generate the same optimal policy, including

a reward function that is zero at every state. Abbeel and

Ng [1] use a max-margin algorithm to match the feature

counts between the expert’s policy and the learning agent’s

policy. Given samples from the expert’s policy, there are

many policies matching the feature counts. To address the

ambiguity in choosing policies, Ziebart et al. [22] employed

the principle of maximum entropy to find a reward function

that maximizes the entropy of the probability distribution over

paths. However, these feature-count based techniques do not

directly address the potential sub-optimality of demonstrations

and cannot work with partial trajectories.

Bayesian Inverse Reinforcement Learning (BIRL) was first

proposed by Ramachandran & Amir [18] as a principled

way of approaching IRL, casting the ill-posed problem into

Bayesian framework. In BIRL, demonstrated state-action pairs

are each used as independent evidence to update a posterior

distribution over the space of reward functions. Choi & Kim

[7] suggested to use a Maximum a Posteriori (MAP) estima-

tion instead of taking the mean of the reward distribution as a

more accurate estimate of the reward function. Our proposed

method transforms BIRL into a learning from critiques (LfC)

method and also leverages both positive and negative samples

to address data-efficiency.

Lopes et al. [15] built an active sampling (AS) algorithm

based on BIRL that enables the robot to query the expert for

demonstrations at states where the entropy over the distribution

of action probabilities is high. Cohn et al. [9] proposed to

use myopic expected value of information as the measure for

selecting action queries instead of policy entropy. Our work

is closely related to that of Lopes et al. [15] and Cohn et

al. [9]. However, comparing to the two, our method is more

data-efficient with the same amount of human effort since

it generates a sequence of actions as its query instead of

asking for individual demonstrations at out-of-context states.

Additionally, ARC reasons about information gain directly

over the space of possible reward functions instead of pol-

icy representations or expected values. While many reward

functions will generate the same optimal policy, the size of

the set of all possible reward functions will not increase as

more evidence (demonstrations) are provided. Therefore, we

expect the entropy of the probability distribution over all

possible reward functions to decrease as more informative

demonstrations are provided.

There also exists work on reducing teaching burden by

leveraging human feedback outside the context of IRL. Cak-

mak and Thomaz [5] studied how to design effective robot

learners from a human-robot interaction perspective. Their

results in part support our design choice of using label queries

instead of asking for demonstrations in an effort to reduce

teaching burden. Argall et al. [3] presented an approach

to incorporate human critiques at the policy level into an

1-Nearest-Neighbor-based LfD algorithm. In the context of

Reinforcement Learning (RL), Judah et al. [11] enabled an

agent to learn a parameterized policy from expert’s critiques by

encoding critiques into reward values. The TAMER framework

by Knox et al. [12] provides a way of interactive policy shap-

ing by explicitly addressing the credit assignment problem.

Preference-based learning has also been widely used to reduce

teaching burden. Christiano et al. [8] trained a deep network

to predict rewards using feedback of human’s preference over

pairs of trajectory segments. Sadigh et al. [10] proposed a way

to learn reward functions that encode a human’s preferences

for the behavior of a dynamical system by generating pairs of

candidate trajectories using different feature weights. However,

both trajectories may contain different sub-optimal segments,

making it difficult to compare them as whole trajectories.

III. BACKGROUND

A. Markov Decision Processes

In general, a Markov Decision Process (MDP) is a tuple

(S,A, T,R, d0, γ), where: S is a set of states; A is a set of

actions; T : S × A × S → [0, 1] is a transition probability

function; R : S → R is a reward function, with absolute

value bounded by Rmax; d0 is a starting state distribution and

γ ∈ [0, 1) is the discount factor.

A deterministic policy is a mapping from state to action

π : S → A. The value of a state given a policy is calculated

by:

V π(s) = E[

∞∑

t=0

γtR(st)|s0 = s, π] (1)

The Q-function is defined to describe values of state-action



pairs according to some policy:

Qπ(s, a) = R(s) + γEs′∼T (s,a,∗)[V
π(s′)] (2)

Bellman equations are used to describe a recursive rela-

tionship between values of neighboring states and state-action

pairs:

V π(s) = R(s) + γ
∑

s′

T (s, π(s), s′)V π(s′) (3)

Qπ(s, a) = R(s) + γ
∑

s′

T (s, a, s′)V π(s′) (4)

A policy π is optimal if and only if:

∀s ∈ S, π(s) ∈ argmax
a∈A

Qπ(s, a) (5)

B. Bayesian Inverse Reinforcement Learning

In the formulation of BIRL by Ramachandran & Amir

[18], we consider a Markov Decision Process without re-

ward function, denoted as MDP/R, (S,A, T, d0, γ) and an

expert χ operating in the MDP. The expert χ is assumed

to be attempting to maximize the total accumulated reward

according to a reward function R, using some stationary

policy. The IRL agent receives a set of demonstrations D =
{(s0, a0), (s1, a1)...(sk, ak)}. Since the policy used by χ is

assumed to be stationary, we can make the independence

assumption that:

Pr(D|R) =

k∏

i=0

Pr((si, ai|R)) (6)

According to equation (5), the reward-maximizing actions are

equivalent to the actions with highest Q-values. Therefore, the

likelihood of an action (si, ai) given a reward function R can

be modeled as:

Pr((si, ai)|R) =
1

Zi

eαQ(si,ai,R) (7)

where α is a parameter representing the degree of confidence

we have in χ’s ability to choose the optimal actions [18].

Therefore, the likelihood of the entire evidence can be ex-

pressed as:

Pr(D|R) =
1

Z
eα

∑
i Q(si,ai,R) (8)

With Bayes theorem, the posterior probability of reward func-

tion R is:

Pr(R|D) =
Pr(D|R)Pr(R)

Pr(D)
=

1

Z ′
eα

∑
i Q(si,ai,R)Pr(R)

(9)

While the normalizing constant Z ′ is hard to compute, the

Markov Chain Monte Carlo (MCMC) sampling algorithm only

needs the ratios of probability densities. Therefore, BIRL

outputs an unnormalized probability distribution of reward

functions, from which we can extract a MAP estimate of the

reward function R or the mean policy π̄.

IV. METHODOLOGY

First, ARC proposes a trajectory to a human expert, who

will segment the trajectory into good and bad contiguous

segments. The expected information content of the trajectory

will be judged by examining the expected change in the

agent’s belief over reward functions. The belief distribution is

approximated using the MCMC sampling algorithm in BIRL.

BIRL considers each state-action pair separately so it is able

to learn from partial trajectories and segments, unlike feature-

count based methods [1][22] that require full trajectories.

A. Learning from Negative Examples using BIRL

Given that the trajectories will be segmented into good and

bad parts, we modified BIRL so that it can leverage both

positive and negative samples of the expert’s policy. In an

MDP, for a particular state si, an action (si, ai) is either

optimal or not, though multiple actions can be optimal. We

assume the expert has been instructed to label the optimal

actions as good and sub-optimal actions as bad but these

labels may be corrupted with noise. As implied by the Bellman

equations, the set of optimal actions O(s) at each state s is:

O(s) = argmax
a∈A

Qπ(s, a) (10)

Following the original BIRL formulation [18], given a

reward function R, the probability that the action belongs to

O(s) is exponentially higher if it has a larger Q(s, a) value.

We assume that the expert’s policy is stationary and optimal

under some reward function, so that demonstrations labeled

as good all belong to O(s), and those labeled as bad do not.

Therefore, probabilities that a state-action pair is good or bad

under some reward function R can be formulated as:

Pr(ai ∈ O(si) | R) =
1

Zi

eαQ(si,ai,R) (11)

Pr(ai /∈ O(si) | R) = 1−
1

Zi

eαQ(si,ai,R) (12)

The value of parameter α quantifies the degree of confidence

or importance of a particular state-action pair (si, ai) being

optimal or not. This value of α can be approximated—for

example, with expectation maximization [21]—but this is not

the focus of this work. We denote the set of good trajectory

segments as D+ and the set of bad trajectory segments as D−.

The likelihood of the entire evidence is then expressed as:

Pr(D+, D− | R) =
∏

(si,ai)∈D+

Pr(ai ∈ O(si) | R)

∏

(sj ,aj)∈D−

Pr(aj /∈ O(sj) | R) (13)

The algorithm we use to generate samples of reward func-

tions from the posterior using D+ and D− is GenerateSamples

as shown in Algorithm 1, which is modified from the Poli-

cyWalk algorithm of Ramachandran & Amir [18]. It takes the

likelihood function, an MDP/R, sets of positive and negative

evidence, a desired chain length and a step size for modifying



Algorithm 1 GenerateSamples(P , mdp, D+,D−,l,ε)

1: Randomly initialize reward vector R ∈ R
‖S‖

2: R chain[0] = R
3: π :=PolicyIteration(mdp,R)
4: i := 1
5: while i < l do

6: Randomly perturb R by step size ε and get R′

7: Compute Qπ(s, a,R′) for all (s, a) ∈ D+ ∪D−

8: π′ := PolicyIteration(mdp,R′, π)

9: if rand(0, 1) < min{1, P (R′,π′,D+,D−)
P (R,π,D+,D−) } then

10: R chain[i] = R′

11: R = R′

12: i := i+ 1
13: end if

14: end while

15: return R Chain

the reward functions as input, and outputs an array of sampled

reward functions. To reduce the autocorrelation in between the

samples obtained, only every 20th sample is used in practice.

B. Calculating Expected Information Gain

In order to compare sate-action pairs in terms of their

information gain, we need a measure for estimating how much

information the agent can obtain by updating some state-action

pair to be good or bad. It is desirable to have a measure that

captures the differences in belief distributions before and after

updating the optimality of a candidate state-action pair.

The Kullback-Leibler (KL) divergence [14] between two

distributions is widely used as a measure for information gain

in information theory [2]. The equation for computing the KL

divergence for two discrete distributions is:

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
(14)

KL divergence is asymmetric, since DKL(P ||Q) and

DKL(Q||P ) are not the same. While it is desirable to use

a symmetric measure as a distance metric, it is known that

the asymmetry of KL divergence helps to avoid local optima

during active learning processes [13]. Many other measures of

distance between two probability distributions [6] may also be

used here.

Since GenerateSamples only outputs a set of samples in

the MCMC chain, the KL divergence between the underlying

densities p and q on R
d is then estimated from the two sets of

samples {X1, ..., Xn} and {Y1, ..., Ym} by a method based

on k-Nearest-Neighbor distances [20] using the following

equation:

D̂n,m(p||q) =
d

n

∑

i

log
νk(i)

ρk(i)
+ log

m

n− 1
(15)

where ρk(i) and νk(i) denotes the distance from Xi to its

k-NN in {Xj}j 6=i and {Yj} respectively.

Divergence between the updated and the original distribu-

tion cannot be directly used as the expected information gain.

For instance, updating some state-action pair, which is believed

with 0.99 probability to be good, as bad will certainly shift

the distribution by a lot, while there is little chance to actually

update it to bad. Therefore, the algorithm also weights these

distances by the probabilities of the state-action pair being

optimal or not based on current belief.

Given the IRL agent’s current belief of reward functions

Be(R), the probability of a state-action pair to be labeled as

good or bad is calculated using:

Pr(ai ∈ O(si) | Be(R)) =
∑

Rk

Pr(Rk | Be(R))Pr(ai ∈ O(si) | Rk) (16)

Pr(ai /∈ O(si) | Be(R)) =
∑

Rk

Pr(Rk | Be(R))Pr(ai /∈ O(si) | Rk) (17)

The expected information gain by updating one state-action

pair to be good or bad is then expressed as:

G+(si, ai) = G(D+ ∪ (si, ai) | Be(R))

= Pr(ai ∈ O(si) | Be(R))D(Be′(R)||Be(R)) (18)

G−(si, ai) = G(D− ∪ (si, ai) | Be(R))

= Pr(ai /∈ O(si) | Be(R))D(Be′(R)||Be(R)) (19)

Algorithm 2 GetInfoGain((s, a), P , mdp, D+, D−, l, ε)

1: D+
tmp := D+ ∪ (s, a)

2: D−
tmp := D− ∪ (s, a)

3: Rwd := GenerateSamples(P,mdp,D+, D−, l, ε)
4: Rwd+ := GenerateSamples(P,mdp,D+

tmp, D
−, l, ε)

5: Rwd− := GenerateSamples(P,mdp,D+, D−
tmp, l, ε)

6: Rwd total := Rwd ∪Rwd+ ∪Rwd−

7: Initialize belief arrays Be,Be+, Be−
8: Initialize probabilities P+ := 0, P− := 0
9: for each r ∈ Rwd total do

10: π :=PolicyIteration(mdp, r)
11: Compute Qπ(s, a, r) for all (s, a) ∈ D+ ∪D−

12: Be(r) := P (r, π,D+, D−)
13: Be+(r) := P (r, π,D+

tmp, D
−)

14: Be−(r) := P (r, π,D+, D−
tmp)

15: Initialize normalizing factor Z := 0
16: for ai ∈ A do

17: Z := Z + eαQ(s,ai)

18: end for

19: P+ := P+ +Be+(r) e
αQπ(s,a,r)

Z

20: P− := P− +Be−(r)(1− eαQπ(s,a,r)

Z
)

21: end for

22: Normalize Be,Be+, Be−
23: Gain total = D(Be+||Be)P+ +D(Be−||Be)P−

24: return Gain total



GetInfoGain, as presented in Algorithm 2 1, returns the es-

timated information gain of a specific state-action pair, which

is calculated as the sum of the weighted KL divergences.

(a) True Rewards (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) Iteration 4 (f) Resulting Rewards

Fig. 2: An illustrative example in a 5×5 gridworld demonstrating
actions with maximum expected information gain explore unseen
features. Each grid cell has only one of the 5 features. (green: average
rewards - darker is larger; cyan: known good actions; gray: known
bad actions; orange: actions with max expected info gain)

Iteration Expected Information Gain Entropy Policy Loss

0 - - 60%

1 4.2753338603 231.58 32%

2 4.2614594772 159.88 28%

3 4.9553412646 151.70 24%

4 5.2887902710 150.42 0%

TABLE I: Info Gain for Action Queries in Fig. 2

Figure 2(a) shows an example of 5×5 gridworld with a

simple layout of rewards. The process started with two initial

demonstrations and Figures 2(b)(c)(d) and (e) present the

recovered mean rewards and the corresponding action with

the maximized expected information gain in 4 consecutive

iterations running the algorithm. The selected actions tend

to explore a variety of states with different rewards, which

agrees with our intuition for selecting informative actions.

Table I shows the entropy of the distribution is decreasing over

iterations and the policy loss inferred by the mean rewards also

decreases over iterations.

C. Generating Informative Trajectories

By leveraging the above technique for computing the infor-

mation gain of single state-action pairs, trajectories of length

N can be constructed in various ways. To find the trajectory

with the maximum expected information gain among all tra-

jectories of length N starting at some state-action (s0, a0), we

need to evaluate O(AN ) trajectories, where A is the number of

possible actions at every time step, which will quickly become

intractable as the dimensionality of problem space increases.

A greedy approach will be more efficient than brute force

search. However, trajectories generated by selecting actions

1In our implementation, samples for the base distribution are only obtained
once before calling the GetInfoGain function for a specific state-action pair.

greedily without any constraint can be arbitrarily shaped

(such as oscillating between states) and unnatural for humans

to effectively evaluate. Therefore, instead of generating a

trajectory action by action, we sample candidate trajectories

from the optimal policies of sampled reward functions. By

doing so, actions in a trajectory are all generated from a

single, consistent reward function, so that they will be more

interpretable to a human in terms of features. The expected

information gain of each of these trajectories is estimated

by iteratively labeling each action with their expected label

and the trajectory with maximum expected information gain

is selected as the query to the expert for critiquing. In order

to estimate the information gain of a state-action pair that is

not the first one in the trajectory, all prior state-action pairs

are added to the demonstration sets with their expected label

given current belief. Given a trajectory p of length k, its total

information gain is estimated using:

G(p) =
∑

(si,ai)∈p

βiG(si, ai) (20)

where β ∈ [0, 1) is the discount factor for a bias toward

higher information gain at the beginning of the trajectory since

the later state-action pairs’ information gains are estimated

with accumulated assumptions. β is set to be 0.9 in all our

experiments.

V. EXPERIMENT SETUP

We perform experiments in two different tasks: Navigate-

In-Gridworld task and Place-An-Object task. In the first task,

grid cells are initialized with different numbers of features with

randomized weights so that we can easily test the algorithm

with problems of varying complexity. In the second task, the

problem domain is structured in a way that all the state features

are interpretable so that we can examine the trajectories

generated by the algorithm qualitatively.

In the Navigate-In-Gridworld task, 8×8 gridworlds with

different number of features are used. For ground-truth re-

wards, each grid cell is randomly assigned a feature vector

with binary values that indicate which features are present in

this cell. The reward is calculated as a linear combination of

features, as assumed by prior work [1], of which the weights

are randomly generated as well. The sizes of the feature

vector used are 8, 16, 32 and 48. The MDP/R problem we

formulated is (S,A, T, d0, γ) with states ||S|| = 64 (each cell

is a unique state), actions A = {Up,Down,Left,Right}, T
is a deterministic transition matrix, and γ is set to be 0.95
favoring potential future rewards.

In the Place-An-Object task, we assume that the robot is

learning how to efficiently place an object relative to two

objects currently on the table. As shown in Figure 3, possible

placement locations around the two objects are detected as

different states that the robot’s end-effector can move to. 32

binary features are predefined to describe the position of a

state and its distance relative to the two existing objects (e.g.

1-step left to object A). The robot can move its end-effector

to any start state, from which it will be able to move to



(a) Simulated Scene (b) Detected States

Fig. 3: Setup for Place-An-Object task in simulation

any adjacent states (in eight discrete directions) or stay at the

current state at each step. We defined four different ground-

truth rewards (shown in Figure 5(a)(b)(c)(d)) to see how the

queries generated by the system would differ. We designed

one of the ground truth reward functions 5(d) so that there are

equally optimal actions in several states.

For both tasks, we used the optimal policy under the ground-

truth rewards as the expert segmenting and labeling the gener-

ated trajectories. 100 different experiments were conducted for

each feature size in the Navigate-In-Gridworld task, and 100

runs of the same experiment setup were performed for each

of the four ground truth reward for Place-An-Object task. The

convergence rate of BIRL is sensitive to the confidence factor

α in equations (7),(8) and (9). Since we are using the optimal

oracle, we set α to be relatively high at 200 so that the BIRL

processes with full information for a 8×8 gridworld converge

quickly before 12000 samples. In more realistic cases with

noise, the value of α can be adjusted for each state-action

pair by measuring its consistency with other demonstrations.

To test the performance of the algorithm, we compare

ARC with a baseline uniform sampling algorithm (Random)

and an active sampling algorithm (AS) by Lopes et al. [15],

which asks for demonstrations at states with high entropy

over actions. ARC and Random each proposes a trajectory of

length at most N per iteration. Since the active sampling (AS)

algorithm is not designed to generate trajectories, we instead

for each iteration select N states with maximum entropies and

ask the expert for demonstrations at those states.

In most domains, there are usually more sub-optimal actions

than optimal ones in any given state, so that demonstrations,

or positive labels, provide more valuable information than

negative labels. Therefore, we expect the AS algorithm, which

asks for a demonstration at selected states, to perform better

than ARC. Moreover, the way our method estimates informa-

tion gain is based on the system’s current belief, therefore,

the estimations will only become more accurate as more

evidence is provided. Hence, our hypothesis is that, in terms

of policy loss per iteration, ARC will reach a lower policy

loss faster than uniform sampling and will catch up with the

performance of the active sampling algorithm given enough

evidence. However, if we consider labeling a segmentation

point and providing a demonstration cost the same amount of

labeling effort, ARC will outperform AS in terms of policy

loss per labeling effort.

VI. RESULTS

A. Qualitative Analysis

(a) Query 1 (b) Labeled 1 (c) Query 2 (d) Labeled 2

Fig. 4: Example of two trajectory queries and their feedback in 8×8
gridworlds with randomly generated features (green: true rewards;
cyan: good actions; gray: bad actions; orange: trajectory query )

Figure 4 shows two examples of generated trajectory queries

from ARC in the Navigate-In-Gridworld task and the corre-

sponding true labels for the generated trajectories. For these

queries, the user only needs to provide a few segmentation

points, one and three respectively, and the algorithm obtains

eight labels in total per iteration. Among all the experiments

for the Navigate-In-Gridworld task, the average segmentation

points for trajectories of length 8 is 2. In practice, task domains

normally have more structured layout than randomly generated

gridworlds, so it is reasonable to expect that trajectories

generated by the algorithm won’t consist of many small

fragments. In the cases where we have to address the issue

of fragmentation, it would be straightforward to introduce

a penalty term when computing expected information gain,

where an action with a different expected label than the

previous action will produce a cost.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5: (a)(b)(c)(d) are selected ground truth rewards for Place-An-
Object task; (e)(f)(g)(h) and (i)(j)(k)(l) are their corresponding 2nd
and 3rd ARC query distributions (green: reward - darker is larger;
orange: actions of the query - the size of the arrow is proportional to
its relative frequency among all trajectories across 100 experiments)

Figure 5 presents the four selected ground truth rewards

and their corresponding second and third query distributions

on the discretized 2D map for the Place-An-Object task.



Without initial demonstrations, first queries are random, and

therefore not shown. Once some state-action pairs are labeled

accordingly, the system can then make intelligent queries. As

Figure 5 shows, the second and third queries by ARC are

mostly concentrated around the area with high rewards. By

exploring around states with high rewards, the algorithm can

then quickly learn which features should be weighted higher

than others.

B. Performance Evaluation
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Fig. 6: Averaged policy losses (with 95% confidence bars) after 4
(left graph) and 12 (right graph) iterations over 100 different 8×8
gridworlds

Figure 6 shows the averaged policy loss after 4 and 12

iterations of the three algorithms in 8×8 gridworlds with

different number of features. The larger the feature size is, the

more complex the randomly generated domain becomes. The

width of the gap between averaged policy losses of ARC and

AS after 4 iterations is similar to that of ARC and Random,

however, after 12 iterations, the averaged policy losses of ARC

are very close to that of the AS algorithm and are lower

in domains with smaller features. Since the information gain

estimate of ARC only becomes accurate if the current belief

distribution is somewhat accurate, ARC therefore performs

better than AS in simpler domains.
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Fig. 7: Averaged policy losses in 100 different 8×8 gridworlds with
48 features and queries of size 8

Figure 7 specifically presents performances of the three

algorithms in 8×8 gridworlds with 48 features. Figure 7(a)

shows that, per interaction with the expert, ARC outperforms

uniform sampling by a large margin and it slowly catches

up with the performance of the AS algorithm. Figure 7(b)

shows the performance of the three algorithms in terms of

per labeling effort 2 and under this criteria ARC outperforms

the other two algorithms since ARC’s path queries on average

each contains only 2 to 3 segments. Therefore, we believe that

ARC is more efficient in terms of reducing teaching burden.

The above results agree with our hypothesis that ARC, with

less teaching effort, will achieve the performance of the active

sampling algorithm. At the same time, the more accurate the

current belief model becomes, the more accurate the expected

information gains are predicted by ARC.
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(a) Policy loss under varying noise
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Fig. 8: Averaged policy losses of ARC under different noise ratios
and α vlaues in 100 different 8×8 gridworlds with 16 features and
queries of size 8

Figure 8 shows how noise could affect the performance of

ARC and the performance of ARC can improve by lowering

the confidence factor α.
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Fig. 9: Average Performance on Place-An-Object Task

Figure 9 shows the policy losses and the entropy over reward

functions for all three algorithms in Place-An-Object task.

In this domain, we see that ARC outperforms the other two

algorithms in terms of efficiency in reducing policy loss and

reducing the entropy over reward functions after five iterations,

with very high confidence. This is mainly because the domain

is relatively small so that just a few labels can lead to a roughly

accurate model for estimating information gain. Besides, one

of the ground truth reward functions leads to multiple equally

optimal actions in certain states, where the AS algorithm won’t

be able to sample all optimal actions 3 but ARC can.

2Here we consider providing a segmentation point, a demonstration or a
label as a unit of labeling effort. Providing a demonstration at a previously
demonstrated state, or a label to a previously labeled action, is considered a
tenth of the original labeling effort.

3This is also the reason why the entropy over reward functions for AS went
higher after 7 iterations.



VII. CONCLUSION

In this paper, we presented the ARC algorithm and dis-

cussed the major advantages of our proposed method com-

paring to prior work, including data efficiency, reducing hu-

man effort, enabling remote learning and allowing explicit

exploration of bad behaviors. ARC uses Bayesian inverse

reinforcement learning to intelligently generate trajectories

with maximum information gain, asks a user to segment the

trajectory into good and bad fragments and leverages these

labeled state-action pairs to update its belief over reward func-

tions. Experiments have shown that ARC can actively reduce

uncertainty in Bayesian IRL, leading to reward functions that

produce better policies. We analyzed the results qualitatively

and quantitatively. Our results imply that directly reasoning

with the belief over reward functions is a good measure of

information gain, which allows the system to quickly not only

reduce its policy loss but also increase its confidence over

the reward function distribution. It is also shown that using

our trajectory-based active learning algorithm, an agent learns

more efficiently than uniform sampling and can achieve the

performance of the alternative active sampling algorithm with

much less labeling effort.

VIII. FUTURE WORK

One practical concern with ARC, as with all BIRL-based

algorithms, is the computational cost. ARC requires running

two MCMC processes per state-action pair from all the

candidate queries and each and every step of the MCMC

process is solving an MDP. Therefore, we are exploring

different methods for efficient MCMC sampling such as using

Hamiltonian dynamics [16] and for fast approximation of an

MDP’s value function such as Non-Parametric ALP [17]. At

the same time, to better model human’s capability in critiquing

robot trajectories, we also plan to conduct an in-depth user

study where human users will interact with a mobile robotic

platform and teach it to perform various tasks by segmenting

and labeling trajectories. In order to conduct such experiments

with human teachers, we will also need to design an interface

for efficient communication between human and the robot.
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