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Abstract— The visual difference between outcomes in many
robotics tasks is often subtle, such as the tip of a screw
being near a hole versus in the hole. Furthermore, these small
differences are often only observable from certain viewpoints or
may even require information from multiple viewpoints to fully
verify. We introduce and compare three approaches to selecting
viewpoints for verifying successful execution of tasks: (1) a
random forest-based method that discovers highly informative
fine-grained visual features, (2) SVM models trained on features
extracted from pre-trained convolutional neural networks, and
(3) an active, hybrid approach that uses the above methods for
two-stage multi-viewpoint classification. These approaches are
experimentally validated on an IKEA furniture assembly task
and a quadrotor surveillance domain.

I. INTRODUCTION

In recent years, great leaps have been made toward learn-

ing algorithms that produce robust robotic control policies

that generalize across differing situations [1], [2], [3], [4].

However, while these methods provide good behavior in

expectation, they typically do little to verify correct behavior

or task completion in any given situation. Future robotics

applications will require behaviors that are not only reliable

in expectation, but also verifiable: safety-critical tasks must

be completed with a high degree of assurance; robots that

work with populations that rely on them, such as the disabled

or elderly, must be dependable; manufacturing robots that

chain together many behaviors, such as in an assembly task,

must check their work at each step, or else face multiplicative

error rates as the number of steps increase. Given the ubiquity

of visual sensors in robotics, in this work we focus on

determining the outcomes of tasks, or any latent visual

concept, via image data.

Unfortunately, visual task outcome classification is dif-

ficult for several reasons. First, only a small segment of

any given image may actually contain useful discriminative

information. If there are only small differences between

classes, the inter-class variance may be overwhelmed by

the intra-class variance. Furthermore, these small differences

may only be observable from certain viewpoints or may even

require information from multiple viewpoints to fully verify.

For example, a robot changing a tire, assembling a piece

of furniture, or boiling a cup of tea must pay attention to
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Fig. 1. The PR2 using a hand-held camera to view the table assembly task
(left) and an example view of a successful attempt (right).

Fig. 2. Images captured from 6 of the 19 viewpoints after a successful
attempt at table leg insertion. Bottom-right: the “generic” full-scene view.
The images are captured at the end of the task execution by the robot.

small, specific parts of each object of interest; it should be

able to precisely determine the alignment of the tire with

the car, ensure that the furniture pieces have been properly

attached to each other, or discern the subtle changes at

the surface of the water that are associated with boiling.

All of these features constitute only a small fraction of

the available information in the field of view (Fig. 1) and

their visibility can be highly viewpoint dependent (Fig. 2).

These observations are illustrated in Fig. 1 and Fig. 2 for

the furniture assembly task. In this paper, we propose to use

viewpoint selection techniques based on fine-grained image

classification to address both of these issues concurrently.

Our contributions are threefold: First, we introduce a fine-

grained viewpoint selection and failure detection algorithm

based on discriminative random forests, and empirically

show that semantically meaningful fine-grained details can

be discovered from a small number of examples in diverse

robotics tasks. However, this approach requires the rough

alignment of images from each viewpoint. Second, we over-

come this limitation by introducing an alternate viewpoint

selection approach that uses SVMs trained on features from a

pre-trained convolutional neural network (CNN). We demon-

strate that, somewhat surprisingly, the SVM+CNN approach

performs nearly as well as the random forest, despite the

fact that it does not require alignment, the features are not



optimized for the task, and that it is not an explicitly fine-

grained method. Third, we propose a novel active, two-stage

sequential viewpoint selection algorithm that can improve

performance in domains in which the optimal viewpoint is

context-dependent. We experimentally validate the proposed

algorithms in two substantially different domains—screw

insertion in a furniture assembly task and car break-in

detection using a quadrotor.

II. RELATED WORK

A. Failure Detection

To the best of our knowledge, our presented method is the

first that performs outcome classification (success or failure)

for general robotics tasks from real world 2D image data.

However, there is a rich history of failure detection methods

in robotics that leverage domain knowledge for specific tasks

such as navigation [5], [6] or that detect sensor errors rather

than behavioral failures [7], [8].

In robotic manipulation, one straightforward approach

simply looks for deviations outside of confidence bounds

relative to a nominal trajectory [9]. Nearest-neighbor clas-

sifiers over state information have been used to sequence

controllers [4], [10], which can be thought of as combined

outcome classification and error recovery. Other approaches

treat failure detection as a time-series classification problem.

One data mining approach searches for discriminative sub-

signals called shapelets [11], but is highly computationally

intensive even for relatively small amounts of data. Spatio-

Temporal Hierarchical Matching Pursuit [12] has been used

to assess grasp stability and recognize objects from tactile

data by learning sparse hierarchical features. Worcester et

al. [13] use visual depth sensors for online error detection

and correction during an assembly process by multiple

mobile robots. Our work focuses on using monocular 2D

image data to identify failures post task execution. Nguyen

et al. [14] use simple image features, i.e. dimensionality

reduction on concatenated image patches, from 2D images

and 3D registered point cloud data to learn classifiers which

determine where in 3D space manipulation behaviors for a

task will succeed. Previous methods have also combined

visual and force/torque sensing for error recovery during

manipulation [15]. While these approaches work with simple

visual features, such as surfaces of polyhedral objects, we

work with real images and general-purpose image features

to perform error detection.

B. Viewpoint Selection

Estimating optimal placement of cameras using machine

vision has been proposed for tasks such as inspection [16],

object recognition [17], human activity recognition [18], con-

trol and monitoring [19]. However, these methods typically

require a significant amount of prior knowledge of objects

to optimize the camera viewing angle, such as 3D object

models and pre-determined areas of interest. Leifman et

al. [20] proposed a viewpoint selection algorithm to detect

regions of interest on surfaces i.e. parts of an object that

would appeal to humans in general, whereas we look for

regions of interest to discriminate between task outcomes.

They focus on 3D mesh surfaces, while we consider a general

task space which could contain multiple objects as part of the

scene. The “next best view” problem [21], [22] has also been

investigated to select informative viewpoints for performing

3D reconstruction from 2D images.

In the most relevant work to ours, Kootstra et al. [23] rotate

a camera around an object to find stable keypoints that help

to construct a model of an object. These keyframes are then

leveraged to perform active viewpoint selection during the

object recognition phase. Similarly, Govender et al. [24] use

an active learning approach to collect images with unique,

high-information features until an object is recognized with

confidence above a set threshold. However, these approaches

are designed for object recognition rather than task outcome

classification and focus on objects with large inter-class

differences, rather than fine-grained classification.

Visual servoing techniques have been used for manipu-

lation and grasping [25], [26], [27], object tracking [27]

and navigation tasks for miniature mobile robots [28]. These

techniques use simple visual features, such as fixed patterns

or position based features of objects, and can move the visual

sensors anywhere in space to obtain these features. We sac-

rifice adaptability at the level of moving a camera anywhere

in free space for gaining generality in the visual space. We

care about the general information content obtained from real

images of fixed viewpoints to detect task failures.

III. APPROACH

Given visual data to observe a task from multiple view-

points, we propose to select the most suitable of those

viewpoints to determine whether the task was carried out

successfully or not. This viewpoint selection and subsequent

failure detection occurs in a task independent manner. The

only assumption however is that the viewpoints are at fixed

locations with respect to the task setup and the viewpoint

selection and subsequent failure detection occurs at the end

of task execution. In this section, we discuss two image

classification approaches for visually detecting task execu-

tion failures – a fine grained visual classification technique

(Section III-A) and another simple image classification using

deep neural network features (Section III-B). Section III-C

describes how we extend these techniques to determine the

most suitable viewpoint for failure detection. We use one

of two approaches to select the optimal viewpoint- a static

approach where the most suitable viewpoint is determined

apriori during training, or an active approach where the op-

timal viewpoint depends on the visual information available

from a particular execution of the task.

A. Fine-Grained Image Classification

To classify images, we use a fine-grained Random Forest

(RF) approach first introduced by Yao et al. [29]. Tradition-

ally, decision trees employ a weak classifier at each node

that operates on a global set of features. To capture the fine-

grained nature of this problem, Yao et al. use discriminative

decision trees, which employ a strong classifier (a support



vector machine/SVM in this case) at each node that operates

on features of an image sub-patch, also augmenting the state

space at each node with the decision values of all the parents

that it descended from.

However, this approach requires a search over a large,

dense sampling space—all possible image patches of arbi-

trary width and height at all possible locations. To make this

search tractable, the algorithm randomly selects a number

of patches at each node and trains a classifier on each of

them, finally selecting the best classification outcome using

an information gain criterion [30].

One advantageous property of random forests is the ability

to gain interpretable insight into classification results. Fol-

lowing Yao et al., we derive heat maps from the random

forest, as shown in Figure 4, that visualize the relative

importance of each pixel in classification. Each pixel weight

can be calculated by summing the SVM class probability for

a given class (the heatmaps for both classes tend to be nearly

identical, so we only show one) for all image patches that

include that pixel.

B. Image Classification with Pre-trained CNN Features

The recent success of convolutional neural networks

(CNNs) has shown them to be a state-of-the art technique for

image classification. CNNs provide an end-to-end learning

framework from images to output labels without engineering

features by hand, and have also been shown to work well

for transfer learning, by pre-training on very large datasets

and then fine-tuning them for smaller novel datasets [31]. If

datasets are not large enough for fine-tuning (roughly 200

images per class), then features can be extracted from pre-

trained networks (fully-connected layer activations before

the soft-max classification, for example), without any fine-

tuning. These features can then be used as input to classifiers

such as SVMs to work with the smaller dataset. We leverage

the richness of CNN feature layers in this manner by directly

using the weights from existing models like AlexNet [32],

VGGNet[33], GoogLeNet[34] and ResNet[35] on our small-

sized datasets.

C. Optimal Viewpoint Selection

We can discriminate among task outcomes from any

viewpoint using image classification techniques. However,

our goal is to select a viewpoint that maximizes the discrim-

inative power of the classifier. Rather than simply using a

standard viewpoint (such as a robot’s overhead view of a ma-

nipulation task), we introduce two methods for intelligently

choosing optimized viewpoints for a given task.

For both methods, we assume that the robot is able to

collect outcome-labeled training examples from n different

viewpoints for each of m trials or executions. These view-

points can be selected in any way, but ideally should be

chosen in a manner that does not require prior knowledge

about the task except only an approximate knowledge of the

positions of any object(s) of interests. This data can then be

used to train a classifier separately for each viewpoint, which

can further be used to select an optimized viewpoint in two

Algorithm 1: COMPUTE IOV finds the information op-

timizing view at training time, given multiple sets of

corresponding training images from each viewpoint.

Input: n : number of viewpoints

m : number of trials or executions

I = {fij s.t. i ∈ [1,m], j ∈ [1, n]} : set of image

features

L = {lij s.t. i ∈ [1,m], j ∈ [1, n]} : set of binary

labels (correct/incorrect task classification by a failure

detection algorithm)

trainSVM(in, out) : a function to train a linear

SVM given input features (in) and output labels (out)
Output: iov : Index of information optimized view;

S = {Sij s.t. i ∈ [1, n], j ∈ [1, n]} : set of

trained SVM models

1 for i← 1 to n do

2 x← {f1i, f2i, . . . , fmi}
3 y ← {l1i, l2i, . . . , lmi}
4 errors(i)← 0
5 for j ← 1 to n do

6 (model, error)← trainSVM(x, y)
7 S(i, j)← model
8 errors(i)← errors(i) + error

9 errors(i)← errors(i)/n

10 iov ← argmin i errors(i)
11 return iov, S

different ways—(1) a static strategy that chooses the best

viewpoint, on average, for classification, and (2) a two-stage

active strategy that chooses the best information-gathering

viewpoint, which in turn allows the robot to predict which

viewpoint will provide the most accurate classification.

1) Static Viewpoint Selection: The simplest method for

choosing a viewpoint for classification is to always pick the

same viewpoint, regardless of the features of the test image—

the viewpoint with the highest classification accuracy, on

average. We train different types of classifiers for each view-

point separately: a random forest classifier [36] and SVMs

over different CNN features. Based on ablation studies, we

use deep features from the activations of fc6/fc7 layers for

AlexNet [32], fc6 layer for VGGNet[33], pool5 layer for

GoogLeNet[34] and pool5 layer for ResNet[35] architectures

pre-trained on ImageNet[37]. Then, k-fold cross-validation

accuracy for each of these classifiers is computed. Finally, the

viewpoints are ranked based on this cross-validated accuracy,

and the top viewpoint is chosen for use in future test-cases.

2) Two-stage Active Viewpoint Selection: Rather than

choosing the best static viewpoint on average, in many prob-

lems it may be beneficial to adaptively choose a viewpoint

based on visual features of the particular trial. However, this

still requires an initial image to be captured for analysis.

Thus, we propose a two-stage active viewpoint selection

method that first chooses a static information-optimized

viewpoint (IOV) that is the best, on average, at predicting

which optimal classification viewpoint (OCV) will most

successfully classify any given execution. For example, in



Algorithm 2: COMPUTE OUTCOME uses the

information-optimizing viewpoint (IOV) to predict

the best outcome classification viewpoint (OCV) at

test time. OCV is used to classify the task outcome as

success or failure.

Input: n : number of viewpoints

iov : index of information optimized viewpoint

I = {I1, I2, . . . , In} : image features for a

single execution corresponding to all viewpoints;

S = {S1,iov, S2,iov, . . . , Sn,iov} : set of SVMs

trained over accuracies of each viewpoint;

testSVM(model, in) : a function to test an

SVM model over a given input (in). It returns distances

to margins for the correctly (mcorrect) and incorrectly

(mincorrect) classified class.

failureDetection(v, f) : a function to detect

failures for a given viewpoint v and corresponding

image features f for a trial.

Output: ocv : index of outcome classification view

outcome : predicted task outcome

1 for i← 1 to n do

2 [mcorrect,mincorrect]← testSVM(Si,iov, Iiov)
3 score(i)← mcorrect

4 ocv ← argmax i score(i)
5 [outcome]← failureDetection(ocv, Iocv)
6 return outcome

the quadrotor surveillance domain for car break-in detection,

the IOV may try to get a view from the front of the car

to determine which side of the car the person is on; then

based on features of that image, an OCV can be chosen that

matches the correct side of the car, in order to get the best

possible view of the person’s hand. This image can then be

used to classify whether the person is trying to break into

the car (i.e. their hand is on the handle) or if they are simply

standing next to the car.

Since choosing an IOV is not an inherently fine-grained

problem (i.e. global features may be useful in determining the

OCV from the IOV), we obtain image features for each view-

point by feeding each image into a deep neural network—

AlexNet [32] pre-trained on Imagenet [37]—and record the

activations of layer fc7. For each of the n candidate IOVs,

these deep features are computed and then used as inputs

to train n SVM classifiers [38], [39], leading to a set of n2

classifiers overall. Essentially, each viewpoint is a candidate

for being chosen as the IOV based on the training data,

and whether a certain viewpoint does get selected as the

IOV depends on how well the classification accuracy of all

viewpoints can be predicted given training images from only

that candidate IOV.

Given images from a candidate IOV (c), we use their

features to train n SVMs (S1,c, S2,c, . . . Sn,c), one associated

with each viewpoint v. We train Sv,c over the output labels

of a failure detection algorithm for v. Thus, supervision is

provided with binary labels that correspond to whether or

not the failure detection algorithm’s output matched ground

truth labels. The candidate IOV c which provides the least

error averaged over its corresponding n SVMs is finally

chosen as the IOV iov. At test time, we only require an

image from a single viewpoint—the IOV—which is used to

predict how accurate task outcome prediction might be from

other viewpoints. The viewpoint predicted to be the most

accurate by the IOV image is then chosen as OCV. The

image from OCV is then used to determine the task outcome

through a failure detection algorithm. Note that for every

image at test time, the OCV could be different based on the

content of the image, allowing for adaptive selection based

on information gathered from the IOV. While this requires

images from two viewpoints to be captured (as opposed to

one in the static case), we hypothesize that this adaptivity

will significantly increase classification accuracy in certain

domains. This approach of selecting the IOV and OCV is

described in Algorithm 1 and Algorithm 2 respectively.

IV. EVALUATION AND DISCUSSION

A. Experimental Setup

Here we describe the details about our implementation

and the experimental setup for our datasets. For the random

forest, we use 100 trees, a maximum tree depth of 10,

and a minimum of 11 patches per node. We use the linear

SVM implementation made available as part of the Statistical

and Machine Learning toolbox in Matlab [38], [39]. Deep

features are extracted from neural network models (AlexNet

[32], VGGNet [33], GoogLeNet [34], ResNet [35]) pre-

trained on ImageNet in Caffe [40]. The runtime of all

the methods is near real-time during testing, as it simply

computes the output from trained classifiers or performs a

forward pass for computing deep features for one or two

viewpoints. Training time is considerably longer (order of

hours) and varies according to the total number of view-

points. However, training is assumed to be performed offline.

1) IKEA Table Assembly Task: The first domain is an

IKEA table assembly task: the leg of the table has a screw

protruding from one end, which a PR2 mobile manipulator

attempts to insert into a pre-drilled hole in the table base,

as shown in Fig. 1. A webcam is attached to the robot’s

left gripper, which can be moved to capture images from

viewpoints of varying distances and angles relative to the

table leg. Before capturing images in each trial, the PR2 at-

tempts to insert the table leg via a hand-coded trajectory that

moves the right gripper and table leg toward a hand-coded

goal position. To provide variance in starting conditions, the

gripper holding the table leg begins each trial at a different

location.

An AR tag, a type of visual fiducial, is used to determine

the rough position of the table leg. A set of 19 candidate

viewpoints are then taken from three spheres with varying

radii—one centered on the AR tag, one on the middle of the

leg, and one on the bottom of the leg—in order to provide

many different views with as little a priori domain knowledge

as possible. Additionally a “generic view” was collected

that contains an entire side-view of the table and leg; this

can be used as a baseline to test whether a generic view



is sufficient for this task, or if viewpoint selection can be

beneficial. We collected data on 39 executions of the task (39

images per viewpoint), hand-labeling successes and failures.

The success and failure labels were nearly equally distributed

(19 successes, 20 failures). Fig. 2 shows some of the images

from different viewpoints in a single execution.

Finally, we preprocessed images for the fine grained RF

by automatically aligning them pixel-wise in each view to

account for small differences in inverse kinematics solutions

and inaccurate servoing. As a result, all the images in each

view were cropped to the intersection of their overlapping

areas after alignment. This alignment and cropping was

done automatically with intensity based image registration

methods. However, for the SVM classifiers, deep features

were computed from the raw unaligned camera images as

the features are robust to translational variations.

2) IKEA Table Assembly with Obstacles: This task is

similar to the task above, but we introduce obstacles in the

task space obstructing the discriminating view of the screw

and the pre-drilled hole on the table base from some of the

viewpoints. The obstacles are placed at different locations

blocking different viewpoints in different trials. We use two

robots to perform this task, each with a Kinova Jaco 2

arm (6-DOF). One robot moves the table leg to the table

base, while the other robot’s arm captures images after the

execution is complete. We capture images along 4 circles

(two radii and two heights), each with 5 viewpoints equally

spaced out, totalling to 20 viewpoints. The table leg insertion

was attempted 40 times (40 images per viewpoint) with 22

successes and 18 failures. The obstacles placed in the scene

were a subset of the YCB dataset [41].

3) Quadrotor Surveillance Task: In this experiment, a

quadrotor equipped with a GoPro camera performs a surveil-

lance task, in which it captures images at five locations

around a car to detect whether a person is simply standing

next to the car or trying to “break in” by pulling on the

car door handle. One viewpoint was directly in front of the

car, while the others were taken from the front corners and

sides of the car, as shown in Fig. 3. In each iteration of the

experiment, the person in the scene can either be standing

on the left or the right side of the car.

We performed the experiment 68 times (68 images per

viewpoint), with the person standing on each side of the car

34 times. In 17/34 images on both left and right, the person

is opening the door and is just standing next to it in other

17 images. For this dataset, we cropped images manually to

contain only the car with the person and some small amount

of background to offset the large imprecision in the position

of the quadrotor across different runs. This cropping could

be performed automatically, but is not the focus of this work.

B. Results

1) IKEA Table Assembly Task: For the table leg dataset

without obstacles, we first compare the cross-validated accu-

racy of the best static view and the generic view (view 19)

that encompasses the larger scene, taken from distance. We

use both random forest and SVM classifiers to determine how

Fig. 3. Five viewpoints in the quadrotor surveillance domain (View 1
starting from the top left image and going clockwise for views 2-5).

informative each viewpoint is to detect the class outcome.

The best static view for each method detects failures better

than the generic view. The results are shown in Table I.

TABLE I

10-FOLD CROSS VALIDATION RESULTS FOR FAILURE DETECTION USING

A STATIC VIEWPOINT ON THE IKEA TABLE ASSEMBLY DATASET.

View Random
Forest
(%)

AlexNet
(fc7) +
SVM (%)

VGG
(fc6) +
SVM (%)

GoogLeNet
(pool5) +
SVM (%)

ResNet
(pool5) +
SVM (%)

1 63.9 57.3 65.4 64.0 64.6

2 66.7 65.0 67.9 60.4 62.6

3 69.4 65.0 64.9 61.0 67.6

4 66.7 56.9 69.7 56.9 62.8

5 66.7 61.9 60.0 59.3 44.9

6 69.4 62.5 60.6 60.1 55.3

7 61.1 64.2 57.6 61.8 63.0

8 66.7 75.2 65.6 62.3 66.6

9 69.4 57.7 59.2 72.5 67.2

10 72.2 68.8 76.4 79.3 70.7

11 66.7 61.5 71.8 74.5 71.6

12 63.9 65.6 65.3 61.8 66.6

13 91.7 70.0 76.0 85.4 80.8

14 72.2 58.1 66.1 61.8 64.1

15 80.6 69.8 72.4 78.6 72.8

16 66.7 64.2 63.8 57.6 53.7

17 91.7 70.0 81.9 90.3 75.7

18 77.8 74.2 77.2 80.8 78.3

19 63.9 59.4 55.1 47.5 63.5

We report results with 10-fold cross validation to retain a

larger training data due to the small size of the dataset. 10-

fold cross-validated accuracy for the best viewpoint (view

17) was 91.7% using the random forest classifier and 90.3%
using GoogLeNet pool5 features. GoogLeNet’s pool5 fea-

tures perform nearly as well as the random forest classifier,

despite not being tuned for the task and not having aligned

images. This demonstrates the surprising effectiveness of

these features in capturing fine-grained differences that has

been recently observed in literature [42].

Examples of the best and worst view (apart from the



Fig. 4. Random forest classifier’s best view (top row - view 17) and worst
view excluding the generic view (bottom row - view 7) along with their
overlaid heat maps for a successful execution.

generic view) for the random forest approach are presented

in Fig. 4. Overall, the VGGNet fc6 features, AlexNet fc7

features and ResNet pool5 features do not perform as

well as the RF or GoogLeNet features. GoogLeNet uses

inception modules for dimensionality reduction in an em-

bedding space to represent information in a dense, com-

pressed form. Our results lends support towards the in-

ception modules being more effective at retaining spatial

relationships in a deeper and sparse network versus the loss

of spatial specificity with pooling layers of VGGNet and

AlexNet. The average accuracy over 18 views (excluding the

generic view) is 71.3% (RF), 64.9% (AlexNet+SVM), 68.1%
(VGGNet+SVM), 68.2% (GoogLeNet+SVM) and 65.9%
(ResNet+SVM) which is still considerably lower than the

respective accuracies from the best view. It should be noted

that our approach has very little prior knowledge of the task

and still manages to find a view with a high accuracy.

(a) static viewpoint 14 (b) active viewpoint 3

(c) static viewpoint 10 (d) active viewpoint 1

Fig. 5. Trials from the table assembly task with obstacles obstructing
some viewpoints. (a), (b) are images from the same trial where the static
viewpoint fails to detect the failure but the active viewpoint succeeds. (c),
(d) provide another such example.

2) IKEA Table Assembly with obstacles: This is a more

challenging dataset than the previous one, due to objects

obstructing different viewpoints in different trials. The cap-

tured images also have more background clutter than the

simple assembly dataset above. Consequently we see a

drop in performance as can be seen in Table II. The

highest accuracy among all methods for detecting failures

goes down to 69.5% (GoogLeNet features for view 16),

averaging over 10 runs of 10-fold cross validation. The

random forest classifier gives the best static viewpoint which

is different but has a comparable performance (69.0% for

view 13). We see similar trends in comparison with Table

I, where performance of CNN features and the random

forest was comparable, with GoogleNet features doing the

best. With ablative analysis, we found AlexNet fc6 features

performing better than fc7 features for this dataset, whereas

fc6 features of VGGNet still perform better than fc7 fea-

tures. Random forest performs the best on average over all

viewpoints (60.6%) compared to AlexNet+SVM (49.8%),

VGGNet+SVM (50.7%), GoogleNet+SVM (53.3%) and

ResNet+SVM (51.7%), demonstrating the the fine grained

method’s discriminative capability on real-world images.

We also test the active viewpoint selection algorithm

for this dataset. We use GoogLeNet features as the image

features and random forest classifier as the failure detection

method for Algorithm 1 and 2. We choose the random forest

classifier to select the OCV as it performs the best on aver-

age. Averaging across ten runs of 10-fold cross validation, we

find that the active viewpoint selection approach gives a 3.5%

improvement in detecting failures over the static approach.

In Fig. 5, we show an example of two executions where

the static viewpoint incorrectly classifies the task outcome,

whereas the active viewpoint gives the correct classification.

In Fig. 5(a), the best static viewpoint has an obstruction to

the view of the hole and nail. Since the obstacle is not at

a fixed position for every execution, the static viewpoint

cannot account for dynamic elements such as the moving

obstacle. However, the active viewpoint in Fig. 5(b) is one

where the view is not obstructed by the obstacle. Similarly,

on using GoogLeNet image features and GoogLeNet+SVM

as the failure detection algorithm (which gave the highest

performance for a static viewpoint), the active viewpoint

improves performance by 11% over the static viewpoint,

averaged across ten runs of 10-fold cross-validation. We

show example views for this combination in Fig. 5 (c)

and (d). This shows that GoogLeNet+SVM classifier is

better able to determine task outcomes by latching on to

discriminative regions of the image, in turn making active

viewpoint selection work better. Active viewpoint selection

shows promise in detecting failures even in the presence of

obstacles and clutter that are part of real-world environments.

3) Quadrotor Surveillance Task: For this dataset, we test

both static and active viewpoint selection approaches. For

each of the 5 viewpoints shown in Fig. 3, we use 68 images.

We use 5-fold cross validation to generate 5 partitions of the

dataset ( more image data available per viewpoint) and repeat

this for several runs of the experiments. We report cross-

validated results averaged across 10 runs of the experiment.

The results for the static viewpoint selection approach using



TABLE II

10-FOLD CROSS VALIDATION FOR FAILURE DETECTION USING A STATIC

VIEWPOINT ON THE TABLE ASSEMBLY DATASET WITH OBSTACLES.

View Random
Forest
(%)

AlexNet
(fc6) +
SVM (%)

VGG
(fc6) +
SVM (%)

GoogLeNet
(pool5) +
SVM (%)

ResNet
(pool5) +
SVM (%)

1 52.0 44.3 46.8 63.8 40.8

2 67.0 52.3 44.8 61.0 60.8

3 65.5 48.0 49.0 45.3 39.8

4 62.8 58.5 41.3 43.5 49.5

5 61.8 66.8 51.3 45.0 58.0

6 54.3 44.5 43.3 51.3 62.3

7 60.5 50.3 45.5 53.0 51.3

8 65.5 55.0 44.5 51.0 47.0

9 55.5 43.5 63.5 61.3 50.5

10 45.8 54.8 47.3 64.0 50.5

11 56.8 45.3 46.3 56.8 61.0

12 68.5 62.3 52.5 53.3 50.5

13 69.0 45.8 68.8 44.0 43.5

14 66.5 46.3 53.8 55.0 54.0

15 63.0 47.0 58.3 50.0 51.0

16 53.5 43.3 46.3 69.5 49.8

17 57.8 45.3 50.5 47.0 61.3

18 67.3 45.5 63.0 43.8 59.8

19 67.3 47.8 54.0 54.3 48.5

20 51.0 50.5 43.5 58.3 45.3

both random forests and SVMs trained on deep features

are shown in Table III. The highest accuracy with the

RF method is 77.1% (view 2) which is matched by the

performance of the GoogLeNet features (77.9%). Notably,

the SVM+CNN approach (for all 4 architectures) performs

better than chance for every viewpoint. This is a somewhat

surprising result since many viewpoints appear to contain

very little information about the classification of a given trial.

TABLE III

5-FOLD CROSS VALIDATION RESULTS FOR FAILURE DETECTION USING A

STATIC VIEWPOINT ON THE QUADCOPTER DATASET.

View Random
Forest
(%)

AlexNet
(fc7) +
SVM (%)

VGG
(fc6) +
SVM (%)

GoogLeNet
(pool5) +
SVM (%)

ResNet
(pool5) +
SVM (%)

1 56.3 65.2 65.5 54.6 49.75

2 77.1 55.9 63.1 77.9 62.87

3 51.3 64.5 63.0 58.8 74.66

4 56.3 53.9 70.9 58.1 70.74

5 51.8 57.1 48.0 57.5 64.53

We also evaluate two-stage active viewpoint selection. For

one run of 5-fold cross validation, we find that the static

viewpoint selection approach yields an outcome classifica-

tion accuracy of 74.36% with the random forest classifier

(best performing static view). Whereas, our proposed active

viewpoint selection approach leads to an improvement of

approximately 5% with an accuracy of 79.23%. We test

active viewpoint selection with random forest as the fail-

ure detection algorithm and AlexNet features as the image

features in Algorithm 1 and 2. We report these results across

several runs of 5-fold cross validation on the entire dataset.

Thus, on average the active two-stage viewpoint selection

approach helps in providing additional information to deter-

mine the outcome more accurately. Both of these methods

outperform selecting a random viewpoint to determine the

Fig. 6. Heat maps for various views in the quadrotor surveillance domain.

outcome, which gives an average classification accuracy of

67.31%. This validates that selecting the most informative

viewpoints is beneficial to determine the outcome of a task

more accurately.

Again, heat maps were created for each viewpoint, and fo-

cused in on the intuitively informative area of the informative

views, i.e. near the door handle (Fig. 6). It was interesting

to observe that the heat maps of less informative views also

focused on intuitively informative parts of the image, which

are the parts where one can see the head of the person from

over the car (Fig. 6).

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated that viewpoint selection and fine-

grained outcome classification are both tractable and useful

for a general class of robotics problems. A task-agnostic ap-

proach was proposed to automatically select static viewpoints

that result in high classification accuracy. The proposed

approach was tested on different tasks and hardware setups

and shown to work for small sized datasets. Additionally, a

novel method was introduced that improves performance by

discovering an information-optimized viewpoint that allows

for active selection of an optimal classification viewpoint. We

also demonstrated the potential of CNN features (extracted

by using pre-trained networks) to perform surprisingly well

on this problem, despite not being designed to extract fine-

grained features. This adds to a growing body of evidence

that deep learning is capable of performing fine-grained

image analysis, even when not discriminatively trained for

the task, without hand-crafting fine-grained strategies like

a discriminative random forest and without requiring image

alignment. We hypothesize that more specialized deep archi-

tectures focused on fine-grained features (such as [43], [44]),

could improve performance in the future.

Our proposed approach can work in principle for any class

that can be visually discriminated. Even though we only

test for success or failure, our approach can be extended

to work for multiple task outcomes in the future. Several

other interesting directions are also available for future

work. While our approach automatically selected viewpoints

that are highly informative and discriminative, it may be

beneficial to continuously adjust viewpoints over time during

a task, or to use a viewpoint that was not seen in the

original training set. One approach to do this may be to

use interpretable data such as heat maps, along with RGB-

D data, to identify important objects and relationships in

the scene that can be tracked over time, or for which the

viewpoint can be optimized. Also, rather than relying only on

fine-grained visual details for outcome classification, future



efforts may integrate fine-grained information from several

sources including vision, sound, and tactile data.
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