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Abstract— The visual difference between outcomes in many
robotics tasks is often subtle, such as the tip of a screw
being near a hole versus in the hole. Furthermore, these small
differences are often only observable from certain viewpoints or
may even require information from multiple viewpoints to fully
verify. We introduce and compare three approaches to selecting
viewpoints for verifying successful execution of tasks: (1) a
random forest-based method that discovers highly informative
fine-grained visual features, (2) SVM models trained on features
extracted from pre-trained convolutional neural networks, and
(3) an active, hybrid approach that uses the above methods for
two-stage multi-viewpoint classification. These approaches are
experimentally validated on an IKEA furniture assembly task
and a quadrotor surveillance domain.

I. INTRODUCTION

In recent years, great leaps have been made toward learn-
ing algorithms that produce robust robotic control policies
that generalize across differing situations [1], [2], [3], [4].
However, while these methods provide good behavior in
expectation, they typically do little to verify correct behavior
or task completion in any given situation. Future robotics
applications will require behaviors that are not only reliable
in expectation, but also verifiable: safety-critical tasks must
be completed with a high degree of assurance; robots that
work with populations that rely on them, such as the disabled
or elderly, must be dependable; manufacturing robots that
chain together many behaviors, such as in an assembly task,
must check their work at each step, or else face multiplicative
error rates as the number of steps increase. Given the ubiquity
of visual sensors in robotics, in this work we focus on
determining the outcomes of tasks, or any latent visual
concept, via image data.

Unfortunately, visual task outcome classification is dif-
ficult for several reasons. First, only a small segment of
any given image may actually contain useful discriminative
information. If there are only small differences between
classes, the inter-class variance may be overwhelmed by
the intra-class variance. Furthermore, these small differences
may only be observable from certain viewpoints or may even
require information from multiple viewpoints to fully verify.
For example, a robot changing a tire, assembling a piece
of furniture, or boiling a cup of tea must pay attention to
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Fig. 1. The PR2 using a hand-held camera to view the table assembly task
(left) and an example view of a successful attempt (right).

X

Fig. 2. Images captured from 6 of the 19 viewpoints after a successful
attempt at table leg insertion. Bottom-right: the “generic” full-scene view.
The images are captured at the end of the task execution by the robot.

small, specific parts of each object of interest; it should be
able to precisely determine the alignment of the tire with
the car, ensure that the furniture pieces have been properly
attached to each other, or discern the subtle changes at
the surface of the water that are associated with boiling.
All of these features constitute only a small fraction of
the available information in the field of view (Fig. 1) and
their visibility can be highly viewpoint dependent (Fig. 2).
These observations are illustrated in Fig. 1 and Fig. 2 for
the furniture assembly task. In this paper, we propose to use
viewpoint selection techniques based on fine-grained image
classification to address both of these issues concurrently.
Our contributions are threefold: First, we introduce a fine-
grained viewpoint selection and failure detection algorithm
based on discriminative random forests, and empirically
show that semantically meaningful fine-grained details can
be discovered from a small number of examples in diverse
robotics tasks. However, this approach requires the rough
alignment of images from each viewpoint. Second, we over-
come this limitation by introducing an alternate viewpoint
selection approach that uses SVMs trained on features from a
pre-trained convolutional neural network (CNN). We demon-
strate that, somewhat surprisingly, the SVM+CNN approach
performs nearly as well as the random forest, despite the
fact that it does not require alignment, the features are not



optimized for the task, and that it is not an explicitly fine-
grained method. Third, we propose a novel active, two-stage
sequential viewpoint selection algorithm that can improve
performance in domains in which the optimal viewpoint is
context-dependent. We experimentally validate the proposed
algorithms in two substantially different domains—screw
insertion in a furniture assembly task and car break-in
detection using a quadrotor.

II. RELATED WORK
A. Failure Detection

To the best of our knowledge, our presented method is the
first that performs outcome classification (success or failure)
for general robotics tasks from real world 2D image data.
However, there is a rich history of failure detection methods
in robotics that leverage domain knowledge for specific tasks
such as navigation [5], [6] or that detect sensor errors rather
than behavioral failures [7], [8].

In robotic manipulation, one straightforward approach
simply looks for deviations outside of confidence bounds
relative to a nominal trajectory [9]. Nearest-neighbor clas-
sifiers over state information have been used to sequence
controllers [4], [10], which can be thought of as combined
outcome classification and error recovery. Other approaches
treat failure detection as a time-series classification problem.
One data mining approach searches for discriminative sub-
signals called shapelets [11], but is highly computationally
intensive even for relatively small amounts of data. Spatio-
Temporal Hierarchical Matching Pursuit [12] has been used
to assess grasp stability and recognize objects from tactile
data by learning sparse hierarchical features. Worcester et
al. [13] use visual depth sensors for online error detection
and correction during an assembly process by multiple
mobile robots. Our work focuses on using monocular 2D
image data to identify failures post task execution. Nguyen
et al. [14] use simple image features, i.e. dimensionality
reduction on concatenated image patches, from 2D images
and 3D registered point cloud data to learn classifiers which
determine where in 3D space manipulation behaviors for a
task will succeed. Previous methods have also combined
visual and force/torque sensing for error recovery during
manipulation [15]. While these approaches work with simple
visual features, such as surfaces of polyhedral objects, we
work with real images and general-purpose image features
to perform error detection.

B. Viewpoint Selection

Estimating optimal placement of cameras using machine
vision has been proposed for tasks such as inspection [16],
object recognition [17], human activity recognition [18], con-
trol and monitoring [19]. However, these methods typically
require a significant amount of prior knowledge of objects
to optimize the camera viewing angle, such as 3D object
models and pre-determined areas of interest. Leifman et
al. [20] proposed a viewpoint selection algorithm to detect
regions of interest on surfaces i.e. parts of an object that
would appeal to humans in general, whereas we look for

regions of interest to discriminate between task outcomes.
They focus on 3D mesh surfaces, while we consider a general
task space which could contain multiple objects as part of the
scene. The “next best view” problem [21], [22] has also been
investigated to select informative viewpoints for performing
3D reconstruction from 2D images.

In the most relevant work to ours, Kootstra et al. [23] rotate
a camera around an object to find stable keypoints that help
to construct a model of an object. These keyframes are then
leveraged to perform active viewpoint selection during the
object recognition phase. Similarly, Govender et al. [24] use
an active learning approach to collect images with unique,
high-information features until an object is recognized with
confidence above a set threshold. However, these approaches
are designed for object recognition rather than task outcome
classification and focus on objects with large inter-class
differences, rather than fine-grained classification.

Visual servoing techniques have been used for manipu-
lation and grasping [25], [26], [27], object tracking [27]
and navigation tasks for miniature mobile robots [28]. These
techniques use simple visual features, such as fixed patterns
or position based features of objects, and can move the visual
sensors anywhere in space to obtain these features. We sac-
rifice adaptability at the level of moving a camera anywhere
in free space for gaining generality in the visual space. We
care about the general information content obtained from real
images of fixed viewpoints to detect task failures.

III. APPROACH

Given visual data to observe a task from multiple view-
points, we propose to select the most suitable of those
viewpoints to determine whether the task was carried out
successfully or not. This viewpoint selection and subsequent
failure detection occurs in a task independent manner. The
only assumption however is that the viewpoints are at fixed
locations with respect to the task setup and the viewpoint
selection and subsequent failure detection occurs at the end
of task execution. In this section, we discuss two image
classification approaches for visually detecting task execu-
tion failures — a fine grained visual classification technique
(Section III-A) and another simple image classification using
deep neural network features (Section III-B). Section III-C
describes how we extend these techniques to determine the
most suitable viewpoint for failure detection. We use one
of two approaches to select the optimal viewpoint- a static
approach where the most suitable viewpoint is determined
apriori during training, or an active approach where the op-
timal viewpoint depends on the visual information available
from a particular execution of the task.

A. Fine-Grained Image Classification

To classify images, we use a fine-grained Random Forest
(RF) approach first introduced by Yao et al. [29]. Tradition-
ally, decision trees employ a weak classifier at each node
that operates on a global set of features. To capture the fine-
grained nature of this problem, Yao et al. use discriminative
decision trees, which employ a strong classifier (a support



vector machine/SVM in this case) at each node that operates
on features of an image sub-patch, also augmenting the state
space at each node with the decision values of all the parents
that it descended from.

However, this approach requires a search over a large,
dense sampling space—all possible image patches of arbi-
trary width and height at all possible locations. To make this
search tractable, the algorithm randomly selects a number
of patches at each node and trains a classifier on each of
them, finally selecting the best classification outcome using
an information gain criterion [30].

One advantageous property of random forests is the ability
to gain interpretable insight into classification results. Fol-
lowing Yao et al., we derive heat maps from the random
forest, as shown in Figure 4, that visualize the relative
importance of each pixel in classification. Each pixel weight
can be calculated by summing the SVM class probability for
a given class (the heatmaps for both classes tend to be nearly
identical, so we only show one) for all image patches that
include that pixel.

B. Image Classification with Pre-trained CNN Features

The recent success of convolutional neural networks
(CNNs) has shown them to be a state-of-the art technique for
image classification. CNNs provide an end-to-end learning
framework from images to output labels without engineering
features by hand, and have also been shown to work well
for transfer learning, by pre-training on very large datasets
and then fine-tuning them for smaller novel datasets [31]. If
datasets are not large enough for fine-tuning (roughly 200
images per class), then features can be extracted from pre-
trained networks (fully-connected layer activations before
the soft-max classification, for example), without any fine-
tuning. These features can then be used as input to classifiers
such as SVMs to work with the smaller dataset. We leverage
the richness of CNN feature layers in this manner by directly
using the weights from existing models like AlexNet [32],
VGGNet[33], GoogLeNet[34] and ResNet[35] on our small-
sized datasets.

C. Optimal Viewpoint Selection

We can discriminate among task outcomes from any
viewpoint using image classification techniques. However,
our goal is to select a viewpoint that maximizes the discrim-
inative power of the classifier. Rather than simply using a
standard viewpoint (such as a robot’s overhead view of a ma-
nipulation task), we introduce two methods for intelligently
choosing optimized viewpoints for a given task.

For both methods, we assume that the robot is able to
collect outcome-labeled training examples from n different
viewpoints for each of m trials or executions. These view-
points can be selected in any way, but ideally should be
chosen in a manner that does not require prior knowledge
about the task except only an approximate knowledge of the
positions of any object(s) of interests. This data can then be
used to train a classifier separately for each viewpoint, which
can further be used to select an optimized viewpoint in two

Algorithm 1: COMPUTE_IOV finds the information op-
timizing view at training time, given multiple sets of
corresponding training images from each viewpoint.

Input: n : number of viewpoints
m : number of trials or executions
I={fi;stie[l,m],j€[l,n]}: set of image
features
L ={l;; st.i€[1,m],j €[l,n]}: set of binary
labels (correct/incorrect task classification by a failure
detection algorithm)
trainSV M (in, out) : a function to train a linear
SVM given input features (in) and output labels (out)
Output: iov : Index of information optimized view;
S ={S;; st.i€[l,n],j€[l,n]}: set of
trained SVM models
for i < 1 to n do
x < {fii, fair- - fmi}
y < {lii,laiy - lmi}
errors(i) < 0
for j < 1to n do
(model, error) < trainSV M (z,y)
S(i,7) < model
errors(i) < errors(i) + error

NN T R W N

9 | errors(i) < errors(i)/n

10 j0v « argmin ; errors(i)
return iov, S

—
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different ways—(1) a static strategy that chooses the best
viewpoint, on average, for classification, and (2) a two-stage
active strategy that chooses the best information-gathering
viewpoint, which in turn allows the robot to predict which
viewpoint will provide the most accurate classification.

1) Static Viewpoint Selection: The simplest method for
choosing a viewpoint for classification is to always pick the
same viewpoint, regardless of the features of the test image—
the viewpoint with the highest classification accuracy, on
average. We train different types of classifiers for each view-
point separately: a random forest classifier [36] and SVMs
over different CNN features. Based on ablation studies, we
use deep features from the activations of fc6/fc7 layers for
AlexNet [32], fc6 layer for VGGNet[33], pool5 layer for
GooglLeNet[34] and poolS5 layer for ResNet[35] architectures
pre-trained on ImageNet[37]. Then, k-fold cross-validation
accuracy for each of these classifiers is computed. Finally, the
viewpoints are ranked based on this cross-validated accuracy,
and the top viewpoint is chosen for use in future test-cases.

2) Two-stage Active Viewpoint Selection: Rather than
choosing the best static viewpoint on average, in many prob-
lems it may be beneficial to adaptively choose a viewpoint
based on visual features of the particular trial. However, this
still requires an initial image to be captured for analysis.
Thus, we propose a two-stage active viewpoint selection
method that first chooses a static information-optimized
viewpoint (IOV) that is the best, on average, at predicting
which optimal classification viewpoint (OCV) will most
successfully classify any given execution. For example, in



Algorithm 2: COMPUTE_.OUTCOME uses the
information-optimizing viewpoint (IOV) to predict
the best outcome classification viewpoint (OCV) at
test time. OCV is used to classify the task outcome as
success or failure.
Input: n : number of viewpoints
tov : index of information optimized viewpoint
I={hL,I,...,1I,} : image features for a
single execution corresponding to all viewpoints;
S = {51,i00, S2,i0v+ - - - » Sniov ) : set of SVMs
trained over accuracies of each viewpoint;
testSV M (model,in) : a function to test an
SVM model over a given input (¢n). It returns distances
to margins for the correctly (m orrect) and incorrectly
(Myncorrect) Classified class.
failureDetection(v, f) : a function to detect
failures for a given viewpoint v and corresponding
image features f for a trial.
Output: ocv : index of outcome classification view
outcome : predicted task outcome
1 for i <1 to n do
2 L [mcorrect7 mincorrect] <~ teStSVM<Si7iova Iiov)
3 score(i) < Meorrect

4 ocv < argmax ; score(i)
5 [outcome] < failureDetection(ocv, Lyey)
6 return outcome

the quadrotor surveillance domain for car break-in detection,
the IOV may try to get a view from the front of the car
to determine which side of the car the person is on; then
based on features of that image, an OCV can be chosen that
matches the correct side of the car, in order to get the best
possible view of the person’s hand. This image can then be
used to classify whether the person is trying to break into
the car (i.e. their hand is on the handle) or if they are simply
standing next to the car.

Since choosing an IOV is not an inherently fine-grained
problem (i.e. global features may be useful in determining the
OCYV from the IOV), we obtain image features for each view-
point by feeding each image into a deep neural network—
AlexNet [32] pre-trained on Imagenet [37]—and record the
activations of layer fc7. For each of the n candidate IOVs,
these deep features are computed and then used as inputs
to train n SVM classifiers [38], [39], leading to a set of n?
classifiers overall. Essentially, each viewpoint is a candidate
for being chosen as the IOV based on the training data,
and whether a certain viewpoint does get selected as the
IOV depends on how well the classification accuracy of all
viewpoints can be predicted given training images from only
that candidate IOV.

Given images from a candidate IOV (c), we use their
features to train n SVMs (S1,c, S2.c, . . . Sp,c), One associated
with each viewpoint v. We train .S, . over the output labels
of a failure detection algorithm for v. Thus, supervision is
provided with binary labels that correspond to whether or
not the failure detection algorithm’s output matched ground

truth labels. The candidate IOV ¢ which provides the least
error averaged over its corresponding n SVMs is finally
chosen as the IOV ¢ov. At test time, we only require an
image from a single viewpoint—the IOV—which is used to
predict how accurate task outcome prediction might be from
other viewpoints. The viewpoint predicted to be the most
accurate by the IOV image is then chosen as OCV. The
image from OCV is then used to determine the task outcome
through a failure detection algorithm. Note that for every
image at test time, the OCV could be different based on the
content of the image, allowing for adaptive selection based
on information gathered from the IOV. While this requires
images from two viewpoints to be captured (as opposed to
one in the static case), we hypothesize that this adaptivity
will significantly increase classification accuracy in certain
domains. This approach of selecting the IOV and OCV is
described in Algorithm 1 and Algorithm 2 respectively.

IV. EVALUATION AND DISCUSSION
A. Experimental Setup

Here we describe the details about our implementation
and the experimental setup for our datasets. For the random
forest, we use 100 trees, a maximum tree depth of 10,
and a minimum of 11 patches per node. We use the linear
SVM implementation made available as part of the Statistical
and Machine Learning toolbox in Matlab [38], [39]. Deep
features are extracted from neural network models (AlexNet
[32], VGGNet [33], GoogLeNet [34], ResNet [35]) pre-
trained on ImageNet in Caffe [40]. The runtime of all
the methods is near real-time during testing, as it simply
computes the output from trained classifiers or performs a
forward pass for computing deep features for one or two
viewpoints. Training time is considerably longer (order of
hours) and varies according to the total number of view-
points. However, training is assumed to be performed offline.

1) IKEA Table Assembly Task: The first domain is an
IKEA table assembly task: the leg of the table has a screw
protruding from one end, which a PR2 mobile manipulator
attempts to insert into a pre-drilled hole in the table base,
as shown in Fig. 1. A webcam is attached to the robot’s
left gripper, which can be moved to capture images from
viewpoints of varying distances and angles relative to the
table leg. Before capturing images in each trial, the PR2 at-
tempts to insert the table leg via a hand-coded trajectory that
moves the right gripper and table leg toward a hand-coded
goal position. To provide variance in starting conditions, the
gripper holding the table leg begins each trial at a different
location.

An AR tag, a type of visual fiducial, is used to determine
the rough position of the table leg. A set of 19 candidate
viewpoints are then taken from three spheres with varying
radii—one centered on the AR tag, one on the middle of the
leg, and one on the bottom of the leg—in order to provide
many different views with as little a priori domain knowledge
as possible. Additionally a “generic view” was collected
that contains an entire side-view of the table and leg; this
can be used as a baseline to test whether a generic view



is sufficient for this task, or if viewpoint selection can be
beneficial. We collected data on 39 executions of the task (39
images per viewpoint), hand-labeling successes and failures.
The success and failure labels were nearly equally distributed
(19 successes, 20 failures). Fig. 2 shows some of the images
from different viewpoints in a single execution.

Finally, we preprocessed images for the fine grained RF
by automatically aligning them pixel-wise in each view to
account for small differences in inverse kinematics solutions
and inaccurate servoing. As a result, all the images in each
view were cropped to the intersection of their overlapping
areas after alignment. This alignment and cropping was
done automatically with intensity based image registration
methods. However, for the SVM classifiers, deep features
were computed from the raw unaligned camera images as
the features are robust to translational variations.

2) IKEA Table Assembly with Obstacles: This task is
similar to the task above, but we introduce obstacles in the
task space obstructing the discriminating view of the screw
and the pre-drilled hole on the table base from some of the
viewpoints. The obstacles are placed at different locations
blocking different viewpoints in different trials. We use two
robots to perform this task, each with a Kinova Jaco 2
arm (6-DOF). One robot moves the table leg to the table
base, while the other robot’s arm captures images after the
execution is complete. We capture images along 4 circles
(two radii and two heights), each with 5 viewpoints equally
spaced out, totalling to 20 viewpoints. The table leg insertion
was attempted 40 times (40 images per viewpoint) with 22
successes and 18 failures. The obstacles placed in the scene
were a subset of the YCB dataset [41].

3) Quadrotor Surveillance Task: In this experiment, a
quadrotor equipped with a GoPro camera performs a surveil-
lance task, in which it captures images at five locations
around a car to detect whether a person is simply standing
next to the car or trying to “break in” by pulling on the
car door handle. One viewpoint was directly in front of the
car, while the others were taken from the front corners and
sides of the car, as shown in Fig. 3. In each iteration of the
experiment, the person in the scene can either be standing
on the left or the right side of the car.

We performed the experiment 68 times (68 images per
viewpoint), with the person standing on each side of the car
34 times. In 17/34 images on both left and right, the person
is opening the door and is just standing next to it in other
17 images. For this dataset, we cropped images manually to
contain only the car with the person and some small amount
of background to offset the large imprecision in the position
of the quadrotor across different runs. This cropping could
be performed automatically, but is not the focus of this work.

B. Results

1) IKEA Table Assembly Task: For the table leg dataset
without obstacles, we first compare the cross-validated accu-
racy of the best static view and the generic view (view 19)
that encompasses the larger scene, taken from distance. We
use both random forest and SVM classifiers to determine how

Fig. 3. Five viewpoints in the quadrotor surveillance domain (View 1
starting from the top left image and going clockwise for views 2-5).
informative each viewpoint is to detect the class outcome.
The best static view for each method detects failures better
than the generic view. The results are shown in Table L.

TABLE I
10-FOLD CROSS VALIDATION RESULTS FOR FAILURE DETECTION USING
A STATIC VIEWPOINT ON THE IKEA TABLE ASSEMBLY DATASET.

View| Random | AlexNet VGG GoogLeNet | ResNet
Forest (fc7) + | (fc6) + | (poolS) + | (pool5) +
(%) SVM (%) | SVM (%) | SVM (%) SVM (%)
1 63.9 57.3 65.4 64.0 64.6
2 66.7 65.0 67.9 60.4 62.6
3 69.4 65.0 64.9 61.0 67.6
4 66.7 56.9 69.7 56.9 62.8
5 66.7 61.9 60.0 59.3 44.9
6 69.4 62.5 60.6 60.1 553
7 61.1 64.2 57.6 61.8 63.0
8 66.7 75.2 65.6 62.3 66.6
9 69.4 57.7 59.2 72.5 67.2
10 722 68.8 76.4 79.3 70.7
11 66.7 61.5 71.8 74.5 71.6
12 63.9 65.6 65.3 61.8 66.6
13 91.7 70.0 76.0 85.4 80.8
14 72.2 58.1 66.1 61.8 64.1
15 80.6 69.8 72.4 78.6 72.8
16 66.7 64.2 63.8 57.6 53.7
17 91.7 70.0 81.9 90.3 75.7
18 77.8 74.2 77.2 80.8 78.3
19 63.9 59.4 55.1 47.5 63.5

We report results with 10-fold cross validation to retain a
larger training data due to the small size of the dataset. 10-
fold cross-validated accuracy for the best viewpoint (view
17) was 91.7% using the random forest classifier and 90.3%
using GooglLeNet pool5 features. GoogLeNet’s pool5 fea-
tures perform nearly as well as the random forest classifier,
despite not being tuned for the task and not having aligned
images. This demonstrates the surprising effectiveness of
these features in capturing fine-grained differences that has
been recently observed in literature [42].

Examples of the best and worst view (apart from the



Fig. 4. Random forest classifier’s best view (top row - view 17) and worst
view excluding the generic view (bottom row - view 7) along with their
overlaid heat maps for a successful execution.

generic view) for the random forest approach are presented
in Fig. 4. Overall, the VGGNet fc6 features, AlexNet fc7
features and ResNet pool5 features do not perform as
well as the RF or GooglLeNet features. GoogleNet uses
inception modules for dimensionality reduction in an em-
bedding space to represent information in a dense, com-
pressed form. Our results lends support towards the in-
ception modules being more effective at retaining spatial
relationships in a deeper and sparse network versus the loss
of spatial specificity with pooling layers of VGGNet and
AlexNet. The average accuracy over 18 views (excluding the
generic view) is 71.3% (RF), 64.9% (AlexNet+SVM), 68.1%
(VGGNet+SVM), 68.2% (GoogLeNet+SVM) and 65.9%
(ResNet+SVM) which is still considerably lower than the
respective accuracies from the best view. It should be noted
that our approach has very little prior knowledge of the task
and still manages to find a view with a high accuracy.

(a) static viewpoint 14 (b) active viewpoint 3

(c) static viewpoint 10 (d) active viewpoint 1

Fig. 5. Trials from the table assembly task with obstacles obstructing
some viewpoints. (a), (b) are images from the same trial where the static
viewpoint fails to detect the failure but the active viewpoint succeeds. (c),
(d) provide another such example.

2) IKEA Table Assembly with obstacles: This is a more
challenging dataset than the previous one, due to objects

obstructing different viewpoints in different trials. The cap-
tured images also have more background clutter than the
simple assembly dataset above. Consequently we see a
drop in performance as can be seen in Table II. The
highest accuracy among all methods for detecting failures
goes down to 69.5% (GoogLeNet features for view 16),
averaging over 10 runs of 10-fold cross validation. The
random forest classifier gives the best static viewpoint which
is different but has a comparable performance (69.0% for
view 13). We see similar trends in comparison with Table
I, where performance of CNN features and the random
forest was comparable, with GoogleNet features doing the
best. With ablative analysis, we found AlexNet fc6 features
performing better than fc7 features for this dataset, whereas
fc6 features of VGGNet still perform better than fc7 fea-
tures. Random forest performs the best on average over all
viewpoints (60.6%) compared to AlexNet+SVM (49.8%),
VGGNet+SVM  (50.7%), GoogleNet+SVM (53.3%) and
ResNet+SVM (51.7%), demonstrating the the fine grained
method’s discriminative capability on real-world images.
We also test the active viewpoint selection algorithm
for this dataset. We use GoogLeNet features as the image
features and random forest classifier as the failure detection
method for Algorithm 1 and 2. We choose the random forest
classifier to select the OCV as it performs the best on aver-
age. Averaging across ten runs of 10-fold cross validation, we
find that the active viewpoint selection approach gives a 3.5%
improvement in detecting failures over the static approach.
In Fig. 5, we show an example of two executions where
the static viewpoint incorrectly classifies the task outcome,
whereas the active viewpoint gives the correct classification.
In Fig. 5(a), the best static viewpoint has an obstruction to
the view of the hole and nail. Since the obstacle is not at
a fixed position for every execution, the static viewpoint
cannot account for dynamic elements such as the moving
obstacle. However, the active viewpoint in Fig. 5(b) is one
where the view is not obstructed by the obstacle. Similarly,
on using GoogLeNet image features and GoogleNet+SVM
as the failure detection algorithm (which gave the highest
performance for a static viewpoint), the active viewpoint
improves performance by 11% over the static viewpoint,
averaged across ten runs of 10-fold cross-validation. We
show example views for this combination in Fig. 5 (c)
and (d). This shows that GoogleNet+SVM classifier is
better able to determine task outcomes by latching on to
discriminative regions of the image, in turn making active
viewpoint selection work better. Active viewpoint selection
shows promise in detecting failures even in the presence of
obstacles and clutter that are part of real-world environments.
3) Quadrotor Surveillance Task: For this dataset, we test
both static and active viewpoint selection approaches. For
each of the 5 viewpoints shown in Fig. 3, we use 68 images.
We use 5-fold cross validation to generate 5 partitions of the
dataset ( more image data available per viewpoint) and repeat
this for several runs of the experiments. We report cross-
validated results averaged across 10 runs of the experiment.
The results for the static viewpoint selection approach using



TABLE I
10-FOLD CROSS VALIDATION FOR FAILURE DETECTION USING A STATIC
VIEWPOINT ON THE TABLE ASSEMBLY DATASET WITH OBSTACLES.

View| Random | AlexNet VGG GoogLeNet | ResNet
Forest (fc6) + | (fc6) + | (pool5) + | (poolS) +
(%) SVM (%) | SVM (%) | SVM (%) SVM (%)
1 52.0 443 46.8 63.8 40.8
2 67.0 52.3 44.8 61.0 60.8
3 65.5 48.0 49.0 453 39.8
4 62.8 58.5 41.3 43.5 49.5
5 61.8 66.8 S51.3 45.0 58.0
6 54.3 44.5 433 51.3 62.3
7 60.5 50.3 45.5 53.0 S51.3
8 65.5 55.0 44.5 51.0 47.0
9 55.5 43.5 63.5 61.3 50.5
10 45.8 54.8 473 64.0 50.5
11 56.8 45.3 46.3 56.8 61.0
12 68.5 62.3 52.5 53.3 50.5
13 69.0 45.8 68.8 44.0 43.5
14 66.5 46.3 53.8 55.0 54.0
15 63.0 47.0 58.3 50.0 51.0
16 53.5 433 46.3 69.5 49.8
17 57.8 45.3 50.5 47.0 61.3
18 67.3 45.5 63.0 43.8 59.8
19 67.3 47.8 54.0 54.3 48.5
20 51.0 50.5 43.5 58.3 453

both random forests and SVMs trained on deep features
are shown in Table III. The highest accuracy with the
RF method is 77.1% (view 2) which is matched by the
performance of the GoogLeNet features (77.9%). Notably,
the SVM+CNN approach (for all 4 architectures) performs
better than chance for every viewpoint. This is a somewhat
surprising result since many viewpoints appear to contain
very little information about the classification of a given trial.

TABLE III
5-FOLD CROSS VALIDATION RESULTS FOR FAILURE DETECTION USING A
STATIC VIEWPOINT ON THE QUADCOPTER DATASET.

View| Random | AlexNet VGG GoogLeNet | ResNet
Forest (fc7) + | (fc6) + | (pool5) + | (poolS) +
(%) SVM (%) | SVM (%) | SVM (%) SVM (%)

1 56.3 65.2 65.5 54.6 49.75

2 77.1 55.9 63.1 77.9 62.87

3 S51.3 64.5 63.0 58.8 74.66

4 56.3 53.9 70.9 58.1 70.74

5 S51.8 57.1 48.0 57.5 64.53

We also evaluate two-stage active viewpoint selection. For
one run of 5-fold cross validation, we find that the static
viewpoint selection approach yields an outcome classifica-
tion accuracy of 74.36% with the random forest classifier
(best performing static view). Whereas, our proposed active
viewpoint selection approach leads to an improvement of
approximately 5% with an accuracy of 79.23%. We test
active viewpoint selection with random forest as the fail-
ure detection algorithm and AlexNet features as the image
features in Algorithm 1 and 2. We report these results across
several runs of 5-fold cross validation on the entire dataset.
Thus, on average the active two-stage viewpoint selection
approach helps in providing additional information to deter-
mine the outcome more accurately. Both of these methods
outperform selecting a random viewpoint to determine the

Fig. 6. Heat maps for various views in the quadrotor surveillance domain.

outcome, which gives an average classification accuracy of
67.31%. This validates that selecting the most informative
viewpoints is beneficial to determine the outcome of a task
more accurately.

Again, heat maps were created for each viewpoint, and fo-
cused in on the intuitively informative area of the informative
views, i.e. near the door handle (Fig. 6). It was interesting
to observe that the heat maps of less informative views also
focused on intuitively informative parts of the image, which
are the parts where one can see the head of the person from
over the car (Fig. 6).

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated that viewpoint selection and fine-
grained outcome classification are both tractable and useful
for a general class of robotics problems. A task-agnostic ap-
proach was proposed to automatically select static viewpoints
that result in high classification accuracy. The proposed
approach was tested on different tasks and hardware setups
and shown to work for small sized datasets. Additionally, a
novel method was introduced that improves performance by
discovering an information-optimized viewpoint that allows
for active selection of an optimal classification viewpoint. We
also demonstrated the potential of CNN features (extracted
by using pre-trained networks) to perform surprisingly well
on this problem, despite not being designed to extract fine-
grained features. This adds to a growing body of evidence
that deep learning is capable of performing fine-grained
image analysis, even when not discriminatively trained for
the task, without hand-crafting fine-grained strategies like
a discriminative random forest and without requiring image
alignment. We hypothesize that more specialized deep archi-
tectures focused on fine-grained features (such as [43], [44]),
could improve performance in the future.

Our proposed approach can work in principle for any class
that can be visually discriminated. Even though we only
test for success or failure, our approach can be extended
to work for multiple task outcomes in the future. Several
other interesting directions are also available for future
work. While our approach automatically selected viewpoints
that are highly informative and discriminative, it may be
beneficial to continuously adjust viewpoints over time during
a task, or to use a viewpoint that was not seen in the
original training set. One approach to do this may be to
use interpretable data such as heat maps, along with RGB-
D data, to identify important objects and relationships in
the scene that can be tracked over time, or for which the
viewpoint can be optimized. Also, rather than relying only on
fine-grained visual details for outcome classification, future



efforts may integrate fine-grained information from several
sources including vision, sound, and tactile data.

ACKNOWLEDGMENTS

This work has taken place in the Personal Autonomous
Robotics Lab (PeARL), University of Texas at Austin and at
Robert Bosch LLC, Palo Alto. PeARL research is supported
in part by NSF (IIS-1638107, I1IS-1617639).

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-
efficient approach to policy search,” in International Conference on
Machine Learning (ICML), 2011.

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
2013.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” arXiv preprint arXiv:1504.00702, 2015.
S. Niekum, S. Chitta, B. Marthi, S. Osentoski, and A. G. Barto,
“Incremental semantically grounded learning from demonstration,” in
Robotics: Science and Systems (RSS), 2013.

C. Plagemann, D. Fox, and W. Burgard, “Efficient failure detection on
mobile robots using particle filters with gaussian process proposals.”
in International Joint Conference on Artificial Intelligence (IJCAI),
2007.

V. Verma, S. Thrun, and R. Simmons, “Variable resolution particle
filter,” in International Joint Conference on Artificial Intelligence
(IJCAI), 2003.

S. Roumeliotis, G. S. Sukhatme, G. A. Bekey, et al., “Sensor fault
detection and identification in a mobile robot,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 1998.
M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “Robotic fault
detection and fault tolerance: A survey,” Reliability Engineering &
System Safety, 1994.

P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in IEEE
International Conference on Robotics & Automation (ICRA), 2011.
P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal, “Towards
associative skill memories,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2012.

A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: an expressive
primitive for time series classification,” in ACM International Confer-
ence on Knowledge Discovery and Data mining (SIGKDD), 2011.
M. Madry, L. Bo, D. Kragic, and D. Fox, “St-hmp: Unsupervised
spatio-temporal feature learning for tactile data,” in IEEE International
Conference on Robotics and Automation (ICRA), 2014.

J. Worcester, M. A. Hsieh, and R. Lakaemper, “Distributed assembly
with online workload balancing and visual error detection and correc-
tion,” The International Journal of Robotics Research, 2014.

H. Nguyen and C. C. Kemp, “Autonomously learning to visually detect
where manipulation will succeed,” Autonomous Robots, 2014.

G. Xue, T. Fukuda, and H. Asama, “Error recovery in the assembly of a
self-organizing manipulator by using active visual and force sensing,”
Autonomous Robots, 1995.

X. He, B. Benhabib, K. Smith, and R. Safaee-Rad, “Optimal camera
placement for an active-vision system,” in /EEE International Confer-
ence on Systems, Man, and Cybernetics, 1991.

D. Stampfer, M. Lutz, and C. Schlegel, “Information driven sensor
placement for robust active object recognition based on multiple
views,” in IEEE International Conference on Technologies for Prac-
tical Robot Applications (TePRA), 2012.

R. Bodor, A. Drenner, M. Janssen, P. Schrater, and N. Papanikolopou-
los, “Mobile camera positioning to optimize the observability of hu-
man activity recognition tasks,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2005.

B. Triggs and C. Laugier, “Automatic camera placement for robot
vision tasks,” in International Conference on Robotics and Automation
(ICRA), 1995.

G. Leifman, E. Shtrom, and A. Tal, “Surface regions of interest for
viewpoint selection,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

R. Pito, “A sensor-based solution to the next best view problem,” in
International Conference on Pattern Recognition, 1996.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

S. Wenhardt, B. Deutsch, J. Hornegger, H. Niemann, and J. Denzler,
“An information theoretic approach for next best view planning in 3-d
reconstruction,” in International Conference on Pattern Recognition,
2006.

G. Kootstra, J. Ypma, and B. De Boer, “Active exploration and
keypoint clustering for object recognition,” in IEEE International
Conference on Robotics and Automation (ICRA), 2008.

N. Govender, J. Claassens, F. Nicolls, and J. Warrell, “Active object
recognition using vocabulary trees,” in IEEE Workshop on Robot
Vision (WORV), 2013.

J. T. Feddema, C. G. Lee, and O. R. Mitchell, “Automatic selection
of image features for visual servoing of a robot manipulator,” in /EEE
International Conference on Robotics and Automation (ICRA), 1989.
H. Hashimoto, T. Kubota, M. Kudou, and F. Harashima, “Self-
organizing visual servo system based on neural networks,” IEEE
Control Systems, 1992.

C. W. Kennedy, T. Hu, and J. P. Desai, “Combining haptic and visual
servoing for cardiothoracic surgery,” in IEEE International Conference
on Robotics and Automation (ICRA), 2002.

P. RoBler, S. A. Stoeter, P. E. Rybski, M. Gini, and N. Papailikolopou-
los, “Visual servoing of a miniature robot toward a marked target,” in
International Conference on Digital Signal Processing, 2002.

B. Yao*, A. Khosla*, and L. Fei-Fei, “Combining randomization
and discrimination for fine-grained image categorization,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
2011.

A. Bosch, A. Zisserman, and X. Munoz, “Image classification using
random forests and ferns,” in IEEE International Conference on
Computer Vision (ICCV), 2007.

S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell,
A. Hertzmann, and H. Winnemoeller, “Recognizing image style,”
arXiv preprint arXiv:1311.3715, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” arXiv preprint arXiv:1512.03385, 2015.

B. Yao, A. Khosla, and L. Fei-Fei, “Combining randomization and
discrimination for fine-grained image categorization,” in /EEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2011.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet
large scale visual recognition challenge,” International Journal of
Computer Vision, 2015.

V. Kecman, Learning and Soft Computing: Support Vector Machines,
Neural Networks, and Fuzzy Logic Models, 2001.

J. A. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural processing letters, 1999.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in International Conference on Advanced
Robotics (ICAR), 2015.

A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn
features off-the-shelf: an astounding baseline for recognition,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2014.

J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin,
B. Chen, and Y. Wu, “Learning fine-grained image similarity with
deep ranking,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

S. Xie, T. Yang, X. Wang, and Y. Lin, “Hyper-class augmented and
regularized deep learning for fine-grained image classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.



