iReplayer: In-situ and Identical
Record-and-Replay for Multithreaded Applications

Hongyu Liu Sam Silvestro Wei Wang
University of Texas at San Antonio University of Texas at San Antonio University of Texas at San Antonio
United States United States United States

liuhyscc@gmail.com

Chen Tian
Huawei US R&D
United States
Chen.Tian@huawei.com

Abstract

Reproducing executions of multithreaded programs is very
challenging due to many intrinsic and external non-deter-
ministic factors. Existing RnR systems achieve significant
progress in terms of performance overhead, but none tar-
gets the in-situ setting, in which replay occurs within the
same process as the recording process. Also, most existing
work cannot achieve identical replay, which may prevent
the reproduction of some errors.

This paper presents iReplayer, which aims to identical-
ly replay multithreaded programs in the original process
(under the “in-situ” setting). The novel in-situ and identical
replay of iReplayer makes it more likely to reproduce er-
rors, and allows it to directly employ debugging mechanisms
(e.g. watchpoints) to aid failure diagnosis. Currently, iRe-
player only incurs 3% performance overhead on average,
which allows it to be always enabled in the production en-
vironment. iReplayer enables a range of possibilities, and
this paper presents three examples: two automatic tools for
detecting buffer overflows and use-after-free bugs, and one
interactive debugging tool that is integrated with GDB.

CCS Concepts - Computer systems organization — Re-
liability; . Software and its engineering — Software
testing and debugging;

Keywords Record-and-Replay, Identical Replay, In-situ Re-
play, Multithreaded Debugging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06...$15.00
https://doi.org/10.1145/3192366.3192380

Sam.Silvestro@utsa.edu

344

Wei.Wang@utsa.edu

Tongping Liu
University of Texas at San Antonio
United States
Tongping.Liu@utsa.edu

ACM Reference Format:

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping
Liu. 2018. iReplayer: In-situ and Identical Record-and-Replay for
Multithreaded Applications. In Proceedings of 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI'18). ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3192366.3192380

1 Introduction

Multithreaded programs contain intrinsic non-deterministic
factors that may affect the schedule and results of different
executions. Thus, reproducing multithreaded programs is
very challenging. Record-and-Replay (RnR) systems record
non-deterministic events of the original execution, such as
the order of synchronizations and the results of certain sys-
tem calls, and then reproduce these events during the re-
execution [62]. Some RnR systems even record the order of
memory accesses [13], or utilize offline analysis to infer the
order of memory accesses inside the execution [5, 37, 38, 46].
However, existing RnR systems have two shared shortcom-
ings, in addition to their specific problems as described in
Section 7.

First, they do not support in-situ replay, typically reproduc-
ing the execution in a different process. They could possibly
achieve better diagnostic capability, since they can access all
information from the entire execution [6]. However, there
are several issues. (1) As observed by experts [40, 71], of-
fline replay requires the same runtime environment as the
recording process, which will greatly limit their usage, since
normal users may not want to share third-party libraries or
sensitive inputs/logs with programmers due to business and
privacy concerns. (2) They cannot be utilized to assist online
recovery [71].

I~
0

Overflowing Object Pointer

Figure 1. A null reference problem.

https://doi.org/10.1145/3192366.3192380
https://doi.org/10.1145/3192366.3192380
https://doi.org/10.1145/3192366.3192380

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Second, most existing RnR systems (except RR [55, 60])
cannot identically reproduce the recorded execution, as they
do not guarantee the same system states, such as process/
thread IDs and file descriptors [5, 16, 33-35, 37, 46, 52, 54,
62, 66, 72], the same results of system calls (e.g., time) [36,
37, 48], or have different memory layouts [5, 16, 33-35, 37,
46, 52, 54, 62, 66, 72]. Therefore, it is impossible to reproduce
some types of bugs: (1) Bugs related to memory layout may
not be reliably reproduced. Figure 1 shows such an example,
in which a crash occurs when dereferencing a null pointer
caused by a buffer overflow. A different memory layout,
where an integer (not the pointer) is allocated immediately
after the overflowing object, may hide this crash during re-
executions; (2) Bugs dependent on system states, such as
thread IDs, file descriptors, or memory addresses, may not
be reproducible, when the states in replay are not the same as
those in the original execution. However, many real systems
were designed to utilize system states explicitly. For instance,
the Hoard allocator assigns heaps to each thread based on
the hashing of their thread ID [10], and some hash tables use
object addresses as their keys [41].

This paper presents iReplayer, a novel system that tar-
gets to in-situ and identically replay multithreaded programs,
which has the following significant differences from existing
RnR systems.

First, iReplayer designs an in-situ replay technique
that always replays the last-epoch execution within
the same process as the original execution. The in-situ
replay makes it easier to replay identical system states and
is more likely to reproduce bugs. This in-situ replay is dif-
ferent from existing online replay [44, 64, 71, 72], where
their replays actually occur in a process different from the
recorded one. Currently, iReplayer only replays the last-
epoch execution by default. However, it is especially suitable
for identifying bugs. Based on recent studies [6, 29, 64], most
bugs have a very short distance of error propagation, which
indicates a root cause may be located shortly prior to fail-
ures. Replaying-last-epoch also avoids significant time spent
waiting for problems to appear.

Second, iReplayer aims for identical re-execution
that strictly preserves all system states, results of sys-
tem calls, the order and results of synchronizations,
and the same memory allocations/deallocations of the
original execution, even for racy applications. Re-exe-
cution in the same process as the original execution helps
preserve system states, such as process IDs. Additionally,
iReplayer handles system calls specially, delays the reclaim-
ing of threads in order to maintain the state of memory
mappings and IDs for each thread, and employs a custom
memory allocator to manage the application heap similarly
across multiple executions, as described in Section 2.2. Based
on our evaluation, iReplayer can identically reproduce all
evaluated applications (even racy ones) that do not contain
implicit synchronizations (i. e., without using pthread APIs).

345

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu

Third, iReplayer only imposes 3% recording over-
head on average, which is sufficiently low for deploy-
ment. iReplayer utilizes multiple approaches to reduce its
logging overhead: (1) it takes advantage of the in-situ set-
ting to avoid recording the content of file reads/writes; (2) It
avoids the recording of memory accesses by handling race
conditions in replay phases, inspired by existing work [45,
52]; (3) It avoids the recording of memory allocations by em-
ploying a novel heap design, inspired by Dthreads [48]; (4) It
also designs a novel data structure to efficiently record the
local-order of synchronizations, while still ensuring identical
replay; (5) iReplayer designs an indirect level for recording
synchronization events, similar to existing work [4]. These
are the major reasons why iReplayer has much less over-
head than past related techniques—e.g. Respec [44]. More
details can be seen in Section 3.2.

The identical and in-situ re-execution of iReplayer
enables a range of possibilities, and three tools are sh-
own in this paper. These tools can be utilized in staging
or canary deployment, especially when new features are
rolling out. In addition, the in-situ and identical replay of
iReplayer enables unique possibilities: (1) It enables on-site
tools that can automatically diagnose root causes of pro-
gram failures, such as memory errors, segmentation faults,
aborts, and assertions. For instance, upon faults, we could
perform binary analysis to pinpoint faulting addresses, then
install watchpoints on them to identify root causes on-site
without human involvement. In contrast, offline RnR cannot
perform on-site analysis, and typically require additional
human effort. (2) It enables evidence-based approaches to
prevent program failures, such as memory errors or dead-
locks. For instance, it is possible to extend iReplayer to
delay memory deallocations to prevent discovered use-after-
frees, or enforce an alternative lock order to avoid deadlocks.
It is impossible to perform online repair with existing offline
RnRs.

Overall, this paper makes the following contributions:

First in-situ record-and-replay technique for multithr-
eaded programs: iReplayer proposes the first in-situ RnR
system that the replay occurs in the same process as the
original execution, enabling new possibilities.

An identical replay technique: iReplayer supports the
identical replay of multithreaded programs without self-de-
fined synchronizations. The identical replay helps reproduce
bugs, and ease the development of automatic tools.

Practical implementation techniques to reduce over-
head: iReplayer makes multiple design choices to reduce
recording overhead: it proposes a novel data structure that
supports identical replay with low recording overhead, and
supports the checking of divergence easily during the replay;
it designs a novel heap to avoid the recording of memory
allocations.

iReplayer: In-situ and Identical Record-and-Replay for ...

A practical system combining low recording overhead
and convenience: iReplayer is a software-only solution
with negligible recording overhead, only 3% on average. iRe-
player is a drop-in library that runs entirely within the
user space, and does not require nonexistent hardware, cus-
tomized OS, or the modification of programs.

Multiple promising applications: To demonstrate the use-
fulness of iReplayer, this paper developed two tools to
detect heap over-writes and use-after-free errors, and one
interactive debugging tool (connecting with GDB).

Outline:

The remainder of this paper is organized as follows. Section 2
gives an overview of our approach, including the challenges
of implementing multithreading support. After that, Sec-
tion 3 presents the detailed implementation, and Section 4
discusses several applications built on iReplayer. Section 5
presents experimental results, and limitations are discussed
in Section 6. Finally, Section 7 reviews related work, and
Section 8 concludes.

2 Overview

This section provides an overview of iReplayer, and the ma-
jor challenges of supporting in-situ and identical replaying
multithreaded applications.

2.1 Overview of Execution

iReplayer divides the entire execution into multiple epochs,
based on irrevocable system calls (defined in Section 2.2),
abnormal exits, or user-defined criteria. For instance, users
may use the size of logging as the criteria, in order to reduce
memory/disk consumption.

The overview of iReplayer is illustrated in Figure 2,
which shows an execution with two threads. At the begin-
ning of an epoch, iReplayer takes a snapshot of the pro-
gram’s states, such as its memory and the position of open
files, so that the program can be rolled back to this point (Sec-
tion 3.1). During the original execution, iReplayer records
the order of synchronizations (Section 3.2), and handles sys-
tem calls differently (Section 2.2.3). When a thread encoun-
ters an irrevocable system call — which changes the state, but
cannot be safely rolled back — or reaches the user-defined
criteria for recording, it will be treated as the coordinator
thread, and will coordinate with other threads to pause the
execution (Section 3.3). After all threads have reached a qui-
escent state, the coordinator thread determines whether to
continue the execution, or perform re-execution, based on
user instructions or tool-specific evidence (see Section 4). If
a replay is required, the coordinator notifies all other threads
to roll back (Section 3.4) and re-execute the program (Sec-
tion 3.5). Otherwise, all other threads are notified to proceed
to the next epoch.

346

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

2.2 Challenges for In-situ and Identical Replay

The major challenge of iReplayer is to ensure identical
replay of synchronizations, memory accesses, system calls,
and memory layout under the in-situ setting.

2.2.1 Ensuring Identical Synchronizations

We record the order of synchronizations during the origi-
nal execution, then replay this order in re-executions [62].
However, the greatest challenge is to achieve efficient record-
ing, which is further described in Section 3.2. Since some
applications rely on the results of synchronization functions,
such as try locks or barrier waits, iReplayer also records
the return values of synchronizations and returns them in
replays.

Currently, iReplayer does not support programs with
ad hoc synchronizations, where programs use their own
synchronization methods rather than explicit pthreads
APIs [74]), as further discussed in Section 6.

2.2.2 Ensuring Identical Order of Memory Accesses

Two types of memory accesses exist in multithreaded appli-
cations, including thread-private and shared accesses. The
order of thread-private accesses is determined by the or-
der of instructions, which does not require special handling
for identical replay. Shared accesses will be identical if they
are properly protected by explicit synchronizations, when
explicit synchronizations are identically reproduced. Thus,
the difficulty lies in ensuring the identical replay for race
conditions.

Handling race conditions: iReplayer does not record rac-
y accesses initially, since that is too expensive [13]. Instead,
it handles race conditions inside replay phases, which avoids
significant recording overhead for common cases in which
programs do not expose race conditions. During replay, it
will check for the divergence from the recorded events. If a
replay behaves exactly the same as the original execution, i.e.
the same order of system calls and synchronizations, then
race conditions are either not exposed or are successfully
reproduced. Otherwise, iReplayer immediately initiates an-
other replay, and utilizes multiple replays to search for a
matched schedule. When the events of a replay match the
recorded ones, iReplayer assumes that the replay is identi-
cal to the original execution, and will stop searching.

2.2.3 Ensuring Identical System Calls

Existing RnR systems record the results of system calls, and
replay the same states during replay [62, 67]. For instance,
the recorded results of gettimeofday will be returned in the
replay phase. However, no existing work aims for the in-situ
setting. The in-situ setting imposes some additional chal-
lenges toward ensuring identical system calls. For instance,
if some sequences of file-related system calls including open
and close are later replayed, it may be impossible to ensure

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu

Epoch Begin Epoch End Epoch Begin
Original Execution Check Errors
Thread 1 pb—""""-"-"-">"-—"———————— > 5 >
................................... : /
........ 1S H !
Rollback ... \ v I
..... \
......... . \ ! Error [5
--------- Instrumented Re-execution AR /.5
& > \' [Detected| [/ =
8
R i S
DR {
S /s
: \ ! =
. . [I s
e L)
Dynamic Analysis PR g \\ i .g
% @ 24 [N
S ok EaY !5
79 (&} [~
> kA s, - 1,9
> Q g b =\ 1 Z
¥. : Y %n B\
Instrumented Re-execution % B I
.) ., AN Q
........ AT i
........... R
Rollback ™o 4Ny
Thread 2 [f——————————————————————— —>

Figure 2. Overview of iReplayer with two threads. Bold lines represent normal program
executions, and dashed lines illustrate the assistance functions at epoch boundaries.
Dash-dot lines and red short-dash lines are tool-specific functions.

the same file descriptor for open, since it may now be occu-
pied. Similar results may occur for the munmap system call.
iReplayer classifies system calls into five categories, similar
to DoubleTake [49].

Repeatable system calls always return the same results
within the in-situ setting, e.g. getpid(). They require no
special handling in either the recording or replaying phases.

Recordable system calls return different results when
invoked during re-executions, such as gettimeofday () and
socket reads/writes. iReplayer records the results, and re-
turns the same values during replay without actual invoca-
tions.

Revocable system calls modify system states, but the
results of these operations can be reproduced identically
under the in-situ setting, as long as initial states are recov-
ered before the re-execution. These system calls mainly in-
clude file-related reads/writes. Although their results can
be recorded, this may impose substantial recording over-
head [44]. Instead, iReplayer records the positions of open

files during the recording phase, and issues these system
calls normally during replays (after recovering positions).

Deferrable system calls irrevocably change system
states, but can be safely delayed. These system calls, such
as munmap and close, are very important for identical re-
execution in an in-situ setting. iReplayer delays these sys-
tem calls until the next epoch, when there is no need for
re-execution. Note that delaying close() may result in the
number of open files exceeding the default limit; therefore,
iReplayer increases this limit during initialization.

Irrevocable system calls irrevocably change system
states, and cannot be rolled back safely or deferred easily. Al-
though conceptually they can be recorded as in other existing
RnR systems [5, 52, 62], this may involve substantial perfor-
mance overhead or engineering effort. Currently, iReplayer
simply treats them as irrevocable system calls, and closes
the current epoch when encountering them. For instance,

execve and fork are examples of such system calls. This clas-
sification has a significant impact on performance. Although
iReplayer could treat every system call as irrevocable, this
would create a large number of epochs, and significantly
increase the overhead caused by stopping, checkpointing,
and cleaning upon epochs. Thus, irrevocable systems calls
are eliminated as much as possible. Some system calls are fur-
ther classified based on their input parameters. For instance,
the fcntl system call with the F_GETOWN flag is treated as a
repeatable system call, while it will be treated as a recordable
system call when used with the F_DUPFD flag.

2.2.4 Ensuring Identical Heap Layout

Memory management is a major source of non-determinism
in multithreaded applications. First, the OS may random-
ize memory uses due to the ASLR mechanism [17]. Second,
multiple threads may compete with each other. To ensure
the identical memory layout, iReplayer isolates its inter-
nal memory uses from those of applications, adapts a “per-
thread heap” so that memory allocations inside the same
heap completely depend on the program order, and controls
interactions among different threads.

Per-thread Heap: Built on top of HeapLayers [11], it
adapts the per-thread heap organization of Hoard [10]. Mem-
ory allocations and deallocations within each thread will be
identically reproduced, if they do not interfere with other
threads. Different from Hoard, two live threads are never
allocated from the same per-thread heap. iReplayer inter-
cepts thread creation, and deterministically assigns a unique
heap for every thread by utilizing a global lock to serialize
thread creation. When the order of locks is replayed deter-
ministically, each thread will have the same heap during
re-executions.

Deterministically fetches blocks for per-thread
heaps: iReplayer maintains a super heap that holds a large
number of blocks for all per-thread heaps. When a per-thread

347

iReplayer: In-situ and Identical Record-and-Replay for ...

heap exhausts its memory, it obtains a new block from the
super heap under the protection of a global lock, which is
guaranteed to be the same during re-executions via deter-
ministically replaying lock acquisitions.

Handles deallocations by a different thread deter-
ministically: iReplayer always returns a freed object to
the current thread issuing the free, no matter which thread
allocated the object initially. Thus, this freed object only
affects the subsequent memory allocations of the current
thread, which again depends on the program order, and will
be deterministic.

Inside each per-thread heap, objects are managed using
power-of-two size classes. During allocations, each request
will be aligned to the next power-of-two size. The free list will
be checked first, and only if the request cannot be allocated
from its free list, it will be allocated using the bump pointer
mechanism [12]. Upon deallocation, each deallocated object
will be inserted into the head of its corresponding free list
and will be reutilized consequently. Since iReplayer limits
memory allocations to its per-thread heap and controls the
interactions among different threads, there is no need to
record the addresses of allocations to ensure identical replay.
Note that iReplayer does not serialize memory allocations,
but only the acquisition of each block (4 megabytes). Instead,
iReplayer avoids the usage of locks upon each allocation,
which explains why its heap is 3% faster than the default
Linux allocator (Section 5.3).

2.3 Other Challenges

There are other challenges, mostly caused by the in-situ set-
ting: how to perform recording efficiently (Section 3.2)? How
to stop an epoch safely under the in-situ setting (Section 3.3),
when some threads may be in the middle of a system call
or waiting for synchronizations? How to roll back multiple
threads correctly, especially for threads created in the last
epoch or are waiting on synchronizations (Section 3.4)? How
to prepare for re-execution (Section 3.4) to assist identical
replay? How to control the order of re-executions, and detect
divergence possibly caused by race conditions (Section 3.5)?

3 Implementation

This section describes the implementation of iReplayer,
organized by phases that are shown as Figure 2.

The start of a program is considered the start of the first
epoch, and terminations (either normal or abnormal exits)
will be treated as the end of the last epoch. iReplayer marks
its initialization function with the constructor attribute,
which allows it to initialize its custom heap, install signal
handlers, and prepare internal data structures for recording,
before entering the main routine. During initialization, iRe-
player identifies the range of global and text segments for
the application, as well as any libraries, by analyzing the
/proc/self/maps file. This information will be utilized for

348

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

checkpointing in the original execution, or for preparation
for re-executions.

3.1 Epoch Begin

At epoch begin, the major task is to checkpoint the states of
the execution in order to support re-executions. If the epoch
is not the first one, some housekeeping operations should
be completed prior to checkpointing. In a multithreaded
environment, a thread (typically the coordinator thread) is
responsible for the housekeeping operations.

Housekeeping operations typically involve the removal
of unnecessary records from the previous epoch, such as the
list of system calls and synchronizations. As described in
Section 2.2.3, some system calls are delayed, such as close
and munmap, which will be issued at this time. Cached data
for closed sockets will be removed, and joined threads will
be reclaimed.

After this, iReplayer checkpoints the states shared by all
threads, such as the memory states, and positions of open
files (see Section 3.2). Checkpointing memory states is per-
formed by copying all writable memory to a separate block
of memory, such as the heap and globals for both the appli-
cation and its dynamically-linked libraries. iReplayer also
updates file positions of all open files, which are tracked in
a global hash table.

Afterwards, all other threads are woken up, including th-
reads waiting on condition variables, barriers, and thread
joins, so that they can checkpoint their own per-thread states.
Per-thread states include the stack and per-thread hardware
registers. iReplayer invokes getcontext to record the state
of per-thread hardware registers.

3.2 Original Execution

During the original execution, iReplayer mainly handles
system calls and synchronizations, and deals with memory al-
locations and deallocations as discussed in Section 2.2.4. iRe-
player utilizes the following mechanisms to reduce record-
ing overhead.

First, iReplayer designs a novel data structure (as shown
in Figure 4) to store synchronization and system call events,
which preserves the order of events in the same thread and
across multiple threads. Each event is recorded in its per-
thread list initially, then will be added into the corresponding
per-variable list. For the example shown in Figure 3, the
corresponding order will be recorded as in Figure 4. For
instance, lock1’s per-variable list will track that lock1 is first
acquired by Thread1, and then by Thread2.

This data structure removes the need for the global or-
der [62], reconstructing the synchronization order offline [37,
38, 52], and special hardware support [52]. It guarantees
identical re-execution of explicit synchronizations: different
synchronizations inside the same thread will always have the
same order, determined by its program logic; the per-variable

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Threadl: Thread2:
Lock(&lock?2);

Lock(&lock1); __Unlock(&lock2);

Lock(&lock2); , _.o--=="""

Unlock(&lock2); Syscalll;

Unlock(&lock1);

Lock(&lock3); ~~~~‘~~~~._)Lock(&lock1);

Unlock(&lock3); Unlock(&lock1);
Syscall2;

Figure 3. Code snippet with sync and syscalls.

list ensures that multiple threads will perform synchroniza-
tions in the recorded order. In addition, this data structure is
convenient for checking the divergence during re-executions:
each thread is only required to check whether the next event
is the same as the recorded one in their per-thread lists. If
not, this is an indication of a divergence, and iReplayer will
immediately invoke a re-execution in order to search for a
matching schedule.

This data structure is very efficient at tracking events:
(1) Its recording does not introduce new lock contention be-
tween threads, excepting the original lock operations, which
is different from existing work [44]. (2) iReplayer further
reduces its logging overhead by pre-allocating a specified
number of entries for per-thread lists, which does not require
additional memory allocations during the recording. When
all entries are exhausted, it is time to stop the current epoch
and start a new epoch.

Second, iReplayer employs a level of indirection for find-
ing the list associated with each synchronization variable,
instead of naively using a global hash table, similar to Sync-
Perf [4]. It is difficult to define the size of the hash table and
design a balanced hash algorithm. The naive method was
found to impose up to 4x performance overhead when ap-
plications has a large number of synchronization variables,
e.g. fluidanimate of PARSEC [14]. Instead, iReplayer allo-
cates a shadow synchronization object from its internal heap
(to avoid interfering with the application’s memory uses),
and saves the pointer to this shadow object within the first
word of the original synchronization object. This shadow
object includes the real synchronization object and a pointer
to its per-variable list.

Third, iReplayer avoids the recording of each memory
access by delaying the handling of race conditions until the
replay phase (Section 2.2.2), avoids the recording of memory
allocations by employing a novel heap (Section 2.2.4), and
avoids the recording of file reads/writes by treating them as
revocable system calls (Section 2.2.3).

3.2.1 Supporting Synchronizations

iReplayer supports a range of synchronization primitives,
such as thread creations, various forms of mutex locks, con-
dition variables, barriers, signals, and thread joins.

349

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu

Lock 1 Lock 2 Lock 3 Per-vgrlable
l / l Lists
Thread1-List lockl/ lock2 lock3
I
Thread2-List lock2 syscalll lock1 syscall2

Figure 4. Data structures for tracking events.

Thread creation, destruction, and joins: iReplayer in-
tercepts pthread_create function calls to initialize thread-
related data, checkpoint the state prior to the execution, and
handle future thread exits. It takes multiple approaches to
guarantee identical replay: (1) It does not allow concurrent
thread creations by using a global mutex; (2) iReplayer
keeps threads alive (without exiting) until the next epoch
in order to preserve system states, such as thread IDs and
stacks, by using a thread-specific condition variable and a
status field. For a joinee thread joined by its parent, it checks
this status field upon exit. If the parent thread has not yet
joined on it, the status will be set to “joinable”, which may
then be changed to “joined” with a subsequent join operation.
Otherwise, the joinee thread wakes its joiner immediately.
Joinee threads are always waiting on a condition variable
(and thus kept alive), awaiting notification to either roll back
or exit.

Mutex locks: For mutex locks, iReplayer records the or-
der and return values of lock acquisitions using the data
structures shown in Figure 4. For mutex try-locks, iReplay-
er also records the return value within per-thread lists, but
only adds successful acquisitions into per-variable lists.

Condition variables: A cond_wait is treated as a mutex
release followed by a mutex acquisition (when woken up).
iReplayer records the wake-up events of condition vari-
ables, similar to lock acquisitions. Since other threads may
close the current epoch during waiting, every thread should
record its state and which condition variable before waiting.
After being woken up, a thread either proceeds as normal, or
performs a re-execution or checkpointing. iReplayer does
not record the order of cond_signal and cond_broadcast,
but only the wake-up order of threads. Note that this method
may induce a non-identical replay when locks are not prop-
erly acquired. iReplayer overcomes this by inserting ran-
dom sleeps at diverging points, as shown in Section 5.2.

Barriers: During barrier waiting, a thread may wait inside
the kernel until being joined by the required number of
threads. However, it is difficult to wake up a thread waiting
on the barrier. To solve this issue, iReplayer re-implements
the barrier by combining a mutex and a condition variable.
iReplayer intercepts the initialization of barriers in order

iReplayer: In-situ and Identical Record-and-Replay for ...

to initialize the corresponding mutex locks and condition
variables. iReplayer does not record the order of entries
into a barrier, since a thread waiting on a barrier will not
change the state. Instead, iReplayer records the return value
of every barrier wait, since some applications may rely on it.

3.3 Epoch End

At epoch end, the coordinator thread is responsible for stop-
ping the other threads and closing the current epoch. It is
impossible to checkpoint a multithreaded program correctly
and replay identical consequently, when multiple threads
continue executing and changing states. Therefore, iRe-
player adapts the “stop the world” approach employed by
garbage collection [15]. Stopping an epoch safely is unique
to the in-situ setting, which has several challenges:

Challenge 1: How to stop other threads safely? Asyn-
chronous methods (e.g. signals) are unreliable to stop and
roll back threads cleanly, if these threads are waiting inside
the kernel due to synchronizations (such as barrier_wait)
or other system calls. Instead, iReplayer employs a syn-
chronized method: before any synchronization or system
call invocation, it checks whether a coordinator thread has
requested to stop the current epoch. If so, the current thread
will wait on its internal condition variable, and mark its state
as stopped.

Challenge 2: How to stop threads waiting on synchro-
nizations or blocking on external system calls? Threads wait-
ing on condition variables are considered to be in unsta-
ble states, since other threads may wake them up at any
time. For those threads, iReplayer continues checking their
states until all other active threads have reached their stable
stopped states. iReplayer also handles threads waiting on
the acquisition of mutex locks: the actual holder of a mu-
tex will release its lock temporarily before it stops, so that
the waiter can acquire the lock and stop stably. iReplayer
guarantees the lock will be returned to the original holder
when the program proceeds as normal, without causing any
atomicity violations. Some blocking IOs will be turned into
non-blocking IOs upon interceptions, e.g. adding the timeout
value for epoll_wait.

When all other threads (except the coordinator thread)
have been stopped, the current epoch is closed. Thus, the
coordinator thread will check whether a replay should be
performed. If evidence of a program error exists (as shown
in Section 4), or instructions have been received from the
user, all threads are rolled back to the last checkpoint and
re-executed from there. Otherwise, all threads proceed to
the next epoch as normal (discussed in Section 3.1). The
coordinator thread orchestrates these operations.

3.4 Preparing for Re-execution

iReplayer prepares the re-execution in the following steps.
Firstly, the coordinator thread restores the memory of
heap and global sections for both the application and all

350

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

shared libraries, by copying the backup memory back its
corresponding locations.

Secondly, iReplayer resets pointers of all per-thread lists
and per-variable lists to their first recorded entry. Internally,
iReplayer maintains a hash table to track the mapping be-
tween synchronization variables and their shadow objects
to assist this.

Thirdly, iReplayer recovers file positions of all opened
files from the last epoch, by invoking the 1seek API directly
with the SEEK_SET option on every file descriptor.

In the end, the coordinator instructs other threads to roll

back their own stacks and contexts themselves. (1) Threads
waiting on condition variables or barriers should first be
woken up. However, threads created during the last epoch
should wait for notifications from their parents, after their
corresponding thread-creation events have transpired.
(2) Rolling back the stack should be performed very cau-
tiously, since the stack to be recovered might overwrite live
values on the current stack, which can cause a program
to behave abnormally. iReplayer forces all threads to use
temporary stacks before copying, then switch back to their
original stack after the copy has completed. (3) Because iRe-
player only restores the used portion of the stack in the
last checkpoint, the remainder of the stack should be zeroed
out to guarantee identical replay. Some applications contain
un-initialized reads that may access stack variables beyond
the stack of the last checkpoint. (4) If the rollback was caused
by a program fault, such as SIGSEGV, iReplayer cannot per-
form the rollback directly inside the signal handler, which
is using the kernel stack. For these cases, iReplayer passes
control to a custom function by setting the IP pointer, so that
the rollback can be performed in this function after return-
ing from the signal handler. (5) In the end, each thread calls
the setcontext API to restore its hardware registers, and
begins re-execution immediately thereafter.

3.5 Re-executions

iReplayer’s re-execution has three goals. First, it should
identically reproduce the original execution. Second, it should
check for possible divergence caused by race conditions.
Third, it should handle signals triggered by watchpoints for
applications, as described in Section 4.

3.5.1 Repeating Original Execution

To achieve identical re-executions, iReplayer handles sys-
tem calls correspondingly (see Section 2.2.3), repeats memory
allocations and deallocations as described in Section 2.2.4,
and repeats the recorded order of synchronizations. Note
that iReplayer’s replay is different from Castor [52]. Castor
requires the construction of the order of synchronizations by
using timestamps of different synchronizations. iReplayer
designs a novel data structure (Section 3.2) to overcome this
issue, which makes it suitable for in-situ setting.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

For each thread, iReplayer utilizes a condition variable
and a mutex lock to control the re-execution, and relies
on per-thread lists and per-variable lists to guide the re-
execution (as described in Section 3.2). The basic rule is
listed as follows: whenever the first event of a per-variable
list (e.g., a lock) is also the first event of its corresponding
per-thread list, the current thread can proceed. Otherwise,
the current thread should wait on its condition variable until
previous synchronizations on it have transpired.

iReplayer utilizes a global mutex to control the order of
thread creations. During re-executions, the parent thread
waits for its turn to proceed, then notifies the corresponding
child thread (waiting on their internal condition variable) to
proceed immediately. It skips the actual thread creation, since
all threads were kept alive. This fact guarantees the same
thread ID and stack for each thread. Other synchronizations
are discussed in Section 3.2.

3.5.2 Checking Divergence

iReplayer checks for the divergence from the recorded or-
der for two types of events, system calls and synchroniza-
tions, using the data structure described in Section 3.2. For
system calls, iReplayer confirms whether they are expected
by comparing with the recorded events. For synchroniza-
tions, iReplayer confirms whether the address and type
of synchronization is expected. Any divergence from the
recorded ones can be only caused by unknown race condi-
tions, when all explicit synchronizations and system calls are
replayed faithfully. If a divergence is detected, iReplayer
will restart a new execution immediately. It will stop per-
forming re-executions when a run with the same events
as those recorded is found. Currently, iReplayer supports
an unlimited number of replays. Note that since iReplay-
er replays all explicit synchronizations and system calls, it
generally takes very few re-executions to find a matching
schedule, as evaluated in Table 2. If the replay cannot repro-
duce the original schedule, iReplayer may insert random
delays at diverging points, but without changing the order
of the recorded schedule. Therefore, this mechanism helps
reproduce applications with race conditions, as shown in
Section 5.2.

4 Applications

This section presents three example applications built on
top of iReplayer: two automatic tools for detecting heap
buffer overflows and use-after-free memory errors, and one
debugging tool integrating with GDB. The ideas of detecting
memory errors are adopted from DoubleTake [49]. These ap-
plications exemplify the usefulness of an in-situ and identical
record-and-replay system as iReplayer.

351

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu

4.1 Heap Overflow

A heap buffer overflow occurs when a program writes out-
side the boundary of an allocated object. To aid in error
discovery, iReplayer places canaries (e.g., known random
values) adjacent to allocated objects in the original execu-
tion, a mechanism first introduced by StackGuard [20]. An
overflow will corrupt the canary value, which can then be
detected at the end of each epoch. Any overwritten canary
is incontrovertible evidence that a buffer overflow has oc-
curred. iReplayer uses a bitmap internally to record the
placement of canaries.

After the discovery of an overflow, iReplayer immedi-
ately triggers a re-execution to locate the exact instructions
responsible for the overflow. Before re-execution, iReplayer
installs a watchpoint at every address with a corrupted ca-
nary by invoking the perf_event_open system call. During
re-execution, instructions writing to the watched addresses
will trigger a trap, such that iReplayer reports the complete
call stack of the faulted instruction that causes an overflow.
Since there are four watchpoints, iReplayer can identify
root causes of four buffer overflows in one re-execution si-
multaneously. If applications have more than four bugs in
one epoch, which is very unlikely in deployed software, iRe-
player may invoke multiple replays in order to identify root
causes for all bugs.

4.2 Use-after-free

Use-after-free errors occur whenever an application accesses
memory that has previously been deallocated, and has possi-
bly been re-allocated to other live objects. A use-after-free
error may lead to an immediate SIGSEGV fault, the corruption
of data, or other unexpected program behavior.

To detect use-after-free problems, iReplayer delays the
re-allocation of freed objects by placing them into per-thread
quarantine lists, an idea originally developed by AddressSan-
itizer [68]. iReplayer fills the first 128 bytes of freed objects
with canary values. These freed objects are released from
the quarantine list when their total size becomes larger than
the user-defined setting.

iReplayer checks for use-after-free errors before any ob-
ject is actually removed from the quarantine lists, as well as
at epoch boundaries. Similar to buffer overflows, an overwrit-
ten canary indicates that a use-after-free error has occurred.
iReplayer employs re-executions to identify the root cause
of each error, by installing watchpoints at overwritten ca-
naries. During re-execution, iReplayer stores the call stack
of allocations and deallocations for the purpose of reporting.
It can precisely pinpoint the statements at use-after-free sites
by using the watchpoint mechanism.

4.3 Interactive Debugging Tool

iReplayer designs an interactive debugging tool to inte-
grate with the GDB debugger in case of abnormal exits, such

iReplayer: In-situ and Identical Record-and-Replay for ...

as assertion failures, segmentation faults, or aborts. iReplay-
er intercepts these exits and stops inside the signal handler.
Therefore, it is possible for programmers to find the call stack
associated with abnormal exits, when the process is attached
to the debugger. Inside the debugger, programmers may find
the addresses of faulted variables, and set watchpoints on
these addresses. Afterward, the programmer can issue the
rollback command via the debugger, which is supported by
iReplayer. For instance, if watchpoints have been set, the
GDB debugger will receive notifications when the correspond-
ing addresses have been accessed. Thus, programmers are
able to identify the root causes of the fault, without restarting
the buggy application. This interactive debugging tool will
not only help programmers identify faults in development
phases, but can also be utilized in staging deployment [53],
especially when new features are rolling out.

5 Evaluation
5.1 Experimental Setup

We performed all experiments on a 16-core quiescent ma-
chine. This machine has two sockets, installed with Intel®
Xeon® CPU E5-2640 processors and 256GB of memory, and
has 256KB L1, 2MB L2, and 20MB L3 cache. The operating
system is the vanilla Linux-4.4.25. All applications were com-
piled using Clang-3.8.1 at the -02 optimization level, except
those with explicit explanations.

Evaluated Applications: iReplayer was evaluated using
PARSEC 2.1 [14] and several real applications, such as mem-
cached 1.4.25, pbzip2, aget, pfscan, Apache httpd
2.4.25,and SQlite 3.12.0.For PARSEC applications, the
native input datasets were used. pbzip2 compressed a 150MB
file and pfscan scanned a 826MB file. aget downloaded
614MB of data from a machine on the same local area net-
work, to avoid interference caused by the Internet. Mem-
cached was evaluated using a Python script [1]. A program,
called “threadtest3.c”, was used to evaluate SQlite [69]. Ap-
ache was evaluated by sending 10, 000 requests via the ab
benchmark [2].

5.2 Identical Re-execution

We validated the identical execution by checking the order
of synchronizations and system calls, as well as the final
state of the heap memory. Identical re-executions should
always lead to an identical heap image. The probability of
a non-identical execution concluding with the same mem-
ory state is extremely low. Currently, we did not evaluate
explicit outputs, such as file or socket writes, although these
evaluations could increase the confidence of the identical
execution.

To perform the validation, we manually implanted a buffer
overflow error in the end of main routine for every program.
This buffer overflow immediately triggers a re-execution,
and we record the memory state before and after the replay.

352

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

For the default Linux library, we collected the memory dif-
ferences between these two executions. We also evaluated
the memory differences of RR, the only work supporting
identical re-execution without special OS support [55].

We evaluated the identical re-execution on 15 applica-
tions, including 6 real applications. The results of memory
differences are listed in Table 1. Note that canneal cannot be
replayed identically initially, since it invokes multiple atomic
functions to swap two encapsulated pointers in the origi-
nal program. As discussed in Section 1, iReplayer cannot
support identical replay for applications with ad hoc synchro-
nizations, if without additional instrumentation. Therefore,
we manually replaced all atomic instructions (reads/writes)
with mutex locks. After these changes, iReplayer achieves
the same heap image, as expected. Therefore, both iReplay-
er and RR can identically reproduce all of these applications,
with an identical final heap image at the end.

5.2.1 Handling Race Conditions

In our experiments, iReplayer identically reproduced 14
out of 15 applications (including modified canneal) in their
first re-execution, although these applications have more
than 146 race conditions in total: bodytrack(10), x264(72),
streamcluster(24), ferret(38), and pbzip2(2) [27]. That is,
we did not observe any divergence of the schedule for these
14 applications during their first replay. However, we are not
sure regarding whether these races are actually exercised.
Only bodytrack requires a second re-execution because of a
confirmed race condition related to condition variables [27].
Currently, iReplayer does not record the order of condition
signal and broadcast, which causes this replay issue. During
the second replay, iReplayer successfully reproduces this
program by inserting some delays upon diverging points,
which avoids the race condition.

In order to further confirm how race conditions affect
replay, we also evaluated a synthetic racy program—Crash-
er [51]. We ran Crasher 100, 000 times, and the race condition
(causing a crash) was observed on 82, 592 out of 100, 000 ex-
ecutions. Note that normal applications will not have such
a high probability of exhibiting a race, since this program
intentionally places sleep inside to trigger the race condi-
tion. The results of reproducing race conditions are further
shown in Table 2. In around 99.87% of executions, iReplayer
reproduced the race condition during the first replay. Approx-
imately 0.11% of the time, iReplayer required two replays
to reproduce the race, while the remaining ones (0.02%) re-
quired more than two replays. These results indicate that
iReplayer has an excellent chance to reproduce races, when
all other explicit synchronizations are replayed faithfully.

5.3 Performance Overhead

We compared the performance overhead of iReplayer with
rr-4.5.0 and CLAP [37], for the recording phase. iReplay-
er does not support replay for the whole execution, which

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu

Table 1. The percentage of memory difference between the original execution and the re-execution
for the default library (“Orig”) and iReplayer (“IR”). BS is the abbreviation for the blackscholes.

BS | bodytrack | canneal | dedup | ferret | fluidanimate | streamcluster | swaptions | x264 || aget | apache | memcached | pbzip2 | pfscan | sqlite
Orig || 3 9 43 25 5 7 <0.1 8 24 7 12 4 4 5 10
IR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RR || 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. Results of reproducing Crasher’s race.

Replay Times 1 2 3 >4
99.8718 | 0.1088 | 0.0121 | 0.0073

Percentage

is the reason why we did not evaluate performance for the
replay phase.

RR is the only available system supporting identical re-
play [55]. CLAP is another available RnR system for C/C++
programs that only uses software-based approaches [37].
We cannot find the source code for more recent work, such
as Castor [52] and H3 [38]. Also, these two recent works
actually utilize Intel’s Processor Tracing hardware feature,
which only appeared after 2013 [65]. CLAP records thread-
local execution paths at runtime, then computes memory
dependencies offline. However, their recording mechanism
is not available. We re-implemented the recording routine of
CLAP based on the path profiling support in LLVM-3.3 [37].
Paths were selected by the Ball-Larus algorithm [8], and a
function call was inserted at the entrance/exit of each func-
tion, as well as back edges, in order to record the path number
and function call number. Events are recorded in per-thread
lists, similar to the design of CLAP. We have confirmed that
the performance of aget, pfscan, and bbuf, with our imple-
mented version, has similar performance to that reported
in the paper [37]. We also confirmed the correctness of our
implementation with the CLAP authors.

Results are listed in Table 3, where all results are normal-
ized to the runtime of the default pthreads library. RR is
compiled with Clang-3.8.1, since it cannot be compiled using
the older version of Clang. Applications using CLAP and
iReplayer are compiled using Clang-3.3 for fair comparison,
since the implementation of the Ball-Larus algorithm is not
available after Clang-3.3. CLAP cannot run four applications
due to analysis errors in LLVM’s path profiling support, and
RR cannot run on Apache.

On average, CLAP runs around 2.4X slower, while iRe-
player only imposes negligible performance overhead (a-
round 3%). RR runs around 17x slower, due to using a single
thread to run multithreaded programs. In order to investigate
why iReplayer behaves better than the default Linux library,
we also evaluated the performance of iReplayer’s allocator
(noted as “IR-Alloc” in Table 3). We observed that iReplay-
er’s custom memory allocator contributes a performance
boost of about 2.5%, but with worse performance on four
evaluated applications. Based on our understanding, there
are multiple reasons that can help boost the performance:

353

(1) the allocator avoids the lock acquisitions of memory allo-
cations/deallocations, since each thread is not sharing the
heap with others. (2) iReplayer’s allocator avoids the large
number of madvise system calls (e.g., dedup), and eliminates
the possible false sharing effect [47]. Thus, the actual record-
ing overhead of iReplayer should be around 6%.

For all applications, except fluidanimate and stream-
cluster, iReplayer introduces less than 10% recording over-
head. Based on our investigation (omitted due to the space
limit), fluidanimate has over 54 million lock acquisitions
per second, where recording every acquisition and perform-
ing the synchronized checking prior to each, adds around 49%
overhead. The overhead of streamcluster mostly comes
from iReplayer’s custom memory allocator, for which we
do not know the exact reason.

In contrast, CLAP performs poorly in CPU-intensive appli-
cations that have a large amount of back-edges and branches,
such as ferret, streamcluster, swaptions and x264. For
applications that are I/O-intensive (like aget), or applica-
tions for which most of their workload is performed in un-
instrumented libraries (like pbzip2), CLAP performs very
well. RR is typically very slow, except for I/O-bound appli-
cations such as aget and Memcached. For other applications,
RR is very slow as expected, since it cannot take advantage
of the parallelism provided by multiple cores.

5.4 Detection Tools

We also evaluated the effectiveness and performance of de-
tection tools built on top of iReplayer. This evaluation is
conducted using applications with real and implanted bugs.

5.4.1 Detection Effectiveness

We confirmed iReplayer’s effectiveness on heap overflows
and use-after-free bugs that were collected from prior

tools [49, 75], Bugbench [50], and Bugzilla [42]. These ap-
plications include bc-1.06, bzip2 [42], gzip-1.2.4, 1ibHX,
polymorph, Memcached [70], and 1ibtiff [19]. iReplayer
can detect all of these known problems, which is similar to
DoubleTake.

As described in Section 5.2, we have manually inserted a
buffer overflow error at the end of all evaluated applications.
iReplayer’s detector can also detect all of these implanted
errors. Also, iReplayer reports the root causes of these bugs,
with precise calling contexts of the faults.

iReplayer: In-situ and Identical Record-and-Replay for ...

Table 3. Performance overhead

Applications | IR-Alloc | iReplayer | CLAP RR
blackscholes 1.001 1.021 | 1.113 | 8.011
bodytrack 0.993 0.990 - | 27.283
canneal 0.880 0.962 - | 6.884
dedup 0.664 0.817 1.074 5.138
ferret 1.017 0.998 3.519 | 13.275
fluidanimate 1.044 1.493 2.183 | 34.082
streamcluster 1.102 1.100 2.383 | 52.280
swaptions 0.979 0.990 2.964 | 29.921
X264 0.991 1.032 9.100 | 16.228
aget 1.000 1.032 1.013 1.065
apache 1.002 1.056 - -
memcached 1.000 1.001 | 1.001 1.822
pbzip2 0.974 0.895 - | 26.852
pfscan 1.015 1.006 1.032 8.462
sqlite 0.973 1.087 3.853 | 15.059
average 0.976 1.027 | 2658 [17.597
OiReplayer MiReplayer(OF+DP) AddressSanitizer

25
2

£

51.5

R

2

0.5 u
‘é&o\i&bi,@b 506& @&:@@yb‘;}i&& & °§@Q@&Q@$§<§’b&§’f & 4&&
& & &‘é)& ° & v

Figure 5. Comparing iReplayer’s performance
against AddressSanitizer in detecting memory errors.

5.4.2 Performance Overhead

We further compared the performance overhead of iReplay-
er and its detection tools with AddressSanitizer [68], the
previous state-of-the-art in detecting both buffer overflows
and use-after-free errors. AddressSanitizer instruments mem-
ory accesses during compile time, and checks for possible
memory errors by handling instrumented accesses. For a fair
comparison, we only enable the instrumentation on memory
writes on heap objects, while disabling its leak detection and
others. Note that we did not instrument memory writes on
all external libraries. We used Clang-3.8.1 for the evaluation,
as it ships with the recent version of AddressSanitizer.

As seen in Figure 5, iReplayer’s detectors (noted as “iRe-
player (OF+DP)”) only impose around 5% performance over-
head on average, which is significantly lower than that of
AddressSanitizer (26%). iReplayer’s detectors perform bet-
ter than, or similar to, AddressSanitizer in almost all appli-
cations, except fluidanimate. The overhead of iReplay-
er on this application comes from the recording of syn-
chronizations, as discussed above. It is worth noting that
AddressSanitizer cannot detect memory errors caused by
non-instrumented components, which includes all external
libraries that these applications may invoke. This explains

354

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

why AddressSanitizer has comparatively much better perfor-
mance on applications that invoke many non-instrumented
libraries, or perform extensive network communications,
such as aget, Apache, and Memcached.

5.5 Debugging Tools

We performed experiments on Memcached, Crasher [51], and
evaluated PARSEC applications using implanted buffer over-
flows. Crasher contains a segmentation fault, while the oth-
ers have buffer overflows. Each bug can be caught using the
interactive debugging method, described in Section 4.3.

6 Limitations and Future Work

This section discusses some limitations of iReplayer, and
possible extensions in the future.

Firstly, iReplayer only supports epoch-based record-and-
replay, but not re-execution of the entire program. Re-exec-
uting the whole program has better diagnostic capabilities,
such as identifying root causes far from the failure site. How-
ever, it has some issues as listed in Section 1. There is a
chance that replaying the last epoch may miss root cause for
some bugs, although existing studies show that most bugs
have a very short distance of error propagation and thus
should be identifiable [6, 29, 64].

Secondly, it may not achieve identical re-executions when
programs with race conditions do not lead to a divergence
from the recorded sequence, since it utilizes the order of syn-
chronizations and system calls to determine whether the re-
execution is identical to the original one. As described above,
iReplayer cannot support the identical replay of programs
with ad hoc synchronizations, which utilize self-defined syn-
chronizations instead of explicit pthreads APIs. Also, these
synchronizations include C/C++ atomics [21]. This issue can
be solved by instrumenting the code, as Castor proposed [52],
which allows iReplayer’s runtime to record the order of
such events. However, we did not implement this due to two
reasons: (1) it requires program instrumentation, which will
create barriers for easy deployment. (2) Existing study shows
that 22-67% of ad hoc synchronization uses result in bugs or
severe performance issues [74], which should be avoided as
much as possible.

Thirdly, iReplayer’s detection tools support evidence-
based error detection, which cannot detect problems caused
exclusively by memory reads, as they do not leave behind
evidence of their occurrence. Thus, while they exhibit no
false positives, they will miss read-based errors.

7 Related Work
7.1 Record-and-Replay Systems

A significant amount of record-and-replay systems exists. We
focus on RnR systems that support multithreaded programs
with race conditions, and run on the off-the-shelf hardware.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Some RnR systems require changes to the OS, such as
ReVirt [26], Triage [71], Respec [44], and DoublePlay [72],
which prevents widespread adoption due to security or re-
liability concerns related to altering the OS. Some utilize
static analysis to reduce runtime overhead, such as ODR [5],
LEAP [36], CLAP [37], Light [46], and H3 [38]. However,
they may exhibit a scalability issue for their offline analysis.

Several approaches require no changes to the OS nor of-
fline analysis [13, 24, 30, 43, 45, 52, 56, 63, 73], which is closer
to iReplayer. However, they also have shortcomings. Some
impose more than 10X performance overhead [13, 63], R2
requires significant manual annotations to specify which
functions should be monitored [30], and some require re-
compilation to annotate weak-locks on the racy code [43].

Similar to iReplayer, some existing work also avoids the
recording of racy accesses. Arnold detects the divergence
of executions caused by race conditions, and can attach a
vector-lock data race detector in replay [24]. However, it
relies on manual instrumentation to fix them. Lee et al. em-
ploy multiple tries (based on a single-threaded re-execution)
to search for a matching schedule [45], while iReplayer
employs multiple threads to replay, and can find a matched
schedule in fewer tries. Castor utilizes the hardware syn-
chronized timestamp counters to order events, and hardware
transactional memory to reduce locking overhead inside crit-
ical sections [52]. Thus, Castor requires hardware support
and compiler instrumentation that prevents easy deploy-
ment. iReplayer does not rely on any hardware feature, but
employs a novel data structure and level of indirection to
avoid significant recording overhead on synchronizations.
Overall, iReplayer achieves a similar level of performance
overhead as Castor, but can identically reproduce programs
without ad hoc synchronizations.

Difference between iReplayer and RR: No existing work
can guarantee identical re-execution in the in-situ setting.
RR is the only available system that supports identical re-
execution in the offline setting [55]. However, RR executes
and replays multiple threads using a time-sharing method
on a single core, which makes it easier to achieve identical
replay. Due to the lack of scalability to multicore hardware,
RR runs more than 17X slower. Further, RR does not support
in-situ replay. By comparison, iReplayer’s overhead is less
than 3%, and supports the in-situ replay.

7.2 Deterministic Multithreading

Deterministic multithreading (DMT) systems is another in-
teresting direction that is distinct from this work [7, 9, 22, 23,
25, 48]. DMT systems are generally unsuitable for debugging
purposes, as they can only exercise one possible schedule.
Although they completely avoid recording overhead by al-
ways enforcing a deterministic order on synchronizations,
they may impose much larger performance overhead when
handling race conditions [22].

355

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu

7.3 Detecting Memory Errors

Many dynamic approaches can detect memory errors, since
they do not generate false positives. Typically, they utilize
either dynamic or static instrumentation to instrument ev-
ery memory access. Dynamic instrumentation tools do not
require the recompilation of source code [18, 32, 39, 58, 59],
but may increase performance overhead as high as an or-
der of magnitude. Static instrumentation tools may employ
static analysis to help reduce the volume of instrumenta-
tion [3, 28, 31, 57, 61, 68]. AddressSanitizer is the state-of-
the-art in dynamic analysis tools [68], which can also de-
tect out-of-bound reads on stack and global variables that
is available with iReplayer. However, AddressSanitizer re-
quires explicit instrumentation, and cannot be utilized in a
production environment due to its prohibitive performance
overhead. DoubleTake provides similar functionality to iRe-
player [49]. However, it cannot support multithreaded pro-
grams, which is very challenging to achieve, as discussed
in Section 2. Also, DoubleTake does not support the same
interactive debugging as that of iReplayer.

8 Conclusion

This paper introduced iReplayer, a novel system that sup-
ports identical replay in the in-situ setting. iReplayer im-
poses only approximately 3% recording overhead, and can
identically reproduce all applications without ad hoc syn-
chronizations. To demonstrate its usefulness, three tools are
built on top of it: two automatic tools for detecting the root
causes of buffer overflows and use-after-free errors, and an
interactive debugging tool that helps identify the source of
segmentation faults and other abnormal exits.

Acknowledgments

This work was initiated and partially conducted while Tong-
ping Liu was a Ph.D. student at the University of Massachu-
setts Ambherst, under the supervision of Professor Emery
Berger. We would like to thank our shepherd, Yannis Smarag-
dakis, and anonymous reviewers for their valuable sugges-
tions and feedback. We thank Charlie Curtsinger, Bobby
Powers, and Jinpeng Zhou for their participation in develop-
ment, and Xiangyu Zhang, Michael D. Bond, Jia Rao, Corey
Crosser, and Mary Mays for their helpful comments. We also
thank Jeff Huang, Kostya Serebryany, Nuno Machado, Jason
Flinn, Brandon Lucia, Kaushik Veeraraghavan, and David
Devecsery for their help on the evaluation. This material is
based upon work supported by the National Science Founda-
tion under Award CCF-1566154 and CCF-1617390. The work
is also supported by Google Faculty Award, Mozilla Research
Grant, and the startup package from University of Texas at
San Antonio.

iReplayer: In-situ and Identical Record-and-Replay for ...

References
[1] 2017. Pure python memcached client. https://pypi.python.org/pypi/

[2

[3

]
]

=

—

python-memcached.

ab Developers. 2017. ab - Apache HTTP server benchmarking tool.
https://httpd.apache.org/docs/2.4/programs/ab.html.

Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.
2009. Baggy bounds checking: an efficient and backwards-compatible
defense against out-of-bounds errors. In Proceedings of the 18th confer-
ence on USENIX security symposium (SSYM’09). USENIX Association,
Berkeley, CA, USA, 51-66. http://dl.acm.org/citation.cfm?id=1855768.
1855772

Mohammad Mejbah ul Alam, Tongping Liu, Guangming Zeng, and
Abdullah Muzahid. 2017. SyncPerf: Categorizing, Detecting, and Di-
agnosing Synchronization Performance Bugs. In Proceedings of the
Twelfth European Conference on Computer Systems (EuroSys ’17). ACM,
New York, NY, USA, 298-313. https://doi.org/10.1145/3064176.3064186
Gautam Altekar and Ion Stoica. 2009. ODR: Output-deterministic
Replay for Multicore Debugging. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles (SOSP '09). ACM, New
York, NY, USA, 193-206. https://doi.org/10.1145/1629575.1629594

[6] Joy Arulraj, Guoliang Jin, and Shan Lu. 2014. Leveraging the Short-

[10

(11

[12

[13

[14

—

[t

[

]

]

]

]

=

term Memory of Hardware to Diagnose Production-run Software
Failures. In Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS ’14). ACM, New York, NY, USA, 207-222. https://doi.org/10.
1145/2541940.2541973

Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2010. Ef-
ficient System-enforced Deterministic Parallelism. In Proceedings of
the 9th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’10). USENIX Association, Berkeley, CA, USA, 1-16.
http://dl.acm.org/citation.cfm?id=1924943.1924957

Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In
Proceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO 29). IEEE Computer Society, Washington,
DC, USA, 46-57. http://dl.acm.org/citation.cfm?id=243846.243857
Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan
Grossman. 2010. CoreDet: A Compiler and Runtime System for De-
terministic Multithreaded Execution. In Proceedings of the Fifteenth
Edition of ASPLOS on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XV). ACM, New York, NY, USA, 53-64.
https://doi.org/10.1145/1736020.1736029

Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and
Paul R. Wilson. 2000. Hoard: A Scalable Memory Allocator for Multi-
threaded Applications. In Proceedings of the Ninth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS IX). ACM, New York, NY, USA, 117-128.
https://doi.org/10.1145/378993.379232

Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2001.
Composing High-performance Memory Allocators. In Proceedings of
the ACM SIGPLAN 2001 on Programming Language Design and Imple-
mentation (PLDI '01). ACM, New York, NY, USA, 114-124.

Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2002.
Reconsidering Custom Memory Allocation. In Proceedings of the 17th
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’02). ACM, New York, NY, USA,
1-12. https://doi.org/10.1145/582419.582421

Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards,
Ron Murray, Milenko Drini¢, Darek Mihocka, and Joe Chau. 2006.
Framework for Instruction-level Tracing and Analysis of Program Ex-
ecutions. In Proceedings of the 2Nd International Conference on Virtual
Execution Environments (VEE '06). ACM, New York, NY, USA, 154-163.
https://doi.org/10.1145/1134760.1220164

Christian Bienia and Kai Li. 2009. PARSEC 2.0: A New Benchmark Suite
for Chip-Multiprocessors. In Proceedings of the 5th Annual Workshop

356

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

on Modeling, Benchmarking and Simulation.

Hans-]. Boehm, Alan J. Demers, and Scott Shenker. 1991. Mostly Paral-
lel Garbage Collection. In Proceedings of the ACM SIGPLAN 1991 Confer-
ence on Programming Language Design and Implementation (PLDI *91).
ACM, New York, NY, USA, 157-164. https://doi.org/10.1145/113445.
113459

Michael D. Bond, Milind Kulkarni, Man Cao, Meisam Fathi Salmi, and
Jipeng Huang. 2015. Efficient Deterministic Replay of Multithreaded
Executions in a Managed Language Virtual Machine. In Proceedings
of the Principles and Practices of Programming on The Java Platform
(PPPJ ’15). ACM, New York, NY, USA, 90-101. https://doi.org/10.1145/
2807426.2807434

Brad Spengler. 2003. PaX: The Guaranteed End of Arbitrary Code
Execution. https://grsecurity.net/PaX-presentation.ppt.

Derek Bruening and Qin Zhao. 2011. Practical memory checking with
Dr. Memory. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’11). IEEE
Computer Society, Washington, DC, USA, 213-223. http://dl.acm.org/
citation.cfm?id=2190025.2190067

Bugzilla. 2013. "libtiff (gif2tiff): possible heapbased buffer overflow in
readgifimage()". http://bugzilla.maptools.org/show_bug.cgi?id=2451.
Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and
Qian Zhang. 1998. StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In In Proceedings of the 7th
USENIX Security Symposium. 63-78.

cppreference. 2017. Atomic operations library. http://en.cppreference.
com/w/cpp/atomic.

Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu,
Junfeng Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot:
A Practical Runtime for Deterministic, Stable, and Reliable Threads.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 388-405.
https://doi.org/10.1145/2517349.2522735

Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng
Yang. 2011. Efficient Deterministic Multithreading Through Schedule
Relaxation. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP '11). ACM, New York, NY, USA,
337-351. https://doi.org/10.1145/2043556.2043588

David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and
Peter M. Chen. 2014. Eidetic Systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI’14).
USENIX Association, Berkeley, CA, USA, 525-540. http://dl.acm.org/
citation.cfm?id=2685048.2685090

Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Gross-
man. 2011. RCDC: A Relaxed Consistency Deterministic Computer.
In Proceedings of the Sixteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASP-
LOS XVI). ACM, New York, NY, USA, 67-78. https://doi.org/10.1145/
1950365.1950376

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrali,
and Peter M. Chen. 2002. ReVirt: Enabling Intrusion Analysis Through
Virtual-machine Logging and Replay. SIGOPS Oper. Syst. Rev. 36, SI
(Dec. 2002), 211-224. https://doi.org/10.1145/844128.844148

Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and
Hans-J. Boehm. 2012. IFRit: Interference-free Regions for Dynamic
Data-race Detection. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and Ap-
plications (OOPSLA ’12). ACM, New York, NY, USA, 467-484. https:
//doi.org/10.1145/2384616.2384650

Frank Ch. Eigler. 2003. Mudflap: pointer use checking for C/C++. Red
Hat Inc.

Weining Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Zhenyu Yang.
2003. Characterization of linux kernel behavior under errors. In 2003

https://pypi.python.org/pypi/python-memcached
https://pypi.python.org/pypi/python-memcached
https://httpd.apache.org/docs/2.4/programs/ab.html
http://dl.acm.org/citation.cfm?id=1855768.1855772
http://dl.acm.org/citation.cfm?id=1855768.1855772
https://doi.org/10.1145/3064176.3064186
https://doi.org/10.1145/1629575.1629594
https://doi.org/10.1145/2541940.2541973
https://doi.org/10.1145/2541940.2541973
http://dl.acm.org/citation.cfm?id=1924943.1924957
http://dl.acm.org/citation.cfm?id=243846.243857
https://doi.org/10.1145/1736020.1736029
https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/582419.582421
https://doi.org/10.1145/1134760.1220164
https://doi.org/10.1145/113445.113459
https://doi.org/10.1145/113445.113459
https://doi.org/10.1145/2807426.2807434
https://doi.org/10.1145/2807426.2807434
https://grsecurity.net/PaX-presentation.ppt
http://dl.acm.org/citation.cfm?id=2190025.2190067
http://dl.acm.org/citation.cfm?id=2190025.2190067
http://bugzilla.maptools.org/show_bug.cgi?id=2451
http://en.cppreference.com/w/cpp/atomic
http://en.cppreference.com/w/cpp/atomic
https://doi.org/10.1145/2517349.2522735
https://doi.org/10.1145/2043556.2043588
http://dl.acm.org/citation.cfm?id=2685048.2685090
http://dl.acm.org/citation.cfm?id=2685048.2685090
https://doi.org/10.1145/1950365.1950376
https://doi.org/10.1145/1950365.1950376
https://doi.org/10.1145/844128.844148
https://doi.org/10.1145/2384616.2384650
https://doi.org/10.1145/2384616.2384650

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

(30

—

[32

—

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]
(42]

(43]

(4]

International Conference on Dependable Systems and Networks, 2003.
Proceedings. 459-468. https://doi.org/10.1109/DSN.2003.1209956
Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming
Wu, M Frans Kaashoek, and Zheng Zhang. 2008. R2: An application-
level kernel for record and replay. In Proceedings of the 8th USENIX
conference on Operating systems design and implementation. USENIX
Association, 193-208.

Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-weight
bounds checking. In Proceedings of the Tenth International Symposium
on Code Generation and Optimization (CGO ’12). ACM, New York, NY,
USA, 135-144. https://doi.org/10.1145/2259016.2259034

Reed Hastings and Bob Joyce. 1991. Purify: Fast detection of memory
leaks and access errors. In In Proc. of the Winter 1992 USENIX Conference.
125-138.

Nima Honarmand, Nathan Dautenhahn, Josep Torrellas, Samuel T.
King, Gilles Pokam, and Cristiano Pereira. 2013. Cyrus: Unintrusive
Application-level Record-replay for Replay Parallelism. In Proceedings
of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’13). ACM,
New York, NY, USA, 193-206. https://doi.org/10.1145/2451116.2451138
Nima Honarmand and Josep Torrellas. 2014. Replay Debugging:
Leveraging Record and Replay for Program Debugging. In Proceed-
ing of the 41st Annual International Symposium on Computer Ar-
chitecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 445-456.
http://dl.acm.org/citation.cfm?id=2665671.2665737

Derek R. Hower and Mark D. Hill. 2008. Rerun: Exploiting Episodes
for Lightweight Memory Race Recording. In Proceedings of the 35th
Annual International Symposium on Computer Architecture (ISCA "08).
IEEE Computer Society, Washington, DC, USA, 265-276. https://doi.
org/10.1109/ISCA.2008.26

Jeff Huang, Peng Liu, and Charles Zhang. 2010. LEAP: lightweight
deterministic multi-processor replay of concurrent java programs. In
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 207-216.

Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: Recording
Local Executions to Reproduce Concurrency Failures. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, New York, NY, USA, 141-152.
https://doi.org/10.1145/2491956.2462167

Shiyou Huang, Bowen Cai, and Jeff Huang. 2017. Towards Production-
Run Heisenbugs Reproduction on Commercial Hardware. In 2017
USENIX Annual Technical Conference. USENIX Association, 403-415.
Intel Corporation. 2012. Intel Inspector XE 2013. http://software.intel.
com/en-us/intel-inspector-xe.

Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and
George Candea. 2015. Failure Sketching: A Technique for Automated
Root Cause Diagnosis of In-production Failures. In Proceedings of the
25th Symposium on Operating Systems Principles (SOSP ’15). ACM, New
York, NY, USA, 344-360. https://doi.org/10.1145/2815400.2815412
Joseph Kulandai. 2011. Java Hashtable. http://javapapers.com/
core-java/java-hashtable/.

Lubomir Kundrak. 2007. Buffer overflow in bzip2’s bzip2recover. https:
//bugzilla.redhat.com/show_bug.cgi?id=226979.

Dongyoon Lee, Peter M. Chen, Jason Flinn, and Satish Narayanasamy.
2012. Chimera: Hybrid Program Analysis for Determinism. In Proceed-
ings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI °12). ACM, New York, NY, USA, 463-
474. https://doi.org/10.1145/2254064.2254119

Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish
Narayanasamy, Peter M. Chen, and Jason Flinn. 2010. Respec: Ef-
ficient Online Multiprocessor Replay via Speculation and External
Determinism. In Proceedings of the Fifteenth Edition of ASPLOS on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS XV). ACM, New York, NY, USA, 77-90. https://doi.org/10.

357

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu

1145/1736020.1736031

Kyu Hyung Lee, Dohyeong Kim, and Xiangyu Zhang. 2014.
Infrastructure-Free Logging and Replay of Concurrent Execution on
Multiple Cores. In Proceedings of the 28th European Conference on
ECOOP 2014 — Object-Oriented Programming - Volume 8586. Springer-
Verlag New York, Inc., New York, NY, USA, 232-256. https://doi.org/
10.1007/978-3-662-44202-9_10

Peng Liu, Xiangyu Zhang, Omer Tripp, and Yunhui Zheng. 2015.
Light: Replay via Tightly Bounded Recording. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2015). ACM, New York, NY, USA, 55-64.
https://doi.org/10.1145/2737924.2738001

Tongping Liu and Emery D. Berger. 2011. SHERIFF: precise detection
and automatic mitigation of false sharing. In Proceedings of the 2011
ACM international conference on Object oriented programming systems
languages and applications (OOPSLA °11). ACM, New York, NY, USA,
3-18. https://doi.org/10.1145/2048066.2048070

Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. Dthreads:
efficient deterministic multithreading. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP ’11).
ACM, New York, NY, USA, 327-336. https://doi.org/10.1145/2043556.
2043587

Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2016. Double-
Take: Fast and Precise Error Detection via Evidence-Based Dynamic
Analysis. In Proceedings of 38th International Conference on Software
Engineering (ICSE’16). ACM, New York, NY, USA.

Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan
Zhou. 2005. Bugbench: Benchmarks for evaluating bug detection tools.
In In Workshop on the Evaluation of Software Defect Detection Tools.
Nuno Machado, Brandon Lucia, and Luis Rodrigues. 2015. Concurrency
debugging with differential schedule projections. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 586-595.

Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres,
and Mendel Rosenblum. 2017. Towards Practical Default-On Multi-
Core Record/Replay. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’17). ACM, New York, NY, USA, 693-708.
https://doi.org/10.1145/3037697.3037751

Microsoft. 2007. What is the Staging Environment? https://msdn.
microsoft.com/en-us/library/ms942990(v=cs.70).aspx.

Pablo Montesinos, Luis Ceze, and Josep Torrellas. 2008. DeLorean:
Recording and Deterministically Replaying Shared-Memory Multipro-
cessor Execution Efficiently. In Proceedings of the 35th Annual Interna-
tional Symposium on Computer Architecture (ISCA "08). IEEE Computer
Society, Washington, DC, USA, 289-300. https://doi.org/10.1109/ISCA.
2008.36

Mozilla Corporation. 2017. rr: lightweight recording & deterministic
debugging. http://rr-project.org/.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and
Reproducing Heisenbugs in Concurrent Programs. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implemen-
tation (OSDI'08). USENIX Association, Berkeley, CA, USA, 267-280.
http://dl.acm.org/citation.cfm?id=1855741.1855760

George C. Necula Necula, McPeak Scott, and Weimer Westley. 2002.
CCured: Type-Safe Retrofitting of Legacy Code. In Proceedings of the
Principles of Programming Languages. 128—139.

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In Proceedings of
the 2007 ACM SIGPLAN conference on Programming language design
and implementation (PLDI "07). ACM, New York, NY, USA, 89-100.
https://doi.org/10.1145/1250734.1250746

https://doi.org/10.1109/DSN.2003.1209956
https://doi.org/10.1145/2259016.2259034
https://doi.org/10.1145/2451116.2451138
http://dl.acm.org/citation.cfm?id=2665671.2665737
https://doi.org/10.1109/ISCA.2008.26
https://doi.org/10.1109/ISCA.2008.26
https://doi.org/10.1145/2491956.2462167
http://software.intel.com/en-us/intel-inspector-xe
http://software.intel.com/en-us/intel-inspector-xe
https://doi.org/10.1145/2815400.2815412
http://javapapers.com/core-java/java-hashtable/
http://javapapers.com/core-java/java-hashtable/
https://bugzilla.redhat.com/show_bug.cgi?id=226979
https://bugzilla.redhat.com/show_bug.cgi?id=226979
https://doi.org/10.1145/2254064.2254119
https://doi.org/10.1145/1736020.1736031
https://doi.org/10.1145/1736020.1736031
https://doi.org/10.1007/978-3-662-44202-9_10
https://doi.org/10.1007/978-3-662-44202-9_10
https://doi.org/10.1145/2737924.2738001
https://doi.org/10.1145/2048066.2048070
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/3037697.3037751
https://msdn.microsoft.com/en-us/library/ms942990(v=cs.70).aspx
https://msdn.microsoft.com/en-us/library/ms942990(v=cs.70).aspx
https://doi.org/10.1109/ISCA.2008.36
https://doi.org/10.1109/ISCA.2008.36
http://rr-project.org/
http://dl.acm.org/citation.cfm?id=1855741.1855760
https://doi.org/10.1145/1250734.1250746

iReplayer: In-situ and Identical Record-and-Replay for ...

[59] Oracle Corporation. 2011. Sun Memory Error Discovery Tool
(Discover). http://docs.oracle.com/cd/E18659_01/html/821-1784/
gentextid-302.html.

[60] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert

Noll, and Nimrod Partush. 2017. Engineering Record And Replay For

Deployability. In 2017 USENIX Annual Technical Conference. USENIX

Association.

parasoft Company. 2013. Runtime Analysis and Memory Error Detection

for C and C++.

Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini

Kaushik, Kyu H. Lee, and Shan Lu. 2009. PRES: probabilistic replay with

execution sketching on multiprocessors. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles (SOSP "09).

ACM, New York, NY, USA, 177-192. https://doi.org/10.1145/1629575.

1629593

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and

James Cownie. 2010. PinPlay: A Framework for Deterministic Replay

and Reproducible Analysis of Parallel Programs. In Proceedings of the

8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization (CGO °10). ACM, New York, NY, USA, 2-11. https:

//doi.org/10.1145/1772954.1772958

[64] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.

2005. Rx: Treating Bugs As Allergies—a Safe Method to Survive Soft-

ware Failures. In Proceedings of the Twentieth ACM Symposium on

Operating Systems Principles (SOSP "05). ACM, New York, NY, USA,

235-248. https://doi.org/10.1145/1095810.1095833

James Reinders. 2013. "Processor Tracing". https://software.intel.com/

en-us/blogs/2013/09/18/processor-tracing.

Michiel Ronsse and Koen De Bosschere. 1999. RecPlay: A Fully Inte-

grated Practical Record/Replay System. ACM Trans. Comput. Syst. 17,

2 (May 1999), 133-152. https://doi.org/10.1145/312203.312214

Michiel Ronsse and Koen De Bosschere. 1999. RecPlay: a fully inte-

grated practical record/replay system. ACM Trans. Comput. Syst. 17, 2

(May 1999), 133-152. https://doi.org/10.1145/312203.312214

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitry Vyukov. 2012. AddressSanitizer: a fast address sanity checker.

[61

—

[62

—

(63

—

(65

[

(66

—

(67

—

(68

[t

358

[69]

[70]

[71]

[72]

(73]

[74]

[75]

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

In Proceedings of the 2012 USENIX conference on Annual Technical
Conference (USENIX ATC’12). USENIX Association, Berkeley, CA, USA,
28-28. http://dl.acm.org/citation.cfm?id=2342821.2342849

SQL Developers. 2017. How SQLite Is Tested. https://www.sqlite.org/
testing.html.

Talos. 2016. "Memcached Server SASL Autentication Remote Code
Execution Vulnerability". https://www.talosintelligence.com/reports/
TALOS-2016-0221/.

Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and
Yuanyuan Zhou. 2007. Triage: Diagnosing Production Run Failures at
the User’s Site. In Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles (SOSP "07). ACM, New York, NY, USA,
131-144. https://doi.org/10.1145/1294261.1294275

Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2011.
DoublePlay: parallelizing sequential logging and replay. In Proceedings
of the sixteenth international conference on Architectural support for
programming languages and operating systems (ASPLOS XVI). ACM,
New York, NY, USA, 15-26. https://doi.org/10.1145/1950365.1950370
Yan Wang, Harish Patil, Cristiano Pereira, Gregory Lueck, Rajiv Gupta,
and Iulian Neamtiu. 2014. DrDebug: Deterministic Replay Based Cyclic
Debugging with Dynamic Slicing. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO
’14). ACM, New York, NY, USA, Article 98, 11 pages. https://doi.org/
10.1145/2544137.2544152

Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and

Zhigiang Ma. 2010. Ad Hoc Synchronization Considered Harmful.
In Proceedings of the 9th USENLX Conference on Operating Systems De-

sign and Implementation (OSDI’'10). USENIX Association, Berkeley, CA,
USA, 163-176. http://dl.acm.org/citation.cfm?id=1924943.1924955
Qiang Zeng, Dinghao Wu, and Peng Liu. 2011. Cruiser: concurrent
heap buffer overflow monitoring using lock-free data structures. In
Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation (PLDI '11). ACM, New York, NY,
USA, 367-377. https://doi.org/10.1145/1993498.1993541

http://docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.html
http://docs.oracle.com/cd/E18659_01/html/821-1784/gentextid-302.html
https://doi.org/10.1145/1629575.1629593
https://doi.org/10.1145/1629575.1629593
https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1145/1095810.1095833
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://doi.org/10.1145/312203.312214
https://doi.org/10.1145/312203.312214
http://dl.acm.org/citation.cfm?id=2342821.2342849
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://www.talosintelligence.com/reports/TALOS-2016-0221/
https://www.talosintelligence.com/reports/TALOS-2016-0221/
https://doi.org/10.1145/1294261.1294275
https://doi.org/10.1145/1950365.1950370
https://doi.org/10.1145/2544137.2544152
https://doi.org/10.1145/2544137.2544152
http://dl.acm.org/citation.cfm?id=1924943.1924955
https://doi.org/10.1145/1993498.1993541

	Abstract
	1 Introduction
	2 Overview
	2.1 Overview of Execution
	2.2 Challenges for In-situ and Identical Replay
	2.3 Other Challenges

	3 Implementation
	3.1 Epoch Begin
	3.2 Original Execution
	3.3 Epoch End
	3.4 Preparing for Re-execution
	3.5 Re-executions

	4 Applications
	4.1 Heap Overflow
	4.2 Use-after-free
	4.3 Interactive Debugging Tool

	5 Evaluation
	5.1 Experimental Setup
	5.2 Identical Re-execution
	5.3 Performance Overhead
	5.4 Detection Tools
	5.5 Debugging Tools

	6 Limitations and Future Work
	7 Related Work
	7.1 Record-and-Replay Systems
	7.2 Deterministic Multithreading
	7.3 Detecting Memory Errors

	8 Conclusion
	References

