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Abstract—Several recent studies have investigated the virtual
machine (VM) provisioning problem for requests with time
constraints (deadlines) in cloud systems. These studies typically
assumed that a request is associated with a single execution
time when running on VMs with a given resource demand. In
this paper, we consider modern applications that are normally
implemented with generic frameworks that allow them to execute
with various numbers of threads on VMs with different resource
demands. For such applications, it is possible for the users to
specify multiple execution options (MEOs) for a request where
each execution option is represented by a certain number of VMs
with some resources to run the application and its corresponding
execution time. We investigate the problem of virtual machine
provisioning for such time-sensitive requests with MEQOs in
resource-constrained clouds. By incorporating the MEOs of
requests, we propose several novel and flexible VM provisioning
schemes that carefully balance resource usage efficiency, input
workloads and request deadlines with the objective of achieving
higher resource utilization and system benefits. We evaluated the
proposed MEQO-aware schemes on various workloads with both
benchmark requests and synthetic requests. The results show
that our MEO-aware algorithms outperform the state-of-the-art
schemes that consider only a single execution option of requests
by serving up to 38% more requests and achieving up to 27%
more benefits.

Index Terms—Cloud systems; Resource allocation; Virtual
machines; Deadlines; Multiple execution options;

I. INTRODUCTION

Cloud computing platforms are rapidly emerging as the
preferred option for hosting applications in many business
contexts [7]. It enables on-demand and flexible provisioning
of a shared pool of hardware resources (e.g., CPU, memory,
disks and networks) to user applications. There is a myriad
of technologies and services that are required for the effective
operation of cloud computing systems. One of the most crucial
services for resource efficiency of cloud computing is the
effective resource provisioning strategy.

Undoubtedly resource provisioning (i.e., the selection and
deployment of VMs of user jobs) is an important and challeng-
ing problem in cloud computing environments and has been
intensively studied in prior research [3], [2], [31], [21], [6].
Although prior studies have investigated the VM provisioning
problem for time-sensitive jobs (which have deadlines) on
resource-constrained clouds, they usually assumed that a user
request (job) has only one execution option (denoted by its
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execution time with a certain resource demand). However,
modern applications, such as high-performance computing
applications and machine-learning applications, are usually
implemented with parallel frameworks, such as Pthreads,
OpenMP, MPI and Tensorflow [25], [9], [12], [1]. These
frameworks allow modern applications to executed with var-
ious numbers of threads on servers with different resources.
Therefore, when submitting a request (job) to a cloud system,
a user may have several options on how the application can be
executed. Here, each option can be specified by a requirement
of resources in terms of VM sizes and VM counts, as well as
a unique estimated execution time of the application based on
the resource demand.

When there are a range of execution options for executing
an application, it becomes difficult and too rigid for the user to
choose only one (or the best) execution option. More impor-
tantly, our previous experience in cloud VM provisioning has
shown that one major cause of low system utilization is this
rigid resource demand model, which limits the provisioner’s
ability to fully utilize the un-allocated resource fragments.
Specifically, if a job is specified with only one execution
option that demands more resources than any un-allocated
resource fragments, such an option will prevent the job from
being issued for execution, even if the job’s implementation
may allow it to use fewer numbers of threads and VMs.
As shown in Section III, having multiple execution options
(MEOs) for each job provides opportunities for more flexible
VM provisioning.

Note that, simply adding more execution options does not
guarantee improved system utilization and benefits. In fact, it
may even lead to worse performance if improper options are
chosen as most parallel applications do not have perfect linear
speedups and normally experience lower resource efficiency
for systems with more resources [26]. For instance, if a high-
resource demand execution option is chosen for a job, it may
block more resources for an extended period than low-resource
demand option due to lower resource efficiency, which could
prevent the resources from being allocated to other jobs and
in turn lead to more jobs missing deadlines and lower system
benefits. Consequently, to realize the full potential of multiple
execution options of jobs, VM provisioning algorithms must
be carefully designed to balance system utilization, resource
efficiency, input workloads, job deadlines and benefits.

In this paper, we present two novel MEO-aware VM pro-



visioning schemes named MEO-Greedy and MEO-Adaptive.
Here, both schemes consider the MEOs of requests and prior-
itize them based on current system load, resource efficiency of
execution options, deadlines and job benefits (bids). With the
priorities, requests are provisioned with resources by either
selecting the more efficient execution options to increase
system utilization, or adapting (scaling up) the execution
options gradually to maximize resource utilization with most
efficient options. The proposed schemes were evaluated using
a simulator for various workloads (e.g., overload and spiky
scenarios) with requests of both benchmark and synthetic
applications. The results show that our MEO-aware schemes
outperform the state-of-the-art schemes that consider only a
single execution option of jobs by serving up to 38% more
jobs and achieving up to 27% more benefits.

The remainder of this paper is organized as follows. We
discuss the closely related works in Section II. Section III
presents system models and a motivation example. The MEO-
aware VM provisioning schemes for time-sensitive applica-
tions are proposed in Section IV. Section V discusses the
evaluation results and Section VI concludes the paper.

II. CLOSELY RELATED WORKS

The problem of VM provisioning in cloud systems has
been investigated from different points of view and many
research studies have been conducted on resource allocation
mechanisms [4], [34]. For instance, the provisioning tech-
niques have been investigated to improve the performance of
the user applications [20], [21], [14], to efficiently use cloud
resources [35], [16], to minimize the user cost and maximize
the revenue for cloud service providers [36], [11], [27], [28],
to deliver services to the cloud users even in presence of
failures [18], [17], to improve QoS parameters [30], [32], or
to reduce power consumption [19], [15]. However, only very
limited research has focused on time-sensitive applications
with deadlines.

For jobs with timing-constraints, Li et al. introduced their
DCloud resource allocator that leverages the (soft) deadlines
of jobs in public clouds [22]. For deadline-constrained bag-
of-tasks applications, a set of algorithms were proposed to
cost-efficiently schedule them on a hybrid cloud [8]. Toosi et
al. proposed a resource provisioning algorithm to support the
deadline requirements of data-intensive applications in hybrid
cloud environments by measuring the walkability index [29].
An architecture for coordinated dynamic provisioning and
scheduling that is able to cost-effectively complete applica-
tions within their deadlines were studied for hybrid clouds
in [5]. These studies did not consider jobs with hard deadlines
and private clouds that normally have limited resources.

Le et al. compared the performance of several classic
scheduling algorithms for jobs with deadlines in cloud sys-
tems, including first-come-first-serve, shortest job first and
EDF algorithms [21]. A heuristic workflow scheduling algo-
rithm was proposed that attempts to minimize the execution
cost considering a user-defined deadline constraint [10]. Lim
et al. focused on resource allocation and scheduling on clouds

and clusters that process MapReduce jobs with SLAs [23].
Vecchiola et al. designed a deadline-driven resource manager
for scientific applications running on hybrid clouds [31]. While
these studies considered deadlines for time-sensitive jobs, they
have assumed a rigid execution model where jobs have only
a single execution option.

III. PRELIMINARIES AND MOTIVATING EXAMPLE
A. Cloud and VM Models

We consider a cloud system that consists of M heteroge-
neous computing nodes II = {Ny,... Ny, }. Each node has
R types of resources I' = {Ry,...,Rpr} (such as CPU cores,
memory and network bandwidth). The capacity vector of node
N, is denoted as C,, = (cl, ..., c[), where ¢ represents the
total capacity of resource R, on node N, (e.g., number of
CPU cores). With heterogeneous nodes being considered, the
capacity of one resource in different nodes can be different.

The computing resources in the cloud can be accessed by
cloud users in the form of virtual machines (VMs). In this
work, we consider V' types of virtual machines {V1,...,Vy}
that have different resource requirements. For the VM type
Vi, its required resources can be denoted by a demand vector
W, = (wi,...,wl), where w} represents the required
capacity (or amount) of resource R,.

B. Requests with Multiple Execution Options (MEOs)

To run a time-sensitive application, a cloud user needs to
submit a request to the cloud system, which can be represented
as a tuple 0; = (a;,d;, b;, E;). Here, a; denotes the request’s
arrival time, d; defines the deadline by which the application
needs to complete its execution, and b; represents the bid
(or benefit) that the system can achieve when the applica-
tion completes its execution in time. Since an application
may run with different number of threads on one or more
VMs with different number of cores (and other resources),
a cloud user can specify multiple execution options (MEQOs)
for running the application, which form the execution vector
E; = ((vi,1,m41,ti1), (Vi2, a2, tiz), -, (Vi mi g, ti ).

Here, the k" option is denoted as (v; x,m; k,t; k), Where
vi i (€ [1,V]) and m; j, represent the type and number of VMs
needed to run the application, and ¢; ;, denotes its (estimated)
worst-case execution time on the deployed VMs. Note that,
parallel applications normally take less time to run when
more threads are used on systems with more cores (and other
resources). Without loss of generality, it is assumed that the
execution options are ordered in decreasing execution times
where #;1 > t;2 > ... > t; ;. That is, it takes the longest
time to run the application with the first option that normally
needs the least amount of resources. In comparison, the last
(or most-demanding) option needs the most resources but the
least amount of time to run the application.

Given that user requests for running some applications can
arrive dynamically at anytime, we assume an interval-based
processing strategy, where the length of an interval can
be configurable (i.e., tens of minutes or a few hours). We
further assume that there are n requests (including those
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Fig. 1: Example: VM provisioning/schedules under different schemes.

arrived during the last interval and un-served ones from past
intervals) for being processed in an interval with its beginning
time at ¢y, which form the request set O(tg) = {01,...,0,}.

Problem Description: For a given set of requests O(ty) to
process user’s time-sensitive applications on a cloud system
with M computing nodes 11 = {Ny,... Ny}, finding the
best VM provisioning scheme such that the overall system
bids (or benefit), which is defined as the aggregated bids of
user requests that are served in time, is maximized.

Different from public clouds where many VMs may over-
load a computing node and share its resources, to ensure the
timely executions of time-sensitive applications, we assume
dedicated resources are allocated to the VMs that are mapped
to the same node simultaneously, which is similar to some
recent studies [2], [24], [33]. That is, for each virtual CPU
demanded by a VM, it will be allocated a physical CPU
core from the computing node (which is the same for other
resources). In addition, we consider only the capacity/demand
of a resource (e.g., number of cores or amount of memory)
without differentiating its actual model and specification (such
as operating frequency or speed).

It is not hard to see that finding the optimal VM provisioning
for the requests within an interval is NP-hard. In addition, the
best VM provisioning for a single interval may not lead to the
maximum overall system benefit when multiple intervals are
considered. Therefore, in this work we focus on exploiting the
MEOs of requests and designing efficient heuristics. In what
follows, through a concrete example, we first illustrate how
the flexibility of requests’ MEOs can be exploited to improve
system performance with more achieved benefits.

C. A Motivating Example

For simplicity, we consider a cloud system that has only two
nodes N; and Ny with 4 CPU cores, 8GB memory and 16 CPU
cores, 32GB memory respectively. That is, C; = (4,8) and
Cy = (16, 32). Three types of virtual machines V;, Vo and
V3 are considered with their demand vectors as W, = (2,4),
Wy = (4,8) and W3 = (8,16) respectively.

The length of each interval is assumed to be 10 time units.
There are 3, 3 and 5 requests that arrive at the beginning
of the first three intervals, respectively, as shown in Table I.

Here, each request has two or more execution options. Since
most applications do not scale perfectly, for an option with
more cores (and other resources), the execution time of the
application with more threads does not decreases linearly,
which actually leads to increased workload. For the requests
in Table I, their least-demanding (most-demanding) options
result in around 50%, 90% and 120% (160%, 180% and 280%)
system loads for the three intervals, respectively.

TABLE I: Sample Requests to be processed

[0 ] (ai, di, bi, Ei) |
61 | (0,26,16, ((1,1,21),(2,1,11), (3,1,7)))
92 (07 297 107( 27 1727>7 37 1714>>)

03 (0,24,4,((2,1,20),(2,2,11), (2, 4,6)))
04 (10720797 <<271 7> (21 74>7<27413>>)
05 (10, 24,3,((3, 1,9), (3,2,5)))

6 (10, 37,18, (1, 1, 17), (1, 2, 10)))
07 (20, 36, 25, ((2, 1, 15), (2, 2, 11)))
98 (20 42 1 7<<2 719>7< 7277>>)

By (20,44,9, ((2, 1,20}, (2, 2, 12)))
010 (20,41, 3,((2,2,8), (2,4,5)))

911 (20 36717 <<271710 7<27276>>)

In our prior work [2], we have studied the VM provisioning
problem for time-sensitive applications with only one execu-
tion option and proposed the Time-Sensitive Resource Allo-
cation (TSRA) scheme. Basically, TSRA prioritizes requests
based on a factor that incorporates their resource demands,
bids and deadlines and allocates their VMs to computing nodes
accordingly. For the requests in Table I, by considering only
their first options, Figure 1a shows their VM provisionings (in
terms of CPU cores) under TSRA (denoted as TSRA-First).

Here, based on their TSRA factors [2], the requests in the
first interval are ordered as: 6, > 0 > 03, where request 0, is
served first, followed by 65 and then 05. Since the requests are
served with their first (least-demanding) options, half of the
CPU cores are left unused in the first interval. Similarly, the
requests in the second interval can be ordered as 0 > 04 > 05
based on their TSRA factors. Here, after the requests 6g and 6,
are served, the available resources are not enough to host the
request 65’s VM, which cannot be served in time and misses its
deadline. Finally, the requests in the third interval are served
in the order of 07 > 0s = 6y = 019 > 611. Again, the requests
010 and 611 cannot be served in time due to lack of resources
and are discarded. In summary, TSRA-First discards 3 out of



11 requests and achieves 72% of the overall available benefits.

Instead of the first option, we can apply TSRA and focus on
the last (most-demanding) option of the requests (denoted as
TSRA-Last) and Figure 1b illustrates the VM provisionings for
the requests. Here, we can see that, although TSRA-Last can
utilize the resources relatively better in the first interval, the
big chunks of demanded resources cause large fragmentation
and actually lead to more requests missing their deadlines,
where four requests 04, 65, 05 and 61 are discarded. Here,
TSRA-Last achieves only 63% of overall available benefits.

With the requests’ MEOs being considered, a flexible VM
provisioning scheme should adaptively select the most appro-
priate execution option for each request based on the available
resources and the timing-constraints of the requests. As shown
in Figure lc, to better utilize the resources in the first interval,
requests 0, and 63 are allocated with their second options,
while the request 5 with its last (most-demanding) option.
Similarly, by selecting the appropriate execution options for
all other requests, all of them can be served in time and 100%
of overall benefits are achieved. However, we want to point out
that finding the appropriate execution option for each request
is not trivial and the details of our proposed flexible MEO-
aware VM provisioning heuristics are discussed next.

IV. FLEXIBLE MEO-AWARE VM PROVISIONING
A. Overview of MEO-TSRA

Due to the NP-hard nature of the task scheduling problem
in general [13], heuristics are usually adopted in resource pro-
visioning approaches in clouds. In this paper, we present two
MEOQO-aware time-sensitive resource allocation (MEO-TSRA)
heuristic schemes. These two heuristic schemes balance the
needs of improving system utilization and resource efficiency
to increase job deadline satisfactions and achieved benefits.

Both schemes have the same three-step overall structure,
which is illustrated with the MEO-TSRA function in Algo-
rithm 1. At the beginning of a new time interval T, the MEO-
TSRA function is invoked with a heuristic scheme to allocate
resources for 7'. The first step of MEO-TSRA is to collect
current requests and resource availability (line 3 - 4). Both
new requests arriving at 7" and old requests in the wait queue
are collected. In the second step, the requests are ranked and
prioritized based on the resource efficiency (scalability) of
their execution options, their urgency (deadlines and execution
times), benefits (bids) and resource demands (line 6). The
exact prioritization algorithm is described in Section IV-B.
In the last step, the prioritized requests and current resource
availability are passed to either of the two heuristic schemes,
MEO-Greedy or MEO-Adaptive, to allocate resources for
interval T'. These two heuristic schemes are described in
Section IV-C and IV-D in details.

B. Prioritization of User Requests

The goal of request prioritization is to determine the re-
quests that should be executed earlier than the other requests.
Intuitively, requests with higher benefits and higher urgency
should be executed earlier. Furthermore, requests with lower

Algorithm 1 MEO VM Provisioning at interval T’

1: function MEO-TSRA( )

2: /I collect requests and resource availability
3 © = {0;|0; € (New Arrival or Wait Queue)};
4: II = UpdateAvailCapacity(),

5: /I prioritize user requests
6.

7

8

Q < Prioritize(©);
/I allocate resources
: S = MEO-Greedy(Q, II) or MEO-Adaptive(Q, II);
9: end function
10: function Prioritize(©)
11: for (9, € © ) do
12: calculate f;; [Eqn(3)]
13: end for
14: Q <+ Sort(©); // in descending order of requests’ f;
15: end function

resource demand and lower scalability (resource efficiency)
should also be executed earlier with less-demanding execution
options (but slower) instead of high-demanding options to
avoid blocking more resources for extended periods. The rest
of this section discusses how to compute the priority f; of
request 6; at time interval 7" by quantizing benefits, urgency,
resource demand and scalability.

For a request 6;, its benefit is its bid b;. Its urgency can be
represented by (d; —to), where d; is its deadline and { is the
beginning time of 7. The resource demand and scalability of
0; are calculated based on the demand and scalability of its
execution options and available computing nodes.

Without loss of generality, consider the k’th execution
option Ej of #; and node N,. Let y;, denote the total
amount of R, -type resource demanded by FEj;j. Clearly,
Yik = Wy, , - Mk If Ejj is allocated on node N, the total
percentage of resources used by E;j on N, over its whole
execution, which is also its resource demand on N,), is then

tik * Z]R er yérk'

For the scala]f)lhty of F; 1., we define it as the ratio of the re-
duced execution time over the increased amount of resources.
More specially, For resource type R, F; ;’s scalability, sl
is then calculated as l

—ti
zk 1 z,kl (1)
yzk

Because an execution option’s scalability is bounded by
its least-scalable resource, the scalability of I ;, denoted by
sli . is then sl; , = ming, ep (sl ).

With the benefit, urgency, resource demands and scalability,
we can then compute the priority f;,, for execution option
E; ), if it is allocated on node N,

T
sli g = |— =
Yik—1

b;
fikp = - ()

slig - (di —to) - (tik " DR, er yégf)

In Equation (2), execution options with higher benefits, high
urgency, lower scalability and less resource demands receive
higher priorities. By considering all eligible computing nodes
that have remaining resources available at time 7" for 6;, we



Algorithm 2 MEO-Greedy VM Provisioning Scheme

1: function MEO-Greedy(Q, IT)

2 S < @; // the set of selected requests is empty initially
3 while (Q is not empty) do

4 0; < pop(Q); /I pick job with highest priority

5: /! find a feasible execution option for 0;
6.
7
8

while (F; is not empty) do
/I pick the first or last exec opt
: E <+ remove-first(F;) or remove-last(E;);
9: if £/ meets deadline and has res. for £/ then

10: p; = MAP(E,II); // map E to nodes

11: II = UpdateAvailCapacity();

12: S <~ S U (0;,p:); // add 0; to selected jobs
13: break; // 6; done

14: end if

15: /I E is not feasible, go on to check next opt
16: end while

17: if 0; is not selected to run then

18: if 6; still has opts not missing deadline then
19: WaitQueue.add(6;);

20: else

21: Discard 6;;

22: end if

23: end if

24: end while

25: return S;

26: end function

define the overall MEO factor f; (priority of 6;) as the highest
fik,p of all nodes and execution options,

fi = Igr:g)l'([{fi,k,MVRr € PaVk € [L]],y;ﬂk é C;} (3)

fi is used in Algorithm 1 line 12 for prioritization.

Algorithm 3 MEO-Adaptive VM Provisioning Scheme

1: function MEO-Adaptive(Q, II)

2 S + Alloc-First(Q, II);//Get TSRA-First allocation
3: S < ScaleUp(S, II);//Selectively scale-up jobs

4 return S;

5: end function

: function ScaleUp(S, II)

7: S2 < S; // make a copy of the initial allocation

8: /I Repeatedly scale-up jobs if possible

9: while (S2 is not empty) do

=)

10: S2 < Rank-Scalability(S2);

11: 0; < top(S2); // pick the most scalable job

12: if (enough resource for #; to run next option) then
13: Update 60; with its next option in S and Sa;

14: II = UpdateAvailCapacity();

15: else

16: pop(S2); // move on to next most scalable job
17: end if

18: end while

19: return S;

20: end function

21: function Rank-Scalability(S)

22: for 0, € S do

23: calculate ScalabilityFactor; for 6; using Eqn(4);
24: end for

25: S < Sort(S); // sort based scalability factor

26: end function

C. MEO-Greedy

MEO-Greedy is our first resource allocation heuristic
scheme. Algorithm 2 gives the pseudo-code of this scheme.
MEO-Greedy takes the prioritized jobs and available resources
as input parameters. It then iterates over the requests from the
highest priority to lowest priority (line 3 and 4) to allocate
resources for them. For request 0;, MEO-Greedy scans over its
execution options one by one and greedily pick the first option
that is feasible to be allocated (line 6-16). When scanning
the options, MEO-Greedy may either process the options
from the first (slowest and least-demanding) option to the last
(fastest and most-demanding) option (which is called MEO-
Greedy-First), or it may go from the last to the first (which
is called MEO-Greedy-Last). Intuitively, MEO-Greedy-First
picks the option with the highest resource efficiency, while
MEO-Greedy-Last picks the option with the highest chance of
increasing overall system utilization. If the current option E
is feasible (line 9), it will be allocated and mapped to a node
to execute (line 10-13). We use a Euclidean Distance (ED)
mapping strategy presented in our recent work [3]. If none of
the options of f; can be allocated due to resource limitation,
0; will be added to wait queue (line 19). If all of 6,’s options
miss its deadline, 6; misses deadline and is discarded (line 21).

D. MEO-Adaptive

MEO-Adaptive is our second resource allocation scheme,
the pseudo-code of which is given in Algorithm 3. MEO-
Adaptive first allocates resources to the requests using their
first (slowest) options (line 2). This allocation step is similar
to the MEO-Greedy algorithm except it always uses the first
option. Due to space limitation, the exact algorithm of this
first-option allocation is not included in the paper.

If there are resources available after the above allocation,
MEO-Adaptive tries to scale-up the requests until most of the
resources are allocated (line 3). To scale-up, MEO-Adaptive
examines the next (faster and more demanding) options of all
requests to pick the request with the most scalable next-option
(line 10-11) and scale-up this request with this option (line 13-
14). MEO-Adaptive repeats this scale-up operation until there
is not enough resource left to scale-up any requests (line 9).
Intuitively, MEO-Adaptive aims at maximizing resource uti-
lization with the most efficient options.

We use Equation (4) to evaluate the scalability of execution
options. For request 6;, let Ej be the current option used in
allocation. Let Ej,; be the next option that is faster and
more demanding than FEj;. The scalability of Ejy; can
then be computed by dividing the reduced execution time
over increase resources, as shown Equation (4). The scalability
factors acquired with Equation (4) are used to rank all options
of all requests (line 21-26).

2
b — ¢
Scalabilityfactor; = Z M 4)
Rer \Yik+1 ~ Yik
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V. EVALUATIONS AND DISCUSSIONS

We have evaluated the performance of the proposed MEO-
aware VM provisioning schemes through extensive simula-
tions. In addition to the proposed MEO-Greedy-First, MEO-
Greedy-Last and MEO-Adaptive schemes, for comparison,
we also evaluated the TSRA scheme in our prior work [2]
by considering only the first and last execution options of
requests, which are denoted as TSRA-First and TSRA-Last,
respectively. In what follows, we first present the settings of
the simulations.

A. Simulation Settings

Although the proposed VM provisioning schemes can han-
dle multiple types of resources, we have focused on only
two types of resources (i.e., CPU cores and memory) in the
evaluations. We considered a cloud system with 16 heteroge-
neous computing nodes, where two nodes have the capacity
of (16¢,64GB), two nodes of (8¢,32GB), four nodes of
(4¢,8GB) and eight nodes of (2¢,4GB), which represent a
mixture of typical computing nodes.

The same as in our prior work [2], eight (8) different types
of VMs are considered with their configurations being shown
in Table II. The core and memory configurations for these
VMs are actually derived from the widely deployed Amazon
EC2 instances. In addition, the table shows the range of bids
per time unit for each VM when it is requested to run any
application. In the evaluations, we consider both applications

TABLE II: VM configurations and prices

[VM | CPUs | Memory(GB) [ bid/time unit |
c4.large 2 3.75 [0.05, 0.15]
c4.xlarge 4 7.5 [0.15, 0.25]
c4.2xlarge 8 15 [0.35, 0.45]
rd.xlarge 4 30.5 [0.22, 0.32]
r4.2xlarge 8 61 [0.48, 0.58]
m4.xlarge 4 16 [0.15, 0.25]
m4.2xlarge 8 32 [0.35, 0.45]
m4.4xlarge 16 64 [0.75, 0.85]

from NAS Parallel Benchmarks suite and synthetic applica-
tions with randomly generated execution times.

B. Performance for Requests of NAS Benchmark Applications

For the applications in the NAS Benchmarks suite, we have
run them in both OMP and MPI versions on different numbers
and types of VMs in the OpenStack environment installed on
a cluster of 10 computing nodes. The detailed execution times
for these applications running on different VMs can be found
in the technical report of [3]. Based on the collected trace
data regarding the applications’ execution times on different
VMs, the user requests to utilize the computing resources of
the considered cloud system can be generated.

Here, for each request, its application is first randomly
selected from the benchmark suites. Then, from the collected
trace data, the available execution options (the number and
type of VMs as well as the application’s execution times)



are composed. For each option, the bid to utilize the VMs
can be randomly generated using the bid range as shown in
Table II and the bid of the request is set as the average bid
of the available options. A request’s arrival time is randomly
generated and its deadline is set as 2 to 4 times of the longest
execution time of all execution options from its arrival time.

We consider two different workload patterns and Figure 2
shows the percentage of discard requests under all VM pro-
visioning schemes. First, the average system loads from 80%
to 140% are evaluated. Here, for a given average system load
(e.g., 100%), the workload in each interval is randomly set in
the range of +/ — 40% (e.g., 60% to 140%). Considering the
workload imposed by their first execution options, requests are
generated until the accumulated workload reaches the target
value. Each data point is the average of 10 trials of simulation
and 1000 intervals (of 10 minutes) are evaluated for each trial.

As Figure 2a shows, our MEO-aware VM provisioning
schemes perform significantly better than TSRA-Last, which
uses only the last and least-efficient execution option of
the requests with considerably increased resource demands.
Although TSRA-First performs relatively better when the load
is low, its performance deteriorates quickly for higher loads.
The reason is that the adopted first options under 7SRA-
First introduce relatively less workload where resources may
not be fully utilized at low loads and most requests can be
served. However, at higher system loads, the single execution
option limits the opportunities to effectively utilize available
resources and leads to more discarded requests.

It turns out that MEO-Greedy-Last performs constantly the
best. The reason is that, by starting with the last (and most-
demanding) option of the requests, it can actually strike a good
balance between resource efficiency and system utilization,
where more requests can be served in time. Compared to
TSRA-First and TSRA-Last, up to 30% and 39% more requests,
respectively, can be served under MEO-Greedy-Last. For
MEO-Greedy-First, it emphasizes more on resource efficiency
than overall utilization and performs slightly worse than MEO-
Greedy-Last. Moreover, MEO-Adaptive turns to have the worst
performance among the MEO-aware schemes. This is probably
due to the irregular execution options for the benchmark
applications obtained from the trace data, which have quite
large differences in their resource demands and limit MEO-
Adaptive’s ability to gradually scale-up resource usages.

Second, we considered seasonal workloads with spikes,
which are similar to some web and HPC applications. In
particular, we consider X : 1 patterns that have X intervals
of low load interleaved with one interval of high load. The
results for 20% vs. 180% and 30% vs. 170% workloads are
shown in Figures 2bc, respectively. As X increases, there are
more low-load intervals that provide better chances to serve the
requests in high-load intervals in time and thus fewer requests
are discarded.

Again, MEO-Greedy-Last performs the best due to its good
balance of resource efficiency and system utilization, while
TSRA-Last performs the worst due to its lowest resource
efficiency. However, MEO-Greedy-First and MEO-Adaptive

can perform worse than TSRA-First. The reason is that both
MEO schemes try to exploit options with more resources for
some requests, which drastically reduce resource efficiency
due to the irregularity of the options and block considerably
more resource from being allocated to future requests.

Figure 3 gives the corresponding achieved benefits (as the
ratio of accumulated bids for the requests served in time over
total bid for all requests) of all schemes for the benchmark
applications under different workloads. With the similar rea-
sonings for discarded requests, MEO-Greedy-Last performs
the best among all schemes and up to 27% better than TSRA-
Last. However, for spiky workloads, because the differences
among discarded requests are relatively small where most
discarded requests have low bids, the achieve benefits under
the schemes (except TSRA-Last) are very close.

C. Performance for Synthetic Requests

To eliminate the impacts of irregular resource demands
in execution options of benchmark applications, synthetic
requests with more regular execution options are considered.
More specifically, for each synthetic request, we first arbi-
trarily pick a VM from Table II with the execution time
being randomly chosen between 5 to 200 minutes as its first
execution option. Then three (3) more execution options are
generated by increasing the resource demands gradually. For
two consecutive options F; j, and E; i1, the resource demand
is usually increased by a ratio of z, where = is randomly
picked between 1 and 3. The execution time reduces by a
factor between 1 and x to reflect the non-linear scalability.

Figure 4 shows the performance of all schemes for synthetic
requests with different loads. In general, the results show the
similar trends for the schemes when system load changes.
However, as the execution options of requests become more
regular in resource demands, all MEO-aware schemes out-
perform TSRA, where MEO-Adaptive performs the best as
it can adaptively choose the most resource-efficient execution
options for requests and improve overall system utilization.

VI. CONCLUSIONS

In this work, we studied the VM provisioning problem for
time-sensitive requests with multiple execution options (MEO)
on resource-constrained clouds. We demonstrated that MEOs
allow more flexible resource allocation which can considerably
increase system utilization, deadline satisfaction and overall
system benefit. To realize the full potential of MEO, we
present two MEO-aware VM provisioning schemes, MEO-
Greedy and MEO-Adaptive, that are carefully designed to
balance overall system utilization, resource efficiency, request
deadlines and benefits. We evaluated the proposed MEO-
aware schemes on various workloads with both benchmark
requests and synthetic requests. The results show that our
MEO-aware algorithms outperform the state-of-the-art single-
execution-option schemes by serving up to 38% more requests
and achieving up to 27% more benefits.
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