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ABSTRACT

The use of word vector embeddings as the basis for many upstream
tasks in text processing has lead to large improvements in accuracy.
However, the exact reasons for this success largely remain unclear,
as the properties and relations that these embeddings encode are
often not well understood. Our goal in this ongoing project is to
design effective interactive visualizations that help practitioners
and researchers understand and compare such spaces better. The
initial steps we have taken is to review relevant literature to identify
properties and relations of word vectors that are important for various
applications. From these, we derive basic tasks to inform the design
of adequate and effective interactive visualizations that help users
gain deeper insights into the structure of vector spaces. In addition,
we present three initial designs to support these tasks.

Index Terms: text data, task-based design, vector embeddings

1 INTRODUCTION

Vector embeddings are a collection of statistical techniques that
place complex objects into a vector space. Depending on the desired
use case for the embedding, these spaces are optimized to encode
different properties and relations between the objects. Although
being used for some time, recent research interest has been sparked
by positive results that such embeddings have yielded in fields such
as image retrieval, biology, medicine, and natural language process-
ing [4, 12].

Despite their popularity, structures captured by vector spaces are
often not very well understood [7]. In addition, the non-deterministic
nature of many embedding algorithms, and their dependence on
critical input parameters (such as the dimensionality of the vector
space), can lead to embeddings with differing properties even for
the same input data set. There are few tools to help understand
and compare such spaces. Most of them rely on projections into
2D space to convey an impression of vector similarities rather than
addressing concrete and practical tasks. Such tools are not helpful
for understanding and comparing word vector spaces.

In this ongoing work, we review relevant natural language pro-
cessing (NLP) literature and collect meaningful properties of vector
spaces that are used to evaluate or test them. Based on these, we
derive six basic tasks that facilitate understanding of these properties.
We then propose three design prototypes that help to gain insights
into various word vector embeddings.

2 BACKGROUND

Recent developments in embedding methods have largely been in-
spired by progress with neural networks [9]. These structures natu-
rally lead to the creation of vector representations for input objects
in intermediary levels of the network. There are numerous visual
approaches that aim to help understand the structure of such net-
works, e.g., [8], but it still remains an important problem. However,
gaining insights into neural networks does not necessarily help with
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understanding important characteristics of vector embeddings. In
addition, some efficient state-of-the-art embedding methods are not
based on a neural networks, e.g., [11]. Word embeddings can be
evaluated by measuring performance of downstream NLP tasks [10].
A popular alternative is to directly evaluate encoded linguistic re-
lations between words through the use of specialized evaluation
datasets. Some authors, e.g., [12] even let human users rate results.
Analyzing and comparing statistical models of language and other
types of data is an important problem that has been addressed by
visualization research before. Alexander and Gleicher [1], for exam-
ple, create visual designs in a task-based manner that allow users to
gain insights into and compare topic modeling results.

3 PROPERTIES AND TASKS

We have reviewed NLP literature concerned with word vector em-
beddings and their evaluation. While some of the evaluations were
based on downstream methods, we collected those that directly eval-
uate vector relations based on linguistic tasks. Table 1 lists three
embedding properties and six tasks that can be facilitated by interac-
tive visualization. We derive tasks that deal with single embeddings
(abbreviated “Emb.” in Table 1), and for comparing properties be-
tween multiple embeddings. Table 2 lists linguistic goals, and shows
how they can be broken down into the three basic properties.

Property Single Emb. Task Multiple Emb. Task

Nearest neighbors
(nn)

Understand structure
of neighborhood

Compare neighborhoods

Combination
(comb)

Understand vector
combinations

Compare vector
combinations

Axis alignment
(axis)

Understand concept
relations

Compare concept
relations

Table 1: Six basic tasks that can help users understand and compare
word vector embeddings for different linguistic goals.

Linguistic goal Properties Examples

Word analogy comb, nn [2, 3, 7, 9, 12]

Word fields comb, nn [4]

Semantic relatedness nn (ranked) [2, 12]

Synonymy detection nn (candidates) [2]

Concept categorization nn (candidates) [2, 12]

Selectional preferences comb, nn [2, 12]

Concept axis axis [3]

Changes in meaning nn (over time) [5, 6]

Table 2: Linguistic tasks from NLP literature and word embedding
properties relevant for them. nn is listed with three variations, ranks,
candidates, and over time. These target neighborhood relations in
a ranked fashion, based on candidate expressions, and comparing
neighborhoods over time, respectively. All of them are supported by
our designs.
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(a) A buddy plot shows the changing meaning of the word gay over 200
years. Each axis represents one embedding out of 20 trained on corpora
from different centuries (see [5]). We can see that sprightly moves further
away over the years (black line). Position from left to right encodes distance
from gay, color encodes the distance on the following axis. For static
neighborhoods, we would see a smooth yellow-to-blue color gradient from
left to right (see bar on top).
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(b) Co-occurrences with highest variance among vectors for king, queen,
woman, and man, based on two embeddings trained on different corpora. Co-
occurrence strength based on model predictions is mapped to color intensity.
For each vector and embedding, 10 terms with the highest variance (squares)
across the selected vectors are shown to convey a sense of the differences
between the terms. All other co-occurrence values are shown as circles.
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(c) Historic occupations projected along two axes, happy - sad and poor -
rich, from an embedding trained on historic texts. Users can explore the space
with an interactive lens that summarizes information of words under it.

Figure 1: Three designs to support the tasks in Table 1.

4 DESIGNS

In this section, we list three proposed designs to support the tasks
from Table 1. Figure 1 shows examples for them. Figure 1a is a
buddy plot design [1] that supports the analysis of nearest neighbors
(nn). It allows exploration of neighborhood structures for different
words from within the same embedding, or for the same word across
different embeddings. Buddy plots also support the analysis of vector
combinations based on their local neighborhoods. It enables users
to find answers to analysis questions such as how the neighborhood

of the vector queen changes, if they subtract woman from it.
In addition, the original context of the words and their variation

across combinations are an important property to understand the
meaning of vector operations in relation to the base corpus. To
provide users with insight into variances across word vectors, we
have created a design that conveys them for each vector involved in
a combination based on one or multiple embeddings (see Figure 1b).

The final task we support is to explore projections to axes spanned
by vectors that represent user-defined concepts. We have chosen to
use scatter plots for this (see [6]) as they convey general distributions,
and show correlations between both axes. Scatter plots are flexible
to support the comparison of terms mapped to identical axes in
two different embeddings, as well as different axes in the same
embedding. Figure 1c shows an example of the latter.

5 DISCUSSION AND CONCLUSION

Currently, the three designs are implemented individually and lack
interaction necessary for practical analysis. In addition to seamless
switching between them, users should have access to examples of
the base text, e.g., to interpret co-occurrences within their original
contexts. Moreover, the scatter plot design does not scale to very
large numbers of words. This can either be achieved by restricting it
to word fields (see [4]), or by using suitable aggregation methods.
So far, we have focused on word embeddings. However, our designs
are extendable to other data types, such as medical data. We plan to
explore these domains and adapt our designs accordingly.

To summarize, we have identified tasks to better understand word
vector embeddings and propose three designs to support them. In
the future, we plan to extend our designs and eventually make them
available, embedded within a more comprehensive analysis frame-
work.
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