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Abstract— In this work, we present a novel method for
constructing a topological map of biological hotspots in an
aquatic environment using a Fast Marching-based Voronoi
segmentation. Using this topological map, we develop a closed
form solution to the scheduling problem for any single path
through the graph. Searching over the space of all paths
allows us to compute a maximally informative path that
traverses a subset of the hotspots, given some budget. Using a
greedy-coverage algorithm we can then compute an informative
path. We evaluate our method in a set of simulated trials,
both with randomly generated environments and a real-world
environment. In these trials, we show that our method produces
a topological graph which more accurately captures features
in the environment than standard thresholding techniques.
Additionally, We show that our method can improve the
performance of a greedy-coverage algorithm in the informative
path planning problem by guiding it to different informative
areas to help it escape from local maxima.

I. INTRODUCTION

Monitoring biological activity in the ocean is one of the
key challenges in oceanography. Scientists are interested in
how ocean processes like hypoxia, changing ocean tem-
peratures, and chemical spills affect marine life. Typically,
the most informative places to monitor these effects are in
areas of high concentration of biological activity, known as
hotspots. These hotspots often occur in areas where there
is a confluence of cold, nutrient-rich water drawn up from
the ocean floor, and warm surface water, such as along a
coastal upwelling. In order to gather data, scientists want to
monitor these places for long periods of time, such as weeks
or months. However, traditional methods for collecting data,
such as chartering a research vessel, can be prohibitively
expensive, with operating costs upwards of $30,000 per
day [1]. Employing autonomous robotic systems capable of
conducting these monitoring tasks can not only reduce costs,
but also increase the amount and quality of data collected.

One popular type of system for ocean monitoring tasks
is buoyancy-driven ocean gliders such as the Spray [2], and
the Slocum Glider [3], which can be deployed for weeks
without needing to be recharged due to their low energy
consumption. These gliders have been successfully used in
long-term monitoring tasks tracking upwelling fronts [4], and
monitoring harmful algae blooms [5]. While gliders are less
costly than long periods of research vessel time, they are still
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Fig. 1: A topological graph constructed using our method on a dataset
collected in Monterey Bay, CA. Each colored region corresponds to a unique
biological hotspot. The edges connecting them are shown in black. Figures
in this paper are best viewed in color.

expensive systems, costing upwards of $100,000. In order
to maximize the utility of the data that the gliders collect,
scientists want to deploy them only in regions where they
will collect large amounts of useful data, such as in hotspot
regions. Fig. 1 shows a sample area off the coast of Monterey,
CA. By identifying the hotspots in this area, we can more
effectively use our limited glider deployment time to collect
ocean data.

To improve the capability of these autonomous systems
to explore and monitor their environment, we are interested
in leveraging topological techniques to create a compact
representation of the environment. This is accomplished by
identifying elements within the environment that share key
features and segmenting the environment based on these
features. A topological representation can then be used to
make high-level decisions about useful regions to gather data
more efficiently than an exhaustive search of the space, since
a search over a topological graph scales with the complexity
of the graph rather than with the size and dimensionality of
the space.

In this paper, we present a novel topological hotspot mon-
itoring method, which leverages a modified Fast Marching
(FM) algorithm. We developed this method to identify bio-
logical hotspot regions where useful observations are likely
to be made and to construct a compact topological graph
of these regions, which captures the underlying structure of
the information likelihood field. The vertices of the graph



correspond to the hotspot regions, and the edges are show
their connectivity. In order to find the optimal allocation of
time to the edges and vertices of this graph, we developed a
closed-form solution, which uses Lagrange Multipliers [6] to
solve the time allocation problem for a given set of vertices
and edges. By searching over the space of all possible paths
through the graph, we can identify the optimal schedule for
the robot, which is then combined with a coverage algorithm
to produce the robot’s final path.

The remainder of the paper is organized as follows.
Section II discusses prior work in the areas of hotspot
identification and informative path planning. In Section III,
we outline the three steps of our method to construct a topo-
logical representation of the environment and use it to solve
the informative path planning problem. Then, in Section IV,
we present the results from a set of tests using both real-
world ocean data collected in Monterey Bay and simulated
environments. In these tests, we show that by identifying
hotspots that are likely to provide useful observations, we
can improve the performance of a naı̈ve greedy coverage
algorithm.

II. RELATED WORK

A. Topological Segmentation Techniques
Topological mapping techniques have been used to derive

abstract representations of environments from metric maps.
A significant body of work in this area focuses on segmenting
indoor environments into regions which correspond with
rooms and hallways [7], [8]. These methods leverage Voronoi
partitioning [9], which segments an area by creating a set of
regions based on a set of seed points, then assigning each
location in space to one of these regions based on which
seed point the location is closest to. In indoor environments,
walls and other obstacles provide clear boundaries and seed
points for the expansion of Voronoi regions. In environments
with less structure, such as marine environments, it becomes
more difficult to divide the space into meaningful regions.
To address this, we propose leveraging Fast Marching (FM)
techniques [10] to incorporate the the features of the ma-
rine environment in the Voronoi expansion process. Since
they approximate the propagation of a wavefront through
a space, FM techniques have been successfully employed in
identify the time of first arrival of a monotonically advancing
front over a cost field, as well as in planning continuous,
minimum-cost paths for underwater vehicles [11].

One widely used method to create a topological represen-
tation of such a space is using some global metric to identify
coherent regions within the space that share key features.
There are a variety of segmentation techniques which can
be used to do this. In the area of data visualization and
interpretation, hotspot identification and tracking approaches
use thresholding to isolate areas of interest. All regions
with value greater than some threshold are included in
hotspot regions, creating areas defined by isobars in R2

and isosurfaces in R3 and higher dimensional spaces [12],
[13]. However, these thresholding approaches require hand-
tuning the threshold parameter which, in turn, requires a

significant amount of domain knowledge in order to select
the correct value. We seek to improve upon these methods
by substituting information contained within the environment
for the advanced domain knowledge to develop a partitioning
that captures the hotspots in a region, while also identifying
locally relevant features that would go unnoticed by a naı̈ve
thresholding.

B. Informative Path Planning
Often, a sensing robot will need to plan a path which

maximizes an information objective function, subject to
budgeting constraints such as battery life or travel time. This
problem is known as the informative path planning problem,
and it is a well-studied problem in robotics. The informative
path planning problem can be summarized as computing an
optimal trajectory P⇤, which satisfies the following:

P⇤
= argmax

P2 
{I(P)} s.t. c(P)  B, (1)

where  is the set of all possible trajectories, I(P) is the
information value of a trajectory P , c(P) is the cost of the
trajectory, and B is a budget, such as one imposed by time
or energy. Computing P

⇤ is NP-Hard [14] for nearly all
relevant objective functions, since the cost of searching over
 typically scales combinatorially, both in B and in the size
of the environment, and quickly becomes intractable.

Early work in this area uses Recursive-Greedy algorithms,
which leverage the submodularity of information to achieve
performance bounds [15]. More recent work used Branch
and Bound techniques [16] to compute optimal solutions.
Mixed Integer Programming formulations have been used
to compute maximally informative paths over a finite set
of discrete sampling locations, adapting the informative
path planning problem into the orienteering problem [17].
The orienteering problem has been extended to incorporate
planning paths with time-varying amounts of reward at each
vertex [18], as well as leveraging correlations between nearby
nodes. [19]. Computing exact solutions to the informative
path planning and orienteering problems can be expensive,
since they scale exponentially in the number of sensing loca-
tions. To address this, sampling-based information gathering
algorithms have been developed [14]. Closely intertwined
with the Informative Path Planning Problem is the problem of
Adaptive Sampling, where a robot needs to identify locations
in the world which will provide it with the best observations.
Recent work in this area has utilized Fast Marching and
Gaussian Processes [20] to efficiently select good observation
locations. However many of these information gathering
algorithms are limited in the size of the environments and
robot budgets that they can consider. By leveraging topo-
logical planning techniques, we can identify hotspot regions
within an environment that are likely to contain areas of high
information, and use these to reduce the overall search space
to a more tractable one.

III. METHOD

Our approach for using a topological graph to plan an
informative path can be broken down into three component



steps:
1) Identify hotspots in the environment and construct a

compact topological representation of these hotspots
and their connectivity as a graph.

2) Plan a maximally informative path through these
hotspots, deciding which hotspots are worth visiting,
scheduling an amount of time to spend at each of them,
and deciding which edges to use to travel between the
chosen hotspots.

3) Transform this high-level plan over the graph into one
which can be executed on a vehicle by creating sub-
plans within each hotspot.

Each of the steps will be discussed in detail in the
following section.

A. Topological Graph Construction
The first step in our approach is to reduce the space of

possible paths by clustering sets of high-value locations into
larger hotspot regions in a way which preserves their under-
lying topology. Using the robot’s estimate of the likelihood
of making a positive observation of a phenomenon at a
particular location in the environment, I

global

: R2 ! [0, 1],
we will construct a graph G = {V, E} that captures the
underlying topology of I

global

.
Each v

i

2 V = {v1, v2, ..., vn} is a region in space
containing one or more points of interest, which we define as
local maxima of I

global

(x, y). In an ocean monitoring task, a
relative increase in the occurrence of a phenomena, such as
phytoplankton can provide valuable data about the causes of
larger oceanic trends. Each v

i

has a corresponding estimate
of its local reward function, ˆ

I

i

(t

i

), where t

i

is the amount
of time spent at v

i

. This estimate can be any nondecreasing
differentiable function, and in this work we choose to model
it on the exponential reward function defined in [18] which
captures the submodular nature of the information gathering
task:

ˆ

I

i

(t

i

) = a

i

(1� e

�biti
), (2)

where a

i

is the total amount of information contained in v

i

.
The accumulation rate of information at the hotspot is given
by b

i

and is a function of both the size of the hotspot, A
i

,
and the sensing radius of the robot, obs

r

:

b

i

=

obs

2
r

⇡

A

i

. (3)

We assume that I

global

is static during the planning and
execution of a trajectory. If the robot visits the same vertex
multiple times, then the time that the robot is considered to
have spent at the vertex is the sum of all the time that it
spends during each visit.

The vertices of G are connected by a set of edges, E =

{e1, e2, ..., em}, where each e

i

2 E consists of a pair of
opposite directed edges {�!e

i

,

 �
e

i

}. It is possible for a pair of
vertices to be connected by more than one edge. A robot can
only observe the information associated with a given edge, e

i

once, by traversing it in either direction (by traversing either
�!
e

i

or  �e
i

). The the opposite edges �!e
i

and  �e
i

follow the

same path through R2, and therefore have the same length.
However, representing a bidirectional edge in this way will
allow us to prune our path search space, offering speedups
in the path planning step. This is discussed further in section
III-B.

To construct this graph, we begin by creating a discrete ap-
proximation of the global information function by sampling
it in a regular grid pattern. Using this discrete approximation
of I

global

, we collect the local maxima and minima into
two sets S

max

, and S
min

, respectively. S = S
max

\ S
min

.
The elements of S

max

are Points of Interest (PoI)s, as they
represent locations where there is a relative increase in the
global utility function. Conversely the elements of S

min

are locations where there is a relative lack of the desired
phenomena, and therefore should be avoided. This is shown
in Fig 2a.

Once S is constructed, it is used as the seed points for
our modified Fast Marching expansion method. As outlined
in [10] and [11], the standard FM algorithm approximates a
solution to the Eikonal Equation:

||ru|| = ⌧,

where ⌧ is a cost function which defines the speed of
travel through the environment, and u is the function which
describes the minimum cost-to-go distance between a point,
x

i,j

in the environment and a starting location, where u

i,j

=

u(x

i,j

). The FM algorithm leverages an upwind scheme to
propagate the first-order estimate of u as a wavefront through
an environment. On a Cartesian grid with spacing h, this can
be accomplished by estimating the magnitude of the gradient
ru in both the x and y directions using

||ru
i,j

||2 ⇡ ⌧2
i,j

= [max(D

�x

i,j

,�D+x

i,j

, 0)

2
+

max(D

�y

i,j

,�D+y

i,j

, 0)

2
],

(4)

where the forward and backward steps in the x and y

directions are defined as:

D

+x

i,j

=

u

i+1,j � u

i,j

h

, D

�x

i,j

=

u

i,j

� u

i�1,j

h

,

D

+y

i,j

=

u

i,j+1 � u

i,j

h

, D

�y

i,j

=

u

i,j

� u

i,j�1

h

The upwind scheme uses a breadth-first update method
to iteratively select a trial point which is moved from the
frontier set to the accepted set. The accepted set consists of
all the nodes that are a part of the expanded area, while the
frontier set consists of all the nodes that are adjacent to nodes
in the accepted set but are not included in it. The trial node
is selected as the node in the frontier set with minimal cost,
u

i,j

, since it is the next node to be visited by the wavefront
as it propagates. Then, we update u for all of the trial node’s
neighbors, adding them to the frontier set if necessary.

If a neighbor, x

i,j

is adjacent to one point or one pair
of opposite points in accepted, termed P1, then the time-of-
first-arrival at x

i,j

, u
i,j

is updated according to:

u

i,j

= u

P1 + ⌧

i,j

,
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Fig. 2: Hotspot Identification Process. Fig 2a shows the selected maxima and minima. Figs 2b and 2c show the growth of the labelled regions around each
s
max

and s
min

2 S Fig 2d shows the merging of adjacent maxima regions. Finally, Fig 2e shows the labelling of each maxima region as a vertex, and
each interface between minima regions as edges.

where u

P1 = min(u(P1)). Similarly if there are at least two
non-opposite adjacent points or pairs of points, P1 and P2

with corresponding minimum costs u

P1 and u

P2 , then u

i,j

is updated by

u

i,j

= min(u

P1 , uP2) + ⌧

i,j

if ⌧
i,j

 |u
P1 � u

P2 |. Otherwise the update is given by

u

i,j

=

1

2

⇣
u

P1 + u

P2 +

q
2⌧

2
i,j

� (u

P1 � u

P2)
2
⌘
.

We adapt this standard FM formulation by varying ⌧

i,j

based on whether x
i,j

is a descendant of a member of S
max

or S
min

. We accomplish this by propagating the max and
min labels from the original points of interest. Each time a
node is expanded it inherits the classification of its parent
in accepted. For an x

i,j

which descends from a s

max

2
S
max

, we define ⌧
i,j

as 1 � I

global

(i, j). For an x

i,j

which
descends from a s

min

2 S
min

, ⌧
i,j

= I

global

(i, j). The result
of this is that regions expanding from maxima expand more
easily in high-information areas, and regions expanding from
minima expand more easily to cover low-information areas.
This expansion process is shown in Figs. 2b and 2c.

To construct a graph from the labelled regions, we merge
adjacent regions grown from maxima, as depicted in Fig.
2d, and then label each combined region as a hotspot, and
add it to V . The interfaces between regions grown from
minima then become the edges between the hotspot vertices.
These interfaces are equidistant between local minima over
I

global

, and therefore correspond to relatively information-
rich paths between two vertices. The resultant graph for a
sample environment is shown in Fig. 2e.

It is possible for environments to exist where the topo-
logical graph construction fails, such as when a hotspot is
completely enclosed by a single region grown from a local
minima, or a local minima is enclosed by a hotspot. In the
first case, we simply use Fast Marching to extend an edge
from the isolated hotspot to the nearest edge or hotspot,
connecting it to the graph. We do not address the situation
where a hotspot encloses one or more local minima, as it
has no effect on the topological structure of the resulting
graph; we simply end up with a hotspot that bounds one
or more areas that are not included in the hotspot. If a
particular domain requires that hotspots be solid, a simplex-
based method such as the one employed in [21] could be

employed to identify and eliminate the holes in a hotspot.
However it is not clear if a hole that is a result of multiple
local minima should be eliminated in this manner or not. A
more detailed examination of this is outside the scope of this
paper.

B. Hotspot Scheduling
In order to plan a path using the graph, the robot must

decide which of the vertices it should visit, and in what
order it should visit them. Similar to the orienteering-style
problems discussed in [19], [18], the problem that we seek
to solve is to identify an informative path, P = (VP , EP , T ),
where VP ⇢ V is the set of unique vertices visited along the
path, EP ⇢ E is the set of edges that the robot traverses, and
T is the set of times, t

i

, spent at each v

i

2 VP . However,
in our approach, we do not restrict the path that the robot
follows to be a tour. Instead, the robot can begin and end its
path at any vertex.

We begin the scheduling process by constructing a tree
with its root at the vertex of G corresponding to the robot’s
initial position. We then expand the tree by adding child
nodes corresponding to each of the node’s neighbor vertices.
These neighbors include vertices arrived at by following
edges back to previously visited vertices, since it can be
necessary to backtrack in order to visit new, unexplored areas
of the graph. The tree is expanded until the budget constraint,

c(P) =

|VP |X

i=1

t

i

+

|EP |X

i=1

`

i

vel

r

 B, (5)

is met, where `
i

is the length of edge e

i

2 E , and vel

r

is
the robot’s velocity.

While this can be a potentially large number of paths, this
number is kept relatively low by several factors. Chief among
these is the fact that the graphs we develop are relatively
uncomplicated, rarely consisting of more than 10 vertices.
However, graphs with a particularly high branching factor
can lead to an intractable number of paths. Additionally we
are able to prune paths which are guaranteed to be worse
than paths already considered. Since there is no additional
benefit to re-visiting a given vertex multiple times versus
simply remaining at that same vertex for longer during a
previous visit, we can stop expanding the tree if we would
expand the same directed edge again. Attempting to expand



a directed edge that has already been traversed means that
we have previously visited each of the vertices incident to
the edge, and that we have already observed any information
contained within the edge.

Since the vertices of our graph correspond with hotspot
regions, they have nonzero area, and therefore there can be
some distance between the locations in R2 where the edges
connect to the vertices. To determine the time, t

i

, that is spent
at a given vertex on the candidate path, we first compute the
minimum amount of time that the robot is required to spend
in each v

i

along the path. Each time the robot visits v

i

, we
compute the amount of time the robot will need to take to
travel between its entry and exit edges. Summed across each
visit to v

i

, this time, t

�
i

, is the minimum amount of time
that the robot is required to spend in v

i

. Using this, we can
compute the amount of our budget remaining, R, using

R = B �
|VP |X

i=1

t

�
i

�
|EP |X

i=1

`

i

vel

r

. (6)

In order for the robot to utilize this remaining budget, we
assign each vertex an additional amount of time t

+
i

where
the total time spent at v

i

is t

i

= t

+
i

+ t

�
i

.
We developed a closed-form solution for calculating the

values for t+1 , t
+
2 , ..., t

+
|VP | which maximize

|VP |X

i=1

I

i

(t

i

) s.t.

|VP |X

i=1

t

+
i

 R, (7)

using a Lagrange Multiplier Method [6] to solve the
resource-constraint problem inherent in allocating R among
{t+1 , t

+
2 , ..., t

+
|VP |}. We construct our Lagrange Function, L,

using the Lagrange Multiplier variable, �,

L(t+1 , t
+
2 , ..., t

+
|VP |,�) =

|VP |X

i=1

I

i

(t

i

) + �(R�
|VP |X

i=1

t

+
i

). (8)

We then take the partial derivative with respect to each
t

+
i

2 {t+1 , t
+
2 , ..., t

+
|VP |}, as well as �. Setting these equal

to 0 yields the following system of equations:

8 1  i  |VP |,
@L
@t

+
i

= a

i

b

i

e

�bi(t
+
i +t

�
i ) � � = 0 (9)

@L
@�

= R�
|VP |X

i=1

t

+
i

= 0. (10)

We compute the optimal solution by first selecting an
arbitrary vertex. Without loss of generality, let this vertex
be v1. We may then solve for the time spent at each other
vertex, t

i

with respect to the time spent at this reference
vertex, t1, by setting the corresponding pair of equations in
Equation 9 equal to each other:

t

+
i

=

�ln
⇣

a1b1
aibi

⌘
+ b1(t

+
1 + t

�
1 )

b

i

� t

�
i

. (11)

Plugging this back in to Eq. 10, we are left with

t

+
1 =

R�
P|VP |

i=2


ln

⇣
a1b1
aibi

⌘

bi
� b1t

�
1

bi
+ t

�
i

�

1 +

P|VP |
i=2

b1
bi

, (12)

which we can then use to solve for t+1 .
Taken together, Equations 11 and 12 can be used to

compute the optimal values for all {t+1 , t
+
2 , ..., t

+
|VP |} along

a given path.
The process used to calculate the schedule for the robot

is outlined in Algorithm 1. Since each node in the tree
corresponds to a unique path through the graph, for each
node in the tree we can recover this candidate path by re-
tracing the path through the tree from the node to the root.
By identifying the set of vertices and edges visited along this
path, we can form an instance of the scheduling problem. By
solving this problem for each unique path, we can select the
P which maximizes our expected reward, thus resulting in
the optimal path for the robot.

Algorithm 1 Hotspot Scheduling
1: function HOTSPOTSCHEDULE(G, B)
2: tree = constructTree(G, B)
3: for each node in tree do
4: P = tracePathToRoot(node, tree)
5: {t1, t2, ...t|VP |} = schedule(P)
6: ˆ

I =

P|VP |
i=1

ˆ

I(t

i

)

7: P⇤ = argmaxP2tree

(

ˆ

I)

8: return P⇤

C. Path Planning
Once the optimal schedule for the graph is computed, and

the budget for each node is assigned, the robot needs to
plan a path that uses the assigned budget within each node.
We use a greedy-coverage algorithm to quickly compute a
coverage path for the vertex. This works well, since the topo-
logical hotspot identification and segmentation component
of our approach identifies areas which are filled with only
high-information areas, making a simple coverage approach
more effective than it would otherwise be. However, more
sophisticated planners such as Branch and Bound [16] or
stochastic trajectory optimizers such as STOMP [22] may
be considered to compute more optimal coverage paths at
the expense of computation time.

To compute the greedy-coverage path, while the robot has
budget remaining to travel to its goal point (if it has one),
the robot greedily selects the most informative location from
its unvisited neighbors. If no such neighbors exist, it selects
a location randomly. Then, the robot moves to the new goal
and repeats the process. Once the remaining budget is equal
to the distance to the goal point, the robot moves toward the
goal, preferring to move into more informative locations that
it has not yet observed. If there is no goal point, such as on
the last node of the path, then the robot continues to add to
the path greedily until it runs out of budget.



(a) (b) (c)

Fig. 3: Informative paths planned using budgets of 3a 500, 3b 1000, and 3c 1500. The area explored by the robot is shown in blue. As the budget increases,
our method is able to balance the additional information gained by continuing to explore the current hotspot with the information gained by exploring new
hotspots.

By combining the paths along the selected edges with
the greedy-coverage paths within the vertices, we obtain the
final path for the robot. Some sample paths created on our
Monterey Bay dataset are shown in Fig. 3.

IV. RESULTS

We evaluated our method both on a set of simulated
environments and on a dataset of ocean bioacoustic activity
collected using a Slocum glider [3] in Monterey Bay, CA.
The simulated environments were created by taking the
sum of 50 Gaussian functions randomly distributed in a
4-connected 100x100 world and normalizing the value in
each cell to be between 0 and 1. The information value in
each cell corresponds to the likelihood of making a useful
observation, such as observing the presence of marine life,
in that cell. Making an observation decreases the likelihood
of making useful observations within each cell inside the
vehicle’s sensor footprint. The robot is able to move through
this 4-connected world at a rate of 1 cell per unit time.

A. Hotspot Segmentation
To evaluate the effectiveness of our hotspot segmentation

approach, we compared our method of segmentation to
standard thresholding, which labels as hotspots each point
in space greater than a threshold. We compare to a static
threshold of 0.5, as well as an adaptive threshold, set to
capture all PoIs. This is done by setting the threshold value
equal to the value of the lowest PoI. Each thresholding
method is demonstrated on the Monterey, CA environment
in Fig. 4. A visual examination of the three segmentation
techniques highlights the drawbacks of the two thresholding
approaches to segmentation. Using a constant threshold, as in
[12], and [13], set at 0.5 is shown in Fig. 4c fails to capture a
number of the PoIs, while adjusting this threshold to capture
the lowest-valued PoI (at .05) collects nearly all of the the
environment into one giant hotspot.

We compared the three segmentation methods: Fast
Marching, Static Thresholding, and Adaptive Thresholding
across a set of 20 simulated environments. In each of these
environments, we compared the methods on both the number

of Points of Interest captured and the hotspot density, which
is the percent increase in average information between the
hotspots and the whole environment. The results of these
trials are shown in Figs 5a and 5b, respectively. Our method
shows an increase in hotspot density over the adaptive
thresholding method, while maintaining 100% of Points
of Interest captured in hotspot regions. While our method
does produce less-dense hotspots when compared to a static
threshold, the static thresholding misses a significant portion
of the points of interest. This is problematic from an ocean
science, perspective, since many of the phenomena that we
are interested in monitoring are indicated by a local deviation
from the norm rather than any global value. Furthermore,
since the static threshold is a hand-tuned parameter, setting
it correctly requires a significant amount domain knowledge,
while our Fast Marching Hotspot Segmentation method
requires no such parameter tuning.

B. Informative Path Planning
In a set of 20 simulated trials, we compared our algorithm

with a greedy-n-lookahead algorithm, where n is between 1
and 5. The greedy lookahead algorithm searches over all
paths of length n, and selects the one that will allow the
robot to collect the most information as it moves through
the world.

We compare the results across these trials in both the
amount of useful observations received by the algorithms
and the computational runtime. These are shown in Figs. 6
and 7, respectively. Our method outperforms the greedy-n-
lookahead algorithm for all values of n that we tested. Since
our method identifies all locations which are informative
and computes the information-maximizing tradeoff of time
between each, it is significantly less prone to being stuck in
a local maxima. Contrastingly, since the greedy algorithm is
myopic, it is easily caught, and does not explore additional
hotspots.

It is worth noting that the greedy-1-lookahead algorithm
is identical to the greedy-coverage algorithm used to plan
the sub-path within each hotspot in our topological planning
method. Thus, these results show that by utilizing our method
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Fig. 4: Comparison of segmentation methods. Areas labeled as hotspots are shown in red. A map of bioacoustic activity is shown in Fig 4a. Fig. 4b shows
our Fast Marching based method for identifying hotspots. Fig. 4c shows the hotspots identified using static thresholding (Activity > 0.5) and Fig 4d shows
the hotspots identified using an adaptive threshold set to capture each Point of Interest
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Fig. 5: Results comparing our Fast Marching Hotspot Segmentation algorithm to static thresholding (Activity> 0.5) and adaptive thresholding. Both our
method and adaptive thresholding capture 100% of points of interest within regions labelled as hotspots. However, our approach outperforms the adaptive
thresholding in terms of hotspot density. The static thresholding method does produce denser hotspots; however it fails to capture a significant portion of
the points of interest in the environment

with a naı̈ve planner, we can vastly improve the performance
of the planner by forcing it to spend its budget across many
different hotspots.

As expected, our algorithm requires more computational
time than the greedy-n-lookahead algorithm. Even though
the greedy-5-lookahead planner examines 1024 paths at each
iteration, our method has to examine far more, since it is
exhaustively searching over the full topological graph for
the best path.

Additionally, we attempted to compare our approach with
Branch and Bound over the same information field. However,
Branch and Bound was unable to terminate in under an hour
on any of the 5 environments that it was attempted on, while
our approach to informative path planning was able to plan
an informative path on each of them. The budget that we used
for planning (500 timesteps) are well beyond the ability of
branch and bound techniques on modern computers.

V. CONCLUSION

In this paper we presented a novel approach to the
Informative Path Planning problem. By leveraging the un-
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Fig. 6: Comparison of the number of useful observations made by the
robot in simulated trials between our algorithm and a 1, 2, 3, 4, and 5-
step lookahead greedy algorithm for a budget of 500 steps. We additionally
compared our approach to a branch and bound method, however, the branch
and bound method failed to produce a path within a reasonable timeframe,
and so the results are not included here.
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Fig. 7: Comparison of runtimes between our algorithm and a 1, 2, 3, 4,
and 5-step lookahead greedy algorithm for a budget of 500 steps. Note the
log scale on the time axis. We additionally compared our approach to a
branch and bound method, however, the branch and bound method failed
to produce a path within a reasonable timeframe, and so the results are not
included here.

derlying topological structure of an information field, we are
able to construct a graph which captures the structure of
hotspots in an information field. Additionally, we developed
a closed-form analytic solution for optimally distributing
time amongst the vertices visited along a path. Using this
schedule, we can improve the information collected by a
greedy-coverage algorithm by guiding it to hotspots where
it can be most effective.

There are many interesting research directions that remain
in this area. We would like to continue to investigate the
utility of our approach as a divide-and-conquer method for
informative path planning. Since we segment out regions of
the space which are information-sparse, we greatly reduce
the search space for a planner such as branch-and-bound, and
may be able to reduce it to a tractable problem. Additionally,
we would like to examine more pruning techniques that
we can apply to our tree of paths to allow us to search it
more efficiently for the best path. Finally, we would like
to investigate how the topological graph changes in a time-
varying information field, and use this for planning for long-
term hotspot monitoring tasks.
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