
Fast and Accurate Estimation of Quality of Results in High-Level Synthesis with Machine Learning

Steve Dai1, Yuan Zhou1, Hang Zhang1, Ecenur Ustun1, Evangeline F.Y. Young2, Zhiru Zhang1

1School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
2Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

{hd273,yz882,hz459,eu49}@cornell.edu, fyyoung@cse.cuhk.edu.hk, zhiruz@cornell.edu

Abstract—While high-level synthesis (HLS) offers sophisticated tech-
niques to optimize designs for area and performance, HLS-estimated
resource usage and timing often deviate significantly from actual
quality of results (QoR) achieved by FPGA-targeted designs. Inaccurate
HLS estimates prevent designers from performing meaningful design
space exploration without resorting to the time-consuming downstream
implementation process. To address this challenge, we first build a
large collection of C-to-FPGA results from a diverse set of realistic
HLS applications and identify relevant features from HLS reports
for estimating post-implementation metrics. We then leverage these
features and data to train and compare a number of promising machine
learning models to effectively and efficiently bridge the accuracy
gap. Experiments demonstrate that our proposed approach is able to
dramatically reduce the estimation errors for different families of FPGA
devices. By extracting domain-specific insights from our experiments,
we explore the implications of our models and predictive influence of
various features for enabling fast and accurate QoR estimation in HLS.
We have released our dataset to springboard future efforts in this area.

I. INTRODUCTION

High-level synthesis (HLS) provides the capability to automati-
cally convert untimed software descriptions into optimized cycle-
accurate hardware models. As a result, it has been recognized as
an effective approach for improving the productivity of hardware
design. With HLS, designers no longer need to constantly wrestle
with low-level hardware description language (HDL) details, and
can instead focus on making the best algorithmic and microarchi-
tectural tradeoff, all from a single software design source.

While HLS-generated register-transfer-level (RTL) models are in
general not human-readable, HLS tools provide a set of reports to
quantitatively convey the expected performance, timing, resource
usage, and composition of the synthesized RTL design. These
reports represent the crucial, and oftentimes, sole evidence based on
which the design is iteratively modified to achieve more desirable
results. Despite their importance, many reported values are highly
inaccurate. In particular, final resource usage and timing depend on
multiple downstream implementation stages (e.g., logic synthesis,
place and route) beyond HLS and are therefore difficult to estimate
even by state-of-the-art HLS tools.

Analysis of our data from a large set of designs reveals that
a commercial HLS tool targeting FPGAs incurs a relative error
(defined in Section V) of 125% in estimating the number of look-
up tables (LUTs). Similarly, the error for flip-flop (FF) estimation
stands at 98%. Such inaccurate estimates on quality of results
(QoR) prevent designers and even the tool itself from applying
the appropriate set of optimizations, resulting in designs with the
wrong tradeoff. To obtain more accurate QoR estimates, designers
spend an enormous amount of time iterating the downstream
implementation flow for each design point. However, doing so
is impractical and nullifies the productivity advantage for which
HLS is known. The magnitude of the error indicates the lack of
sufficiently accurate models for these estimation tasks.

To address this challenge, we propose to leverage 87 features
that can be readily extracted from the HLS reports to accurately
predict post-implementation results without actually running the
implementation flow. Using these features, we train a number of
promising machine learning models, including linear regression,
artificial neural network, and gradient tree boosting, to achieve high
accuracy for the estimation tasks. We select models whose features
can be directly interpreted to gain meaningful insights on top of
accurate estimates. Our major contributions include:

C/C++/SystemC

High-Level Synthesis (HLS)

Logic Synthesis

Technology Mapping

Place and Route (PAR)

HDL

Bitstream

HLS Reports

(Estimates)

Resource usage,

Performance,

Timing,

HDL details, etc.

Implementation

Report (Actual)

Resource usage,

Timing, etc.

Machine

Learning

Models

Im
p

le
m

e
n
ta

ti
o
n

Figure 1: FPGA tool flow with HLS and proposed machine
learning models (in bold) – The models use underlined metrics in
the HLS reports to predict underlined post-implementation metrics.

1) We train a set of machine learning models that reduce the errors
of HLS estimations by up to 138% using features extracted from
HLS reports.

2) We comparatively study our trained models and employ domain-
specific knowledge to explore model implications and predictive
influence of various features.

3) Our dataset generated from realistic HLS benchmarks is publicly
available on the authors’ website to enable further modeling and
knowledge discovery efforts in the community.

Some existing work extracts the number of required functional
units from dataflow graphs and applies analytical models to approx-
imate resource usage [1], [2], [3]. While these techniques enable fast
early-stage design studies prior to completing the HLS process, they
are not designed to grasp the intricate effects of the implementation
process. As a result, their estimations are only competitive against
the crude HLS estimates we aim to tackle. In contrast, we leverage
a data-driven approach to holistically model the combined effects
of implementation to enable fast estimates that are competitive even
against final implementation results.

The rest of the paper is organized as follows: Section II provides
motivation for the problem; Section III describes our dataset and
data processing; Section IV illustrates machine learning models
used to address the problem; Section V presents experimental
results and insights; Section VI reviews related work, followed by
a summary of our ongoing work in Section VII.

II. MOTIVATION

As shown in Figure 1, an HLS-based design flow starts with a
high-level software program, typically in C, C++, or SystemC, that
is automatically synthesized into HDL models in Verilog or VHDL.
HLS reports are generated alongside the models to indicate the
expected performance, estimated resource usage and timing, as well
as certain HDL details of the design. For an FPGA flow, the HDL
models then run through logic synthesis, technology mapping, and
place and route to generate a bitstream for the target FPGA. This
HDL-to-bitstream process is collectively known as implementation
as indicated in Figure 1. Implementation reports are generated to
detail the actual resource usage and timing of the design on-chip.

Accurate estimations of post-implementation results at the HLS
stage is difficult because the final implemented design reflects
the cumulative effects of many non-trivial transformations through
the series of implementation stages shown in Figure 1. Moreover,

final resource usage and timing depend on constraints imposed
by the target FPGA device, specifically the number, structure,
and interconnection of device resources such as LUTs, FFs, DSP
blocks (i.e., hardened multipliers), and block RAMs (BRAMs).
To enable fast resource and timing estimation, HLS tools pre-
characterize different functional units ahead of time and sum up the
contributions of instantiated functional units during the synthesis
of each design. However, such additive estimation approach fails
to correctly capture the effects of post-HLS optimizations across
functional units and neglects to consider limitations imposed by
finite compute and routing resources on-chip.

As machine learning gains traction in design automation, we
believe that it provides the means to holistically and precisely
capture the multitude of factors affecting estimation accuracy. With
the appropriate dataset on-hand, we can model the intricacies of
the implementation process as a practical solution to the HLS
estimation problem. As shown in Figure 1, we propose to apply
machine learning (regression and classification) models to predict
actual resource usage and timing from estimates in the HLS reports.

III. DATA PROCESSING AND ANALYSIS

To enable machine learning for HLS estimation, we build a
dataset of HLS and implementation results consisting of over
1300 samples across 65 individual designs. To ensure quality, we
leverage designs from well-known HLS benchmark suites, includ-
ing CHStone [4], Machsuite [5], and S2CBench [6]. To increase
diversity, we complement these benchmark suites with Rosetta
benchamarks [7], which include machine learning and real-time
video processing applications. These additional designs differentiate
from conventional benchmarks because they represent large fully
developed applications instead of small kernel programs. They
are implemented under realistic design constraints and reflect the
latest application trends. We run each design through the complete
C-to-bitstream flow for various clock periods (1, 2, 3, 5, 10ns)
targeting different FPGA devices (Xilinx Zynq, Artix7, Kintex7,
and Virtex7). Table I summarizes the overall characteristics of the
designs. The dataset can be further augmented by synthesizing the
designs with different combinations of HLS optimization directives.

Table I: Summary of designs – Post-implementation resource
usages and worst negative slack (WNS) are shown. A negative WNS
indicates that timing is not met.

#LUT #FF #DSP #BRAM WNS (ns)

Max 63645 115452 795 350 8.4
Min 34 0 0 0 -39.7

Mean 5791 7395 25 19 -0.2

To construct our dataset, we first identify features of the HLS de-
signs useful for predicting implementation results. For this purpose,
we limit ourselves to features that can be readily extracted from the
HLS reports. As such, feature extraction incurs trivial computation
overhead, and our approach is generally applicable to different HLS
tools. Similarly, we extract implementation results, known as the
targets in our machine learning problem, from the implementation
reports. After extraction, our dataset contains features and targets
for each design sample and can be used to develop estimation
models that map from features to targets.

1) Feature Extraction: While we can leverage domain knowl-
edge to hypothesize the relevance of different features to our
estimation tasks, it is impossible to ascertain the predictive abilities
of and relationship among the different features in advance. As
a result, we extract as many relevant features as possible first and
apply feature selection techniques (to be discussed in Sections III-2
and III-3) later to systematically remove any unimportant features.
Feature extraction results in a total 234 features, all of which
represent estimates from HLS reports.

2) Removing Redundant Features: Our effort in building a
comprehensive feature set may result in features that are statistically
correlated and can be predicted with sufficient accuracy by other
features. While this phenomenon of collinearity does not typically
degrade the accuracy of estimation models, it nevertheless limits
conclusions one can make about the predictive influence of a
particular feature because the marginal contribution of the feature
depends on which other correlated features are also present in the
model. To overcome the effect of collinearity, we compute the
Pearson’s correlation coefficient for each pair of features on our
dataset and select only one feature from each group of correlated
features to be included for subsequent modeling.

3) Eliminating Irrelevant Features: Features that exert little
influence on the targets should be eliminated to reduce the dimen-
sionality of the data. Having fewer features leads to simpler models
that require shorter training time, reduce the chance of overfitting,
and are easier to interpret. To eliminate irrelevant features, we fit
our data to a linear model with L1 regularization. As described later
in Section IV-1, an L1-regularized linear model induces a sparse
estimator that zeros out the coefficients of unimportant features
and thus selects the important features (with non-zero coefficients).
We apply L1 feature selection in conjunction with the correlation
technique in Section III-2 to reduce the number of features from
234 to 87. Table II describes categories of our selected features.
For dimensionality reduction, we choose L1 feature selection over
matrix factorization approaches such as principal component anal-
ysis to preserve the original components of the feature set so that
we can directly interpret the importance of each feature.

Table II: Descriptions of categories of selected features

Category Brief Description

Resource # Usage & available number of each resource type.
Clock periods Target clock period; achieved clock period & its uncertainty.
Logic ops Bitwidth/resource statistics of logic operations (e.g., or, shift).
Arithmetic ops Bitwidth/resource statistics of arithmetic operations (e.g., add, mul).
Memory Number of memory words/banks/bits; resource usage for memory.
Multiplexer Resource usage for multiplexers; multiplexer input size/bitwidth.

IV. ESTIMATION MODELS

We train regression models to estimate post-implementation
resource usages for LUT, FF, DSP, and BRAM, as well as classifica-
tion models to predict whether the target clock period is met for the
implemented design. Because the same concepts carry over from
regression to classification, we will focus on describing models in
the context of regression and resource estimations.

In general, regression is a supervised machine learning technique
that infers a function from features to targets in the training set.
For our study, we have a set of n training samples {xi,yi}

n
i=1,

where xi = [x1

i , x
2

i , ..., x
p
i]

> ∈ R
p is the input vector of feature

values for the ith sample, and yi = [y1

i , y
2

i , ..., y
q
i]

> ∈ R
q is the

corresponding vector of target values. Here p denotes the number of
input features (e.g., LUT count and clock period estimated by HLS),
and q denotes the number of output targets (i.e., actual LUT, FF,
DSP, and BRAM counts post-implementation). We further define

X = [x1, ...,xn]
>

to denote feature values for all samples and

yk = [yk
1 , y

k
2 , ..., y

k
n]

> to denote values of target k for all samples.
Each learning task corresponds to one target estimation. For

single-task learning, we train a separate model fk for each target
k, resulting in a set of mapping functions {fk : R

p → R}qk=1
.

For multi-task learning, we train a single model f : Rp → R
q that

predicts all targets at the same time. Multi-task learning is a type of
inductive transfer learning which improves training efficiency and
prediction accuracy by exploiting information from the training of
related tasks [8]. While we experiment with both single-task and
multi-task models when applicable, we will discuss only single-task
versions of our selected machine learning models in this section.

Table III: Resource estimation errors – RAE incurred in the estimation of the usage of each resource type is shown for four different
devices (ordered by increasing size). HLS Estimate: Models built-in to the HLS tool. Lasso, ANN, and XGB: Models described in
Sections IV-1, IV-2 and IV-3, respectively. 2-ANN and 2-Lasso: Corresponding multi-task models trained simultaneously for LUT and
FF tasks. 4-ANN and 4-Lasso: Corresponding multi-task models trained simultaneously for all four tasks. n/a: Not applicable.

Device XC7Z020 (Zynq-7000) XC7A100T (Artix-7) XC7K160T (Kintex-7) XC7V585T (Virtex-7)

Resource LUT FF DSP BRAM LUT FF DSP BRAM LUT FF DSP BRAM LUT FF DSP BRAM

HLS Estimate 141.2% 84.3% 22.1% 14.9% 99.6% 89.1% 19.8% 9.2% 112.5% 73.5% 15.8% 12.2% 107.0% 95.4% 14.3% 6.9%

Single-

Task

XGB 3.7% 2.5% 0.2% 0.1% 2.6% 3.3% 0.4% 0.2% 3.7% 3.8% 0.9% 0.3% 6.2% 5.6% 10.0% 0.2%

ANN 6.7% 5.6% 2.7% 2.3% 3.7% 3.9% 4.0% 3.4% 5.3% 4.7% 3.8% 3.9% 7.9% 8.5% 9.5% 4.6%

Lasso 16.2% 19.6% 9.7% 7.1% 9.2% 10.2% 13.7% 6.7% 11.4% 11.0% 15.4% 10.5% 15.7% 18.7% 18.0% 9.0%

Multi-

Task

2-ANN 8.0% 4.8% n/a n/a 3.5% 3.6% n/a n/a 7.4% 4.3% n/a n/a 7.0% 7.0% n/a n/a

4-ANN 7.8% 5.1% 3.6% 3.3% 4.2% 4.0% 5.9% 4.6% 7.3% 4.7% 6.0% 5.8% 8.3% 8.4% 11.6% 4.3%

2-Lasso 15.9% 19.5% n/a n/a 8.1% 9.6% n/a n/a 12.1% 11.3% n/a n/a 15.3% 17.6% n/a n/a

4-Lasso 16.0% 19.5% 9.8% 6.8% 7.9% 9.7% 13.8% 8.0% 11.7% 11.5% 15.7% 12.2% 15.6% 18.4% 17.1% 10.3%

1) Linear Model: We start with the classic linear regression
model, ŷi = xi

>w, which models the target ŷi as a linear
combination of features xi. Linear regression fits this model onto
the training data to determine the w such that a loss function
is minimized, where w represents the vector of coefficients for
the learned model. In our case, we use the Lasso linear model

with a loss function of
∥∥Xw − yk

∥∥2

2
+ γ ‖w‖

1
to train a linear

model that minimizes the least-square penalty on the training data
with L1 regularization. By tuning the hyperparameter γ, the L1
regularization term γ ‖w‖

1
allows us to induce various degree of

sparsity into w and in turn regulate the complexity of the model.

2) Neural Network: Unlike linear models, artificial neural net-
work (ANN) is able to capture non-linearity in the data [9]. An
ANN consists of an input layer, followed by a series of hidden
layers, and an output layer. Each hidden layer contains a set of
neurons, each of which transforms values from the previous layer
using a linear model followed by a non-linear activation function.
While deep neural networks can represent complicated non-linear
functions, a large amount of training data is needed for the model
to converge. For our estimation problem, the number of features
is relatively small, and the amount of training data is limited.
Therefore, we use ANNs with only a few fully-connected hidden
layers. We choose to include ANN to validate our hypothesis that
the mapping from features to targets is non-linear. Compared to
linear models, ANN requires tuning more hyperparameters (e.g.,
number of layers, neurons per layer) and results in non-convex loss
functions that require more effort in training.

3) Gradient Tree Boosting: Based on building a “strong” re-
gression tree by combining a series of “weak” ones, tree boosting
represents another promising non-linear technique [10]. It models
the target as the sum of regression trees, each of which maps the
features to a score for the target. Target estimation is determined
by accumulating scores across all trees. Gradient tree boosting
implements gradient descent that optimizes the loss over the space
of regression trees by repeatedly selecting the tree that points in
the negative gradient direction. For our model, we apply XG-
Boost [11], a recent gradient tree boosting algorithm that enhances
scalability using sparsity-aware approximate split finding. XGBoost
has demonstrated accuracy competitive to neural networks while
attaining better efficiency in both training and inference. However,
there is no existing multi-task models available for XGBoost.

V. EXPERIMENTS

We implement and train the models described in Section IV in
Python leveraging the scikit-learn [12] and XGBoost [11] libraries.
All designs in the dataset are synthesized and implemented with
Xilinx Vivado 2017.1 targeting Zynq-7000, Artix-7, Kintex-7, and
Virtex-7. Experiments are performed on an Intel Xeon processor
running at 2.5GHz. Regardless of the design, all models are able
to complete the estimation tasks within milliseconds, compared to
minutes or hours that each implementation stage typically incurs.

For regression, we compute the relative absolute error (RAE),
defined as ε = |ŷ − y|/|y − ȳ|, to evaluate and compare the
accuracy of different models. ŷ is a vector of values predicted by the
model for a particular target, and y is a vector of actual ground truth
values in the testing set for that target. ȳ denotes the mean value
of y. For classification, we compute the percentage of incorrectly
classified samples out of the total number of samples. We randomly
select 20% of our data as the testing set and perform random
permutation cross-validation over 10 iterations on the remaining
training/validation set. In each iteration, we randomly select 75%
of the training/validation set for training and 25% for validation.
While the validation set is used for parameter tuning to locate
better models, the testing set remains isolated until the end only to
evaluate the accuracy of the finalized models. This ensures that our
models are not tuned for the testing set. We employ grid search
to find the best set of hyperparameters (e.g., γ in linear model,
number of hidden layers for ANN) for each model.

1) Resource Estimation: Table III lists the estimation errors
incurred by the HLS tool in comparison to those of both single-
task and multi-task versions of our regression models. Based on this
table, we observe that the HLS tool suffers from severe estimation
errors for LUT and FF while attaining reasonable accuracy for
DSP and BRAM. Diving further into our dataset, we observe HLS
estimated LUT counts that are on average 4.5x and up to 40x of
actual LUT counts even for designs that utilize no BRAMs. This
suggests that the disparity stems from the ineffectiveness of HLS
additive estimation models (Section II) in capturing the effects of
logic synthesis and LUT/FF mapping and is not the result of failure
in predicting whether BRAMs will be inferred.

Table III demonstrates that the non-linear models (XGBoost and
ANN) are able to achieve sizable reduction in estimation error for
all resources on all four devices. While the linear model (Lasso) can
also reduce the errors significantly for LUT and FF, it experiences
difficulty with DSP and BRAM and are worse than HLS estimates
in a few cases. The observation that non-linear model performs
significant better than linear model validates our hypothesis that
the data are non-linear. DSP and BRAM are generally easier to
estimate than LUT and FF for both the HLS tool and our non-
linear models because LUT and FF bound operations experience
more complicated transformations than DSP-bound operations and
memories, making them more susceptible to the simplicity of built-
in HLS estimation models. In general, XGBoost stands out as the
most competitive model with less than 5% error for LUT and FF
and less than 1% error for DSP and BRAM in a majority of single-
task cases. It is especially competitive for estimating DSP and
BRAM usages because these usages tend to be stepwise functions of
features such as operator bitwidths and memory sizes. Splits learned
by regression trees correspond precisely to stepwise functions.

Our results indicate that there is no apparent benefit for multi-
task models over single-task models, as multi-task models achieve
lower errors than their single-task counterparts for only limited
cases in Table III. The two-task ANNs (estimating LUT and

Table IV: Timing classification errors – Error rate for correspond-
ing models and devices following the same notations as Table III.

Device XC7Z020 XC7A100T XC7K160T XC7V585T

HLS Estimate 21.3% 19.8% 19.1% 16.1%
XGB 1.6% 4.6% 10.5% 8.8%
ANN 3.2% 6.2% 10.5% 13.2%

Table V: Important categories of features for each estimation
task in XGBoost – Ranked by combined importance of features
in each category. #LUT, #FF, #DSP, and #BRAM: HLS estimated
resource counts. Mux: Multiplexer-related. Est CP and Target CP:
Estimated and target clock periods. Logic Ops: Logic operations.

Task LUT FF DSP BRAM Timing

Important
Feature

Categories

#FF #FF #DSP #BRAM Logic Ops
#LUT #LUT #FF Mux Target CP
Mux Mux #LUT #FF Est CP

Est CP Est CP #BRAM #LUT #FF
#BRAM #BRAM Est CP Est CP #LUT

FF simultaneously) generally perform better than four-task ANNs
(estimating all resources simultaneously) because the LUT and FF
tasks are more correlated to each other than to either the DSP or
BRAM task. However, the correlation between LUT and FF tasks
is still not sufficiently strong for meaningful inductive knowledge
transfer. In addition, training all four tasks simultaneously increases
errors in most cases for DSP and BRAM, revealing evidence of
negative knowledge transfer because the estimation tasks for DSP
and BRAM are not closely related to those for LUT and FF.

2) Timing Classification: Table IV lists the errors on classifying
whether a design meets the target clock period. While the built-in
HLS estimates are reasonably good in the first place, all of our
implemented models are able to achieve further reduction in error.
XGBoost performs more competitively, attaining 7.3% to 19.7%
error reduction in comparison to ANN with 2.9% to 18.1%. We
conjecture that XGBoost’s split-fining approach also maps better to
the timing classification problem.

3) Model Interpretation: It is often desirable to interpret the
trained models to understand key features that lead to good estima-
tion. In fact, we include linear model and gradient tree boosting
because both provide a weight for each feature indicating the
feature’s importance in the models. For example, we can determine
the importance of each feature in gradient tree boosting by the
number of times that the feature is used as a split across all trees.
Because of careful feature selection (Sections III-2 and III-3), we
can interpret and discover knowledge from these models.

For clarity, Table V lists the most important categories of features
for each of our estimation tasks in XGBoost. Not surprisingly, the
post-implementation usage of each resource depends heavily on the
corresponding built-in HLS estimates. This is expected because our
approach uses HLS report as the starting point and is essentially
“recalibrating” HLS report to match corresponding implementation
report. Multiplexer-related features affect the number of LUTs and
FFs because these resources are typically used for multiplexer
implementation. Estimated clock period plays a role in estimating
each resource because timing slack is a good indicator of how
resources are mapped, placed, and routed. For timing classification,
it is reasonable to see estimated and target clock periods as top
features because they intuitively provide good indication of whether
timing is met. Features of logic operations are also important
because they reflect the amount of inaccuracy introduced by the
additive timing estimation model built-in to the HLS tool.

VI. RELATED WORK

Machine learning has been successfully applied within autotun-
ing frameworks to effectively explore the large, high-dimensional
space of tool-specific parameters controlling FPGA synthesis and

implementation [13], [14]. For HLS, it has been leveraged for
design space exploration to reduce the number of design candidates
that need to run through the downstream implementation flow [15].
For resource estimation specifically, Koeplinger et al. learn three-
layer ANN models to predict post-implementation resource usages
from pre-characterized area models of a small set of architectural
templates [16]. Instead of template-based designs, our techniques
work for general HLS designs which are significantly more difficult
to model. In addition, we employ a larger and more complex set of
designs in our dataset and comparatively study both regression and
classification models with more rigorous training, validation, and
testing. Our work explores correlations and non-linearity within our
data as well as both single-task and multi-task learning models.

VII. CONCLUSIONS

This work demonstrates that popular machine learning models
can be trained to enable fast and accurate resource and timing
estimations for HLS designs. The associated dataset is publicly
available on the authors’ website to allow interested members of the
community to develop better models immediately without engaging
in the notoriously slow implementation process for hundreds of
design points. Our dataset can be further extended and improved
with additional designs and data submitted by the community.

ACKNOWLEDGEMENTS

We thank Dr. Taemin Kim and Dr. Aravind Dasu from Intel for
their helpful feedback. We also thank the anonymous reviewers for
their insightful comments. This research was supported in part by
NSF/Intel CAPA Award #1723715, NSF Award #1512937, ISRA
Program under Intel Corp., and a research gift from Xilinx, Inc.

REFERENCES

[1] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A Pre-
RTL, Power-Performance Accelerator Simulator Enabling Large Design
Space Exploration of Customized Architectures,” Int’l Symp. on Com-
puter Architecture (ISCA), 2014.

[2] M. Makni, M. Baklouti, S. Niar, and M. Abid, “Hardware Resource
Estimation for Heterogeneous FPGA-based SoCs,” Symp. on Applied
Computing (SAC), 2017.

[3] J. Zhao et al., “COMBA: A Comprehensive Model-Based Analysis
Framework for High Level Synthesis of Real Applications,” Int’l Conf.
on Computer-Aided Design (ICCAD), 2017.

[4] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “CHStone: A
Benchmark Program Suite for Practical C-Based High-Level Synthesis,”
Int’l Symp. on Circuits and Systems (ISCAS), 2008.

[5] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Machsuite:
Benchmarks for Accelerator Design and Customized Architectures,”
Int’l Symp. on Workload Characterization (IISWC), 2014.

[6] B. C. Schafer and A. Mahapatra, “S2CBench: Synthesizable SystemC
Benchmark Suite for High-Level Synthesis,” IEEE Embedded Systems
Letters (ESL), 2014.

[7] Y. Zhou et al., “Rosetta: A Realistic High-Level Synthesis Bench-
mark Suite for Software Programmable FPGAs,” Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), 2018.

[8] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans.
on Knowledge and Data Engineering, 2010.

[9] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward
Networks are Universal Approximators,” Neural networks, 1989.

[10] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean, “Boosting Algo-
rithms as Gradient Descent,” Advances in Neural Information Process-
ing Systems (NIPS), 2000.

[11] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
Int’l Conf. on Knowledge Discovery and Data Mining (KDD), 2016.

[12] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research (JMLR), 2011.

[13] Q. Yanghua, N. Kapre, H. Ng, and K. Teo, “Improving Classification
Accuracy of a Machine Learning Approach for FPGA Timing Closure,”
IEEE Symp. on Field Programmable Custom Computing Machines
(FCCM), 2016.

[14] C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang, “A Paral-
lel Bandit-Based Approach for Autotuning FPGA Compilation,” Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), 2017.

[15] D. Liu and B. C. Schafer, “Efficient and Reliable High-Level Synthesis
Design Space Explorer for FPGAs,” Int’l Conf. on Field Programmable
Logic and Applications (FPL), 2016.

[16] D. Koeplinger et al., “Automatic Generation of Efficient Accelerators
for Reconfigurable Hardware,” Int’l Symp. on Computer Architecture
(ISCA), 2016.

