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Abstract—For many modern applications in science and engi-
neering, data are collected in a streaming fashion carrying time-
varying information, and practitioners need to process them with
a limited amount of memory and computational resources in a
timely manner for decision making. This often is coupled with
the missing data problem, such that only a small fraction of data
attributes are observed. These complications impose significant,
and unconventional, constraints on the problem of streaming
Principal Component Analysis (PCA) and subspace tracking,
which is an essential building block for many inference tasks
in signal processing and machine learning. This survey article
reviews a variety of classical and recent algorithms for solving
this problem with low computational and memory complexities,
particularly those applicable in the big data regime with missing
data. We illustrate that streaming PCA and subspace tracking
algorithms can be understood through algebraic and geometric
perspectives, and they need to be adjusted carefully to handle
missing data. Both asymptotic and non-asymptotic convergence
guarantees are reviewed. Finally, we benchmark the performance
of several competitive algorithms in the presence of missing data
for both well-conditioned and ill-conditioned systems.

Index Terms—subspace tracking, streaming PCA, subspace
and low-rank models, missing data, ODE analysis

I. INTRODUCTION

The explosion of data collection across a variety of domains,

for purposes that range from scientific to commercial to policy-

oriented, has created a data deluge that requires new tools

for extracting useful insights from data. Principal Component

Analysis (PCA) [1] and subspace tracking are arguably some

of the most commonly used tools for exploring and under-

standing data. The fundamental mathematics and algorithms

for identifying signal subspaces from data have been studied

for nearly a century. However, in the modern context, many

novel challenges arise, due to the severe mismatch between

limited resources available at computational platforms and

increasing demand of processing high-dimensional data. In

particular, this survey article is motivated by the following

aspects of modern data processing.

• Large-scale and high-rate. Data are collected at an

extremely large scale with many variables, such as in

video surveillance or internet monitoring, and they can

accumulate at such high rates that real-time processing is
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necessary for timely decision making. Therefore, classical

batch algorithms for data processing are replaced by

online, streaming algorithms that have much smaller

memory and computational footprints.

• Missing data. At each time instance, only a very small

subset of the data attributes may be measured, due to

hardware limitations, power constraints, privacy concerns,

or simple lack of observations. Therefore, classical al-

gorithms that do not account for missing data may

yield highly sub-optimal performance and need to be

redesigned.

To elaborate on these modern challenges, we describe two

concrete examples in more detail. First, consider recommen-

dation systems [2], where users’ past product use and opinions

are collected. Based on such data, the system attempts to

predict other products of interest to those (and potentially

other) users. This is of course a scenario involving extremely

sparse observations in high dimensions—a user has only

purchased or rated a vanishingly small number of products

from a company. Moreover, as the users rate more products and

as new products become available, it is desirable to update the

system’s predictions on user preference in an online manner.

As another example, consider the rigid structure from mo-

tion problem in computer vision [3], [4]. One seeks to build

a 3D model of a scene based on a sequence of 2D images

that, for an orthographic camera, are projections of that scene

onto a plane. Features in the scene can be tracked through the

images, and a matrix of their locations in the images has a

low-rank (3-dimensional) factorization in terms of the true 3D

locations of feature points and the locations of the cameras at

each image frame. The problem is obviously high dimensional,

and it is also natural to consider the streaming setting, as large

numbers of features can be tracked across image frames that

arrive sequentially at a high rate. Moreover, many points in

the scene are not visible in all image frames due to occlusion.

Therefore, while the low-rank subspace of the data recovers

the 3D structure of the entire scene, one must estimate this

subspace in the presence of missing data.

The list of modern applications continues. The question is:

can we have scalable and accurate algorithms for subspace

learning that work well even in the presence of missing data

in a dynamic environment?

A. Subspace Models and Missing Data

Subspace models have long been an excellent model for cap-

turing intrinsic, low-dimensional structures in large datasets. A

celebrated example, PCA [1], has been successfully applied to
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many signal processing applications including medical imag-

ing, communications, source localization and clutter tracking

in radar and sonar, computer vision for object tracking, system

identification, traffic data analysis, and speech recognition, to

name just a few. The calculated principal components and best-

fit subspaces to a dataset not only allow dimensionality reduc-

tion but also provide intermediate means for signal estimation,

noise removal, and anomaly detection [5]. As we highlight

in this paper, the principal components can be updated using

incoming data in a streaming manner, thus offering tracking

capabilities that are necessary for real-time decision making.

While there are a plethora of traditional algorithms for

performing PCA on a batch dataset and for estimating and

tracking the principal components in a streaming scenario

(see, e.g., [6], for a survey of earlier literature), most of these

algorithms were developed during a time when datasets of

interest had a moderate number of variables (say 10-100)

and were collected in a controlled environment with little

or no missing entries. As argued earlier, modern datasets are

being collected on vast scales, in a much less controlled way,

often with overwhelmingly many missing entries. In light of

this prevalent and modern challenge in signal processing and

machine learning, classical algorithms must be adjusted in

order to gracefully handle missing data.

When do we have hope to recover missing data? If the

complete high-dimensional data are well-approximated by

their projection onto a lower-dimensional subspace, and hence

in some sense redundant, then it is conceivable that incomplete

or subsampled data may provide sufficient information for the

recovery of that subspace. A related problem in the batch

setting is the celebrated problem of low-rank matrix comple-

tion [7], [8], which suggests that it is possible to recover a

highly incomplete matrix if its rank is much smaller than the

dimension. This is the central intuition that motivates work

on streaming PCA and subspace tracking with missing data.

A burst of research activity has been devoted to developing

algorithms and theoretical underpinnings for this problem over

the last several years in signal processing, machine learning,

and statistics. Moreover, powerful results from random matrix

theory and stochastic processes have been leveraged to de-

velop performance guarantees for both traditional and newly

proposed methods. At the same time, these methods are also

finding new applications to emerging data science applications

such as monitoring of smart infrastructures [9], neurological,

and physiological signal processing and understanding [10].

B. Overview of Subspace Tracking Algorithms

There is a long history of subspace tracking algorithms

in the literature of signal processing. An extensive survey of

methods prior to 1990 was provided in a popular Proceedings

of the IEEE article by Comon and Golub [6]. As the common

problem dimension was relatively small at that time, the focus

was mostly on performance and computational complexity for

fully observed data of moderate dimensions. Since then, new

algorithms have been and continue to be developed with a

focus on minimizing computation and memory complexity for

very high-dimensional problems with missing data, without

suffering too much on performance [11]. Consider the problem

of estimating or tracking a k-dimensional subspace in R
d,

where k � d. For modern applications, it is desirable that both

the computational complexity (per update) and the memory

complexity scale at most linearly with respect to d. Moreover,

modern applications may require the algorithm to handle a

range of missing data, from just a small fraction of missing

entries to the information-theoretic limit of only O(k log d)
entries observed in each data vector1.

Broadly speaking, there are two perspectives from which

researchers have developed and studied streaming PCA and

subspace tracking algorithms, as categorized by Smith [14].

The first class of algorithms can be interpreted through an

algebraic lens; these can be regarded as variants of incremental

methods for calculating top-k eigenvectors or singular vectors

of a time-varying matrix, such as the sample covariance

matrix. Since this time-varying matrix is typically updated

by a rank-one modification, various matrix manipulation tech-

niques can be exploited to reduce computational and memory

complexities. This viewpoint is particularly useful for under-

standing algorithms such as Incremental SVD [15], Karasalo’s

method [16], Oja’s method [17], Krasulina’s method [18], [19],

and other algorithms based on power iterations [20], [21], to

name a few.

The other class of algorithms can be interpreted through

a geometric lens. These algorithms are constructed as the

solution to the optimization of a certain loss function, e.g.,

via gradient descent, designed in either Euclidean space or

on a matrix manifold such as the Grassmannian. We focus

mainly on methods where the loss function is updated by one

additional term per streaming column vector, and the previous

estimate can be used as a warm start or initialization. This

viewpoint is particularly useful in the presence of missing

data, since missing data are easily incorporated into a loss

function, and has therefore been leveraged more often than

the algebraic viewpoint in the design of subspace tracking

algorithms that are tolerant to missing data. Examples include

GROUSE [22], PETRELS [23], ReProCS [24], PAST [25],

online nuclear norm minimization [26], and other algorithms

based on stochastic approximation [27], to name a few.

The two classes of algorithms, while having distinct fea-

tures, can often be unified, as an algorithm can often be

interpreted through both perspectives. The trade-off between

convergence speed in static environments and tracking speed

in dynamic environments is also an important consideration in

practice, achieved by balancing the influence from historical

data and current data. This can be done by discounting

historical data in the construction of the time-varying matrix in

algebraic methods, and in the construction of the loss function

or selection of step sizes in geometric methods.

There is also a vast literature on establishing theoretical per-

formance guarantees for various streaming PCA and subspace

tracking algorithms. Classical analysis is primarily done in the

asymptotic regime (see, e.g., [28], [29]), where the discrete-

1This is the information-theoretic lower bound of measurements for an
arbitrary incoherent rank-k matrix when entries from about d total column
vectors are observed uniformly at random [12]. For a generic matrix, we need
only O(max(k, log d)) entries per column with O(kd) total columns [13].
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time stochastic processes associated with the algorithms are

shown to converge, in the scaling limit [30], [31], to the

solution of some deterministic differential equations. Recent

developments in performance analysis include new and more

tractable asymptotic analysis for high-dimensional cases [32]–

[35], as well as finite-sample probabilistic performance guar-

antees [36]–[40].

C. Organization of the Paper

We first describe in Section II the problem formulation of

PCA and streaming PCA in the presence of missing data.

We then survey algorithms that perform streaming subspace

estimation and tracking with full or incompletely observed

columns: Section III focuses on those using algebraic ap-

proaches and Section IV on those using geometric approaches.

Many of these algorithms have associated theoretical analy-

sis with regards to the estimation accuracy and algorithmic

convergence rates, which we discuss in Section V. We then

provide numerical comparisons of a number of competitive

algorithms in Section VI and conclude in Section VII.

D. Notations

Throughout this paper, we use boldface letters to denote

vectors and matrices, e.g., a and A. For a positive semidefinite

(PSD) matrix A, we write A � 0. The transpose of A

is denoted by AT , and ‖A‖, ‖A‖F, and Tr(A) denote the

spectral norm, the Frobenius norm and the trace, respectively.

The expectation of a random variable a is written as E[a]. The

identity matrix of dimension k is written as Ik. We shall use d
to denote the dimension of the fully observed data vector and

k to denote the dimension of the subspace to be estimated. A

subscript n on the data vector xn ∈ R
d refers to its order in

a sequence of vectors, and the notation xn(i) refers to the ith
component of the vector xn.

II. PROBLEM FORMULATION

In this section, we will start by formulating the problem

of subspace estimation in the batch setting, which serves as a

good starting point to motivate streaming PCA and subspace

tracking in the streaming setting with missing data.

A. PCA in the Batch Setting

The PCA or subspace estimation problem can be formulated

either probabilistically, where data are assumed to be random

vectors drawn from a distribution with mean zero and some co-

variance matrix whose principal subspace we wish to estimate,

or deterministically, where we seek the best rank-k subspace

that fits the given data. Both models are used extensively

throughout the literature. The former is used more prevalently

in the signal processing and statistics literature, while the latter

is more prevalent in applied mathematics, optimization, and

computer science literature. The problem formulations result

in equivalent optimization problems, and so we put them here

together for a unified view.

(a) Probabilistic view: Consider a stationary, d-dimensional

random process x ∈ R
d, which has a zero mean and a

covariance matrix Σ = E[xxT ].2 Denote the eigenvalue de-

composition (EVD) of the covariance matrix as Σ = ŨΛŨT ,

where Ũ = [u1, . . . ,ud] has orthonormal columns, and

Λ = diag{λ1, . . . , λd}, where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 are

the eigenvalues arranged in a non-increasing order. Our goal

is to estimate the top-k eigenvectors, also called the principal

components U∗ = [u1, . . . ,uk], of Σ, given a finite number

of i.i.d. data samples, x1,x2, . . . ,xn ∼ x. Note that we do

not require Σ be a rank-k matrix.

(b) Deterministic view: In a deterministic formulation, the

data samples x1, . . . ,xn ∈ R
d are considered arbitrary. We

wish to find the rank-k subspace that best fits these data in

the sense of minimizing the `2 projection error, that is

Ûn = argmin
U∈Rd×k,UTU=Ik

n∑

`=1

∥∥x` − PU (x`)
∥∥2
2

(1)

= argmin
U∈Rd×k,UTU=Ik

∥∥∥Xn −UUTXn

∥∥∥
2

F
(2)

= argmax
U∈Rd×k,UTU=Ik

Tr
(
UUT

Σn

)
, (3)

where PU denotes the projection operator onto the column

span of the matrix U and PU = UUT when U has orthonor-

mal columns, Xn = [x1,x2, . . . ,xn] concatenates the data

vectors as columns into a matrix, and Σn =
∑n

`=1 x`x
T
` =

XnX
T
n is the (unscaled) Sample Covariance Matrix (SCM).

The equivalence of (2) and (3) suggests that finding the

subspace that maximizes the explained variance of Σn is

equivalent to minimizing the approximation error of the data

matrix Xn. While the formulations (2) or (3) are non-convex,

both due to the cost function’s non-convexity in U and the

non-convex constraint UTU = Ik, they admit a well-defined

solution, solved by the SVD of Xn, equivalently the EVD of

Σn, as was discovered independently by [42] (see [43], [44]

for details) and [45]. Specifically, the solution Ûn is given as

the top-k eigenvectors of the SCM Σn.

(c) Unified perspective: Consider the following expected

loss function

J(U) = E ‖x−UUTx‖22, (4)

where U ∈ R
d×k and the expectation is taken with respect

to x which is zero mean with a covariance matrix Σ. The

following important result was proven in [25]: if λk > λk+1,

i.e., if there is a strict eigengap, then the global optima of J(U)
correspond to U that contains the top-k eigenvectors of Σ

up to an orthonormal transformation, matching the solution of

PCA in the probabilistic view. Interestingly, the solution to the

deterministic formulation (1) can be thought of as an empirical

version of (4), if the data samples are indeed drawn according

to the probabilistic model. Moreover, in this case, Ûn produces

an order-wise near-optimal estimate to U∗ for a large family

of distributions [46]. In this regard, the two formulations are

equivalent in some sense, though in the deterministic setting,

there need not be any generative model or “ground truth” for

the underlying subspace.

2It is straightforward to consider the complex-valued case x ∈ Cd, but we
only consider the real case in this survey for simplicity. For more information,
see [41].
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B. Streaming PCA and Subspace Tracking

In a streaming setting, the data samples arrive sequentially

over time, with each sample only seen once,3 and one wishes

to update the subspace estimate sequentially without accessing

historical data. In a dynamic environment, either the covari-

ance matrix or the best rank-k subspace can be time-varying

— therefore, we wish to track such changes as quickly as

possible.

In this survey article, we use the terminology “streaming

PCA” and “subspace tracking” interchangeably to refer to

algorithms that can update and track a data subspace using

streaming observations. Nonetheless, we acknowledge they

have different connotations and indeed they have arisen from

different contexts. The terminology “subspace tracking” is

common in the literature of signal processing [6], where one

often needs to update the subspace in a dynamic environment

as in array signal processing or communications. The more

recent terminology of “online PCA” or “streaming PCA” can

be found in the machine learning literature, motivated by the

study in computer science of trying to replicate the behavior

of batch PCA with streaming data [47] or data too large for

memory. In addition, “incremental SVD” [15] or “updating the

SVD” [48] are terminology used more classically in numerical

methods. It turns out that all of the algorithms reviewed herein

can handle both the settings where the underlying subspace

is static or time-varying by adjusting parameters within the

algorithm such as data discounting factors or step sizes.

Streaming PCA can be considered as a nonconvex stochastic

approximation problem, given by (4). The solution to the

batch problem that we outlined in Section II-A is no longer

appropriate for the streaming setting — it requires one to

formulate and store the SCM Σn, which has a memory

complexity of O(d2), and to estimate the top-k eigenvectors

directly from the SCM, which has a time complexity of

O(nd2). Both these memory and time complexities are too

expensive for large-scale problems. It is greatly desirable to

have algorithms with computation and memory complexities

that grow at most linearly in d.

C. Missing Data

An important setting that we will consider in this survey

is missing data, where only a subset of the coordinates of of

each sample xn are observed. We denote this measurement as

PΩn
(xn), (5)

where PΩn
is a projection operator onto the coordinates

represented by an observation mask, Ωn ∈ {0, 1}d, where

xn(i) (the ith entry of xn) is observed if and only if

Ωn(i) = 1. This issue poses severe challenges for most PCA

algorithms, particularly when the number of observed entries

is much smaller than d. To begin, one may be concerned

with identifiability: can we find a unique subspace of rank-

k that is consistent with the partial observations? Luckily, the

answer to this question is yes, at least in the batch setting

3This is different from what is known as a stochastic setting, where samples
may be accessed at multiple times or in multiple passes.

where the problem is equivalent to that of low-rank matrix

completion: under mild assumptions, the low-rank subspace

can be reconstructed from subsampled column vectors as long

as there are enough observations.4 It may also be tempting to

execute subspace tracking algorithms by ignoring the missing

data and padding with zeros at the missing entries, however

the sample covariance matrix constructed in this way leads to

a biased estimator [49], [50]. Therefore, one must think more

carefully about how to handle missing data in this context.

III. ALGEBRAIC METHODS

In this section and the next, we will discuss two classes

of algorithms based on algebraic approaches and geometric

approaches respectively, as outlined in Section I-B. The alge-

braic approaches are based on finding the top eigenvectors of

a recursively updated SCM, or a surrogate of it, given as

Σn = αnΣn−1 + βnxnx
T
n , (6)

where αn and βn balance the contributions from the previous

SCM and the current data sample. Two popular choices are

equal weights on all time slots, which is

αn = 1, βn = 1;

and discounting on historical data, which is

αn = λ, βn = 1, 0 � λ < 1.

Equivalently, the above can be reworded as finding the top

singular vectors of a recursively updated data matrix Xn. As

we are interested in calculating or approximating the top-k
eigenvectors of Σn, algebraic methods use matrix manipu-

lations and exploit the simplicity of the rank-one update to

reduce complexity.

A. Incremental Singular Value Decomposition (ISVD)

We begin by discussing the ISVD approach of Bunch and

Neilsen [48], which is an exact method to compute the full

SVD of a streaming full data matrix, i.e., with sequentially

arriving, full data vectors. This algorithm is given in Algo-

rithm 1 and is the result of some simple observations about

the relationship of the SVD of Xn and that of Xn−1. Suppose

we are given the compact SVD of the data matrix at time n−1,

Xn−1 =
[
x1 . . . xn−1

]
= Ũn−1S̃n−1Ṽ

T
n−1,

where Ũn−1 ∈ R
d×d and Ṽn−1 ∈ R

(n−1)×(n−1) are or-

thonormal, and S̃n−1 ∈ R
d×(n−1) is the concatenation of

two matrices: a diagonal matrix (of size min{d, n− 1}) with

non-negative non-increasing diagonal entries, and an all-zero

matrix. Note that we are using the Ũ notation for the square

orthogonal matrix as opposed to U for a d × k matrix, as

in Section II-A, because we are computing the full SVD, not

a low-rank approximation. For simplicity of exposition, let’s

assume d ≥ n (but both cases d < n and d ≥ n are described

in Algorithm 1). We wish to compute the SVD of

Xn =
[
Xn−1 xn

]
= ŨnS̃nṼ

T
n ,

4“Enough” observations per vector here will depend both on the number
of vectors and the conditioning or coherence [7] of the subspace.
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where Ũn, S̃n, and Ṽn are defined similarly as Ũn−1, S̃n−1,

and Ṽn−1.

Recognizing that

XnX
T
n = Xn−1X

T
n−1 + xnx

T
n

and

ŨT
n−1XnX

T
n Ũn−1 = S̃n−1S̃

T
n−1 + znz

T
n

where zn = ŨT
n−1xn, we can compute the new singular values

by finding the eigenvalues of S̃n−1S̃
T
n−1 + znz

T
n using the

zeros of the characteristic equation [51], which in this case

has a special structure; in particular, if σ̃i are the diagonal

values of S̃n−1, then the zeros of

1 +

d∑

i=1

zn(i)
2

σ̃2
i − λ

(7)

with respect to the variable λ identify the eigenvalues of

S̃n−1S̃
T
n−1 + znz

T
n . Denote the resulting eigenvalues as

λi for i = 1, . . . , d. To update the left singular vec-

tors to the new Ũn =
[
u1 . . . ud

]
, we need to solve(

S̃n−1S̃
T
n−1 + znz

T
n

)
ui = λiui and normalize the solution.

Therefore [6], [51],

ui =
(S̃n−1S̃

T
n−1 − λiI)

−1zn∥∥∥(S̃n−1S̃
T
n−1 − λiI)−1zn

∥∥∥
, i = 1, . . . , d. (8)

So far, the above derivations assume Ũn−1 is a square

orthonormal matrix, and the resulting computations are suit-

able for incremental updates of the full SVD. However, this

still requires O(dn2 + n3) complexity5 for every iteration

computing the full SVD (i.e., all singular values and left/right

singular vectors) using Algorithm 1, and the memory require-

ment grows as n grows if the data are full rank (or low rank

with even a very small amount of additive noise), which are

both undesirable.

On the other hand, estimating a thin SVD or the top k-

dimensional singular subspace can improve computation. In

fact, if Xn−1 is exactly rank-k, this incremental approach re-

quires fewer computations as pointed out in [52]. In this case,

take the first k columns of Ũn−1 and call these Un−1. We only

need these to represent Xn−1 because the others correspond to

zero singular values. Let Sn−1 and Vn−1 be the corresponding

matrices for this thin SVD so that Xn−1 = Un−1Sn−1V
T
n−1.

We then notice as in [52], [53] that

Xn =
[
Un−1

rn

‖rn‖

] [
Sn−1 wn

0 ‖rn‖

] [
V T
n−1 0
0 1

]
(12)

where wn = UT
n−1xn are the projection weights onto the span

of this now tall matrix Un−1 and rn = xn−Un−1U
T
n−1xn is

the residual from the projection. We only must diagonalize the

center matrix of (12) to find the SVD of Xn. We only assumed

Xn−1 is rank-k, but then to make this assumption at every step

5This complexity is assuming d > n. In this case, the bottleneck is updating

Ũn in (10), which needs O(dn2) operations for a naı̈ve matrix multiplication;

then to update Ṽn, we require O(n3) operations for the same step.

Algorithm 1 ISVD

1: Given x1, set Ũ1 = x1/‖x1‖, S̃1 = ‖x1‖, Ṽ1 = 1;

2: Set n = 2;

3: repeat

4: Define wn := ŨT
n−1xn;

5: Define pn := Ũn−1wn; rn := xn − pn;

6: if ‖rn‖ 6= 0 then

7: Compute the SVD of the update matrix:
[
S̃n−1 wn

0 ‖rn‖

]
= Û ŜV̂ T , (9)

by solving (7) for λ, which gives the diagonal entries

of Ŝ, where σ̃2
i are the diagonal entries of S̃n−1 and

zn =
[
wT

n ‖rn‖ 0

]T
, and then solving (8) for

Û .

8: Set

Ũn :=
[
Ũn−1

rn

‖rn‖

]
Û , S̃n := Ŝ . (10)

Ṽn :=

[
Ṽn−1 0

0 1

]
V̂ .

9: else if ‖rn‖ = 0 then

10: (this happens when n > d or xn ∈ span{Un−1})

11: Compute the SVD of the update matrix:
[
S̃n−1 wn

]
= Û ŜV̂ T , (11)

by solving (7) for λ, which gives the diagonal entries

of Ŝ, where σ̃2
i are the diagonal entries of S̃n−1 and

zn =
[
wT

n 0

]T
, and then solving (8) for Û .

12: Set

Ũn := Ũn−1Û , S̃n := Ŝ.

Ṽn :=

[
Ṽn−1 0

0 1

]
V̂ .

13: end if

14: n := n+ 1;

15: until termination

is a strong assumption and means the matrix is exactly low-

rank. However, this technique is used successfully as a heuris-

tic, by truncating smaller singular values and corresponding

singular vectors, even when this assumption does not hold.

This method is described in the following section. Finally, we

point out that Karasalo’s subspace averaging algorithm [16]

is similar to ISVD, but it uses specific information about the

noise covariance.

B. MD-ISVD, Brand’s Algorithm and PIMC

A major drawback of many linear algebraic techniques is

their inapplicability to datasets with missing data. While it is

not straightforward how to adapt the ISVD for missing data,

there are several different approaches in the literature [3], [15],

[54]. All approaches begin in the same way, by considering
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Algorithm 2 MD-ISVD, Brand’s algorithm, PIMC

1: Given an orthonormal matrix U0 ∈ R
d×k, S0 = 0;

2: For PIMC, γ0 = 1.

3: Set n = 1;

4: repeat

5: Define wn := argminw ‖PΩn
(Un−1w − xn) ‖22;

6: Define pn := Un−1wn;

rn(i) =

{
xn(i)− pn(i) Ωn(i) = 1

0 otherwise
.

7: Compute the SVD of the update matrix:
[
Γn−1 wn

0 ‖rn‖

]
= Û ŜV̂ T , (13)

where

Γn−1 =





Sn−1 for MD-ISVD,
λSn−1 for Brand’s algorithm,
γn

‖Sn−1‖F
Sn−1, for PIMC,

with γ2
n = γ2

n−1 + ‖PΩn
(xn) ‖22 for PIMC.

8: Set Ǔn :=
[
Un−1

rn

‖rn‖

]
Û ;

9: Set Un as the first k columns of Ǔn and Sn as the top

k-by-k block of Ŝ.

10: n := n+ 1;

11: until termination

how to compute two key quantities, the projection weights wn

and the residual rn, given missing data. Whereas for complete

data, we have wn = argminw ‖xn − Un−1w‖22 = UT
n−1xn,

for missing data one may solve

wn = argmin
w

‖PΩn
(xn −Un−1w) ‖22 (14)

where PΩn
is the measurement operator with missing data as

in (5). Then letting pn = Un−1wn, define the residual to be

rn(i) =

{
xn(i)− pn(i) if Ωn(i) = 1

0 otherwise
. (15)

All the methods we describe in this section use these quantities

in place of wn and rn in Algorithm 1. They also all mimic (9)

for the update, and once they have observed enough vectors

they truncate the k + 1 singular value and corresponding

singular vectors.

The methods diverge only in the way they replace the

singular value matrix Sn−1 in (9). Brand [15] replaces Sn−1

with λSn−1 where 0 � λ < 1 is a scalar weight that

diminishes the influence of previous singular values. If one

takes λ = 1, this is arguably the most direct extension of

ISVD to missing data, and following [3] we call this algorithm

Missing Data-ISVD (MD-ISVD). Kennedy et al. [54] present a

Polar Incremental Matrix Completion (PIMC) method, which

weights Sn−1 with a scalar based on the norm of the data

observed thus far. These are different approaches to modeling

the uncertainty in the singular values arising from incomplete

observations. These algorithms are together summarized in

Algorithm 3 Oja’s algorithm with missing data

1: Given an orthonormal matrix U0 ∈ R
d×k;

2: Set n := 1;

3: repeat

4: Define wn := argminw ‖PΩn
(xn −Un−1w) ‖22 ;

5: Set pn = Un−1wn.

6: Set x̃n =

{
xn(i) if Ωn(i) = 1
pn(i) otherwise

7: Un = Π(Un−1 + ηnx̃nw
T
n ),

8: n := n+ 1;

9: until termination

Algorithm 2. These different rules provide different trade-

offs in (6), as they represent different weighting schemes on

historical data.

C. Oja’s method

Oja’s method was originally proposed in 1982 [17]. It is a

very popular method for streaming PCA, and recent attention

has yielded significant insight into its practical performance

(see discussion in Section V). Given an orthonormal initial-

ization U0 ∈ R
d×k, at the nth time Oja’s method updates to

Un according to the input data xn as

Un = Π(Un−1 + ηnxnx
T
nUn−1), (16)

where Π(W ) = Q is an orthogonalization operator, i.e., W =
QR is the QR decomposition. The parameter ηn is the step

size or learning rate that may change with time.

While Oja’s method has not been derived for the missing

data case in the literature, following our discussion on ISVD,

one realizes that if as before we let wn = UT
n−1xn be the

coefficient of xn in the previous estimate Un−1, then Oja’s

method is equivalent to

Un = Π(Un−1 + ηnxnw
T
n ). (17)

A straightforward extension in the missing data case is then to

estimate the coefficient wn as (14), and to fill in the missing

entries in xn as follows. Let pn = Un−1wn, and the data

vector can be interpolated as

x̃n =

{
xn(i) if Ωn(i) = 1
pn(i) otherwise

.

Then Oja’s update rule in the missing data case becomes

Un = Π(Un−1 + ηnx̃nw
T
n ) . (18)

This algorithm is summarized in Algorithm 3. Note that Oja’s

original method with full data becomes a special case of this

update. We study this extension in the numerical experiments

reported in Section VI.

Finally, we note that closely related to Oja’s is another

method called Krasulina’s algorithm [19], which is developed

for updating a rank-1 subspace with full data:

Un = Un−1 + ηn

(
xnx

T
n − UT

n−1xnx
T
nUn−1

‖Un−1‖2
Id

)
Un−1.

(19)
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It can be viewed as a stochastic gradient descent method

with the Rayleigh quotient as its objective. Oja’s method is

equivalent to Krasulina’s method up to the second order terms

[18], [55].

Remark 1 (Block Power Method). A block variant of Oja’s

method has been developed in the literature [36], [37], [56],

where it partitions the input into blocks and each time pro-

cesses one block in a way similar to Oja’s method. These

methods are referred to as the block power method, or block

Oja’s method, or the noisy power method. They are easier to

analyze but yield suboptimal performance [40].

IV. GEOMETRIC METHODS

In this section, we review subspace tracking algorithms

developed via geometric approaches. These are developed

by optimizing certain loss functions over d × k matrices

in Euclidean space or the Grassmann manifold of rank-k
subspaces in R

d. Subspace tracking is enabled by optimizing

a recursively updated loss function, such as the squared

projection loss onto the subspace, as

Fn(U) = αnFn−1(U) + βn

∥∥xn − PU (xn)
∥∥2
2
, (20)

where U ∈ R
d×k, and n is the time index, which is typically

updated by using the previous estimate as a warm start.

Similarly, the choice of αn and βn balances the convergence

rate (how fast it converges with data from a static subspace)

and the tracking capability (how fast it can adapt to changes

in the subspace). Additionally, the step size of some gradient

algorithms can also be used as a tuning knob for tracking;

a more aggressive step size will adapt more quickly to new

data. Given the necessity of scalable and memory-efficient

algorithms, first-order and second-order stochastic gradient

descent [57] are gaining a lot of popularity recently in signal

processing and machine learning.

A. GROUSE

Grassmannian Rank-One Update Subspace Estimation

(GROUSE) was first introduced in [22] as an incremental

gradient algorithm to build high quality subspace estimates

from very sparsely sampled vectors, and has since been

analyzed with fully sampled data [58], [59], noisy data [59],

and missing or compressed data [58], [60] (see Section V).

The objective function for the algorithm is given by

Fn(U) =

n∑

`=1

‖PΩ`
(x` −UUTx`)‖22, (21)

which is a special case of (20) with αn = βn = 1. GROUSE

implements a first-order incremental gradient procedure [61]

to minimize this objective with respect to the subspace variable

U constrained to the Grassmannian [62], the manifold of all

subspaces with a fixed rank, given as

min
U∈Rn×k:UTU=Ik

Fn(U).

GROUSE has iteration complexity O(dk+ |Ωn|k2) at the nth

update and so is scalable to very high-dimensional applica-

tions. The algorithm steps are described in Algorithm 4.

The GROUSE update in (23) can also be written as:

Un = Un−1 −
Un−1wnw

T
n

‖wn‖2
+

ynw
T
n

‖yn‖‖wn‖
where

yn = cos(θn)
pn

‖pn‖
+ sin(θn)

rn

‖rn‖
.

This form makes it clear that GROUSE is simply replacing

a direction in the current subspace estimate, pn = Un−1wn,

with a new vector yn that is a linear combination of pn and

the residual vector rn. This of course makes yn orthogonal to

the rest of Un−1, which is why Un will necessarily also have

orthogonal columns.

We note that, if the step size is not given, one can use the

step size prescribed in (22). This step size maximizes the per-

iteration improvement of the algorithm in a greedy way, but

can therefore be susceptible to noise. For example, with fully

observed data, this greedy step size will replace the direction

pn in the current iterate Un−1 with the observed data xn.

If bounds on the noise variance are known, one can use the

noise-dependent step-size given in [59], which decreases the

step as the noise floor is reached.

Algorithm 4 GROUSE [22]

1: Given U0, an d× k orthonormal matrix, 0 < k < d;

2: Optional input: Step size scheme ηn > 0;

3: Set n := 1;

4: repeat

5: Define wn := argminw ‖PΩn
(xn −Un−1w) ‖22;

6: Define pn := Un−1wn;

rn(i) :=

{
xn(i)− pn(i) if Ωn(i) = 1

0 otherwise
.

7: if ηn given then

8: Set θn = ηn‖rn‖‖pn‖.

9: else

10: Set

θn = arctan

( ‖rn‖
‖pn‖

)
. (22)

11: end if

Un = Un−1 +
(
cos(θn)− 1

) pn

‖pn‖
wT

n

‖wn‖

+ sin(θn)
rn

‖rn‖
wT

n

‖wn‖
. (23)

12: n := n+ 1;

13: until termination

In a follow-up work, Balzano et al. describe SAGE

GROUSE [3], [53], which was derived in the context of

Algorithm 2. SAGE GROUSE replaces Sn−1 with an identity

matrix the same size as Sn−1, which makes the algorithm

completely agnostic to singular values or the relative weight of

singular vectors that have been learned. This can be considered

as yet another way of modeling uncertainty in the singular

values learned thus far in a streaming context. SAGE GROUSE
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Algorithm 5 PAST [25]

1: Given U0 ∈ R
d×k, R0 = δIk;

2: Set n := 1;

3: repeat

4: Define wn := UT
n−1xn;

5: βn = 1 + λ−1wT
nRn−1wn,

6: vn = λ−1Rn−1wn,

7: Rn = λ−1Rn−1 − (βn)
−1vnv

T
n ,

8: Un = Un−1 + (xn −Un−1w
T
n )Rnwn.

9: n := n+ 1;

10: until termination

has been proven to be equivalent to the GROUSE gradient

algorithm for a given step size [53], showing that indeed the

distinction of “algebraic” and “geometric” algorithms is not

fundamental.

Remark 2 (SNIPE). A block variant of GROUSE was pre-

sented in [63], called Subspace Navigation via Interpolation

from Partial Entries (SNIPE). This algorithm partitions the

input into blocks and for each block optimizes a subspace to

fit the observed entries on that block but remain close to the

previous subspace estimate.

B. PAST

The Projection Approximation Subspace Tracking (PAST)

is proposed by Yang [25], [28] for subspace tracking with full

data, which is described in Algorithm 5. PAST optimizes the

following function at time n without constraining U to have

orthogonal columns:

Un = argmin
U∈Rd×k

n∑

`=1

λn−`‖x` −UUTx`‖22, (24)

where prior observations are discounted by a geometric factor

0 � λ ≤ 1. The name “projection approximation” comes

from the fact that the projection onto the subspace U is

approximated by UUT , without the constraint UTU = Ik.

This sum is further approximated by replacing the second U

in (24) by U`−1, yielding

Un = argmin
U∈Rd×k

n∑

`=1

λn−`‖x` −UUT
`−1x`‖22. (25)

Let the coefficient vector be w` = UT
`−1x`, then (25) can be

rewritten as

Un = argmin
U∈Rd×k

n∑

`=1

λn−`‖x` −Uw`‖22, (26)

whose solution can be written in a closed-form and efficiently

found via recursive least-squares. The PAST algorithm has

a computational complexity of O(dk). PAST has been very

popular due to its efficiency, and it has been extended and

modified in various ways [20], [64], [65].

Algorithm 6 PETRELS [23]

1: Given U0 = [u1
0,u

2
0, · · · ,ud

0]
T , and Ri

0 = δIk, δ > 0 for

all i = 1, · · · , d.

2: Set n := 1;

3: repeat

4: Define wn := argminw ‖PΩn
(xn −Un−1w) ‖22 ;

5: for i = 1, · · · , d do

6: βi
n = 1 + λ−1wT

nR
i
n−1wn,

7: vi
n = λ−1Ri

n−1wn,

8: Ri
n = λ−1Ri

n−1 − Ωn(i)v
i
n(v

i
n)

T /βi
n,

9: ui
n = ui

n−1 +Ωn(i)
[
xn(i)−wT

nu
i
n−1

]
Ri

nwn.

10: end for

11: n := n+ 1;

12: until termination

C. PETRELS

The PETRELS algorithm, proposed in [23], can be viewed

as a modification of the PAST algorithm to handle missing

data, which is summarized by Algorithm 6. PETRELS opti-

mizes the following function at time n without constraining

U to have orthogonal columns:

Un = argmin
U∈Rd×k

n∑

`=1

λn−` min
w`∈Rk

‖PΩ`
(x` −Uw`)‖22. (27)

At each time n, PETRELS alternates between coefficient

estimation and subspace update. We first estimate the coeffi-

cient vector by minimizing the projection residual using the

previous subspace estimate:

wn = argmin
w

‖PΩn
(xn −Un−1w) ‖22, (28)

where U0 ∈ R
d×k is a random subspace initialization. The

subspace U is then updated by minimizing

Un = argmin
U

n∑

`=1

λn−`‖PΩ`
(x` −Uw`) ‖22, (29)

where w`, ` = 1, · · · , n are estimates from (28). The objective

function in (29) decomposes into a parallel set of smaller

problems, one for each row of Un = [u1
n,u

2
n, · · · ,ud

n]
T ,

where ui
n ∈ R

k. Thus the ith row can be estimated by solving

ui
n = argmin

u∈Rk

n∑

`=1

λn−`Ω`(i)(x`(i)−wT
` u)

2

= ui
n−1 +Ω`(i) ·

[
xn(i)−wT

nu
i
n−1

]

·




n∑

`=1

λn−`Ω`(i)w`w
T
`




−1

wn (30)

for i = 1, · · · , d. Again, the problem can be solved efficiently

via recursive least-squares. Moreover, PETRELS can be made

very efficient by parallelizing the implementation of (30).

Both PAST and PETRELS can be regarded as applying

second-order stochastic gradient descent [57] to the loss func-

tion, and each step of the update is approximately a Newton

step. Therefore, it is expected that the algorithm will converge

quadratically when it is close to the optimal solution. Several
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algorithms can be developed along similar lines of PETRELS,

where the loss function is revised to include regularization

terms on the Frobenius norms of the subspace U and the

weight vector wn, which we refer the readers to [26], [27].

V. PERFORMANCE ANALYSIS

In this section we will describe general analysis methodolo-

gies as well as specific theoretical results for characterizing

the performance of the aforementioned streaming PCA and

subspace tracking algorithms.

To carry out the analysis, we need to make assumptions on

how the data are generated. A popular approach that has been

taken in the literature is to assume that each data vector is

generated according to the following “spiked model” [66]:

xn = U∗an + σεn, (31)

where U∗ is a deterministic d × k orthogonal matrix, an is

a random signal vector with covariance matrix Σa, and εn is

the noise vector. For simplicity, we assume that the covariance

matrix of εn is the identity matrix Id, and we use σ to denote

the noise level. This model arises in applications such as array

signal processing, where U∗ is the “steering matrix” and k
denotes the number of targets to be tracked by the array.

The generative model (31) can also be seen as a special case

of the probabilistic model described in Section II-A, since

E[xnx
T
n ] = U∗

ΣaU
∗T +σ2Id is a sum of an exact low-rank

matrix and a full-rank identity matrix. In the missing data case

studied in this paper, only a subset of the coordinates of xn

are observed. Thus, the actual measurement is yn = PΩn
(xn)

as in (5), where PΩn
denotes the projection operator onto

an observation mask, Ωn ∈ {0, 1}d. The ith entry of xn is

observed if and only if Ωn(i) = 1. For simplicity, we shall

assume that
{
Ωn(i)

}
is a collection of i.i.d. binary random

variables such that

P(Ωn(i) = 1) = α, (32)

for some constant α ∈ (0, 1).

A. Classical Asymptotic Analysis

Historically, the first analysis of subspace tracking algo-

rithms was done in the asymptotic regime (see, e.g., [28],

[29]), where the algorithms are shown to converge, in the small

step size limit, to the solution of some deterministic Ordinary

Differential Equations (ODEs).

To understand the basic ideas underlying such analysis,

we note that the essence of almost all the online algorithms

described in Section III and Section IV is a stochastic recursion

of the form

Un = Un−1 + ηnQ(Un−1,xn,Ωn). (33)

Here, Un is the estimate at time n; Q(·, ·, ·) is some nonlinear

function of the previous estimate Un−1, the new complete data

vector xn, and its observation mask Ωn; and ηn is the step size

(i.e., the learning rate). For example, Krasulina’s method given

in (19) is just a special case of (33) [with Ωn(i) ≡ 1]. When

the step size ηn is small, we can perform Taylor’s expansion

(with respect to ηn) on the recursion formulas of Oja’s method

(16) and GROUSE (23), and show that these two algorithms

can also be written in the form of (33) after omitting higher-

order terms in ηn.

Under the statistical model (31) and (32), the general

algorithm (33) is simply a Markov chain with state vectors

Un ∈ R
d×k. The challenge in analyzing the convergence of

(33) comes from the nonlinearity in the function Q(·, ·, ·). In

the literature, a very powerful analytical tool is the so-called

ODE method. It was introduced to the control and signal

processing communities by Ljung [30] and Kushner [31] in

the 1970s, and similar approaches have an even longer history

in the literature of statistical physics and stochastic processes

(see, e.g., [67], [68] for some historical remarks).

The basic idea of the ODE method is to associate the

discrete-time stochastic process (33) with a continuous-time

deterministic ODE. Asymptotically, as the step size ηn → 0
and the number of steps n → ∞, the process (33) can be

shown to converge to the solution of an ODE. Specifically,

we let the step sizes be such that

∞∑

n=1

ηn = ∞ and

∞∑

n=1

η2n < ∞.

For example, a popular choice is ηn = c/n for some c > 0. By

defining tn =
∑

`≤n η` as the “fictitious” time, we can convert

the discrete-time process Un to a continuous-time process Ut

via linear interpolation:

Ut = Un−1+
t− tn−1

tn − tn−1
(Un−Un−1), tn−1 ≤ t ≤ tn. (34)

Under certain regularity conditions on the function Q(·, ·, ·),
one can then show that, as t → ∞, the randomness in the

trajectory of Ut will diminish and Ut will converge to the

deterministic solution of an ODE [30], [31].

Although a rigorous proof of the above convergence is

technical, the limiting ODE, if the convergence indeed holds,

can be easily derived, at least in a non-rigorous way. To start,

we can rewrite (33) as

Un −Un−1

ηn
= Exn,Ωn|Un−1

[Q(Un−1,xn,Ωn)] +mn, (35)

where Exn,Ωn|Un−1
[·] denotes the conditional expectation of

the “new information” xn,Ωn given the current state Un−1,

and mn captures the remainder terms. From the construction of

Ut in (34), the left-hand side of (35) is equal to (Utn−1+ηn
−

Utn−1
)/ηn, which converges to d

dtUt since the step size ηn →
0. Moreover, one can show that the remainder mn is of order

o(1). It follows that we can write the limit form of (35) as an

ODE
d

dt
Ut = h(Ut), (36)

where h(Ut) = Ex,Ω |U [Q(U ,x,Ω)].
The ODE approach is a very powerful analysis tool. By

studying the fixed points of the limiting dynamical system

in (36), we can then draw conclusions about the convergence

behavior of the original stochastic process (33). This approach

was taken in [28], where the author used an ODE analysis to

show that the PAST algorithm [25] globally converges to the

target signal subspace U∗ with probability one. This result
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was later adapted in [23] to analyze PETRELS for the fully

observed case.

B. Asymptotic Analysis in the High-Dimensional Regime

Despite its versatility and strong theoretical value, the above

classical asymptotic approach has several limitations: First, the

analysis requires the step size ηn to tend to zero as n →
∞. While using a decreasing sequence of step sizes ηn helps

the stochastic algorithm to converge to the globally optimal

solution, it is not a good strategy for applications where the

target low-dimensional subspace can be time-varying. In that

scenario, a small but fixed step size is often more preferable,

as it would make the algorithms more nimble in tracking the

changing subspace. Second, the classical asymptotic analysis

leads to an ODE with O(d) variables. In modern applications,

the number of variables, i.e., d can be very large, making it

less practical to numerically solve the ODE.

In what follows, we briefly review a different asymptotic

analysis approach [32]–[35] that addresses the above prob-

lems. For simplicity, we present the underlying idea using the

example of Oja’s method (16) for learning a one-dimensional

subspace using full data, although the same approach applies

to the general rank-k case with missing data.

When k = 1, the orthogonalization operator Π in (16) is just

a normalization, and thus the update rule can be simplified as

Un =
Un−1 + ηnxnx

T
nUn−1∥∥Un−1 + ηnxnxT
nUn−1

∥∥ . (37)

This stochastic process is a Markov chain in R
d, where the

dimension d can be large. To reduce the underlying dimension

of the system we need to analyze, we note that the quality of

the estimate Un can be fully captured by a scalar quantity

sn
def
=

UT
n U∗

‖Un‖‖U∗‖ . (38)

Clearly, sn ∈ [−1, 1], with sn = ±1 indicating perfect

alignment of U∗ and Un. In what follows, we refer to sn
as the cosine similarity.

Substituting (37) and (31) into (38), we get a recursion
formula for the cosine similarity:

sn =

sn−1 + ηn(an + σpn)(ansn−1 + σqn)
(

1 + ηn(ansn−1 + σqn)2[2 + ηn(a2
n + σ2‖εn‖

2 + 2σanpn)]
) 1

2

,

(39)

where an, εn are the signal and noise vector in the generating

model (31), respectively, and pn
def
= εTnU

∗ and qn
def
= εTnUn−1.

The expression (39) might appear a bit complicated, but the

key observation is the following: If the noise vector εn is

drawn from the normal distribution N (0, Id), then it follows

from the rotational symmetry of the multivariate normal dis-

tribution that

P(pn, qn|sn−1) ∼ N
(
0,

[
1 sn−1

sn−1 1

])
.

In other words, given sn−1, the two random variables pn and

qn are joint normal random variables whose distribution is a

function of sn−1. Consequently, the recursion (39) from sn−1

to sn forms a one-dimensional Markov chain. Note that this

exact Markovian property relies on the assumption that the

noise vector εn be normally distributed. However, due to the

central limit theorem, we can show that this property still holds

asymptotically, when the underlying dimension d is large and

when the elements of εn are independently drawn from more

general distributions with bounded moments [35]. Moreover,

these arguments can be generalized to the missing data case,

provided that the subsampling process follows the probabilistic

model in (32).

Further analysis shows that, by choosing the step size

ηn = τ/d for some fixed τ > 0, we can apply the similar

ODE idea used in the classical asymptotic analysis to obtain

a deterministic, limit process for the cosine similarity. More

specifically, we can show that a properly time-rescaled version

of s(d)(t)
def
= sbtdc will converge weakly, as d → ∞, to

a deterministic function that is characterized as the unique

solution of an ODE (see [32]–[35] for details).

In [33], [35], the exact dynamic performance of Oja’s

method, GROUSE and PETRELS was analyzed in this asymp-

totic setting. In what follows, we only state the results for

k = 1. For simplicity, we also assume that the covariance

matrix of the signal vector an in (31) is Σa = Ik. For

PETRELS, it turns out that we just need to study two scalar

processes: the cosine similarity sn as defined in (38) and an

auxiliary parameter

gn = dRn‖Un‖−2
,

where Rn is the average of the quantities
{
Ri

n

}
in Algo-

rithm 6. Accordingly, the parameter δ in the algorithm also

needs to be rescaled such that δ = δ′/d for some fixed

δ′ > 0. By introducing the “fictitious” time t = n/d, we

can embed the discrete-time sequences sn, gn into continuous-

time as s(d)(t) = sbtdc and g(d)(t) = gbtdc. As the underlying

dimension d → ∞, we can show that the stochastic processes{
s(d)(t), g(d)(t)

}
converge weakly to the unique solution of

the following systems of coupled ODEs:

ds(t)

dt
= αs(1− s2)g − σ2

2 (αs2 + σ2)sg2

dg(t)

dt
= −g2(σ2g + 1)(αs2 + σ2) + µg,

(40)

where α is the probability with which each coordinate of the

data vectors can be observed [see (32)], and µ > 0 is a constant

such that the discount parameter λ in (27) is set to λ = 1−µ/d.

Compared to the classical ODE analysis [23], [28] which

keeps the ambient dimension d fixed and studies the asymp-

totic limit as the step size tends to 0, the ODEs in (40)

only involve 2 variables s(t) and g(t). This low-dimensional

characterization makes the new limiting results more practical

to use, especially when the dimension is large.

Similar asymptotic analysis can also be carried out for

Oja’s method and GROUSE (see [35]). Interestingly, the time-

varying cosine similarities sn associated with the two algo-
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Fig. 1: Monte Carlo simulations of the Oja’s method,

GROUSE and PETRELS v.s. asymptotic predictions obtained

by the limiting ODEs given in (40) and (41). The error is

defined as 1 − s2(t). The signal dimension is d = 104, the

noise parameter is σ = 0.2, and the subsampling probability is

α = 0.17. The error bars shown in the figure correspond to one

standard deviation over 50 independent trials. The simulation

results also confirm the prediction that Oja’s method and

GROUSE converge to the same deterministic limit.

Fig. 2: The grayscale in the figure visualizes the steady-state

errors of the PETRELS algorithm corresponding to different

values of the noise variance σ2, the subsampling ratio α, and

the discount parameter µ. The red curve is the theoretical

prediction given in (42) of a phase transition boundary, below

which no informative solution can be achieved by the algo-

rithm. The theoretical prediction matches well with numerical

results.

rithms are asymptotically equivalent, with both converging, as

d → ∞, to the solution of a limiting ODE:

ds

dt
= τ

(
α− τσ4

2

)
s− ατ

(
1 + τσ2

2

)
s3, (41)

where τ > 0 is a constant such that the step size parameter

ηn used in Algorithms 3 and 4 is ηn = τ/d, and α is again

the subsampling probability. Numerical verifications of the

asymptotic results are shown in Figure 1. We can see that

the theoretical prediction given by the ODEs (40) and (41)

can accurately characterize the actual dynamic performance

of the three algorithms.

The convergence behavior of the algorithms can also be

established by analyzing the fixed points of the dynamical

system associated with the limiting ODEs. For example, by

studying the stability of the fixed points of (40) for PETRELS

(see [35]), one can show that limt→∞ s(t) > 0 if only if

µ <
(
2α/σ2 + 1/2

)2
− 1/4, (42)

where α ∈ (0, 1) is the subsampling probability and σ > 0
is the noise level in (31). A “noninformative” solution corre-

sponds to s(t) = 0, in which case the estimate Un and the

underlying subspace U∗ are orthogonal (i.e., uncorrelated).

The expression in (42) predicts a phase transition phenomenon

for PETRELS, where a critical choice of µ (as a function of α
and σ) separates informative solutions from non-informative

ones. This prediction is confirmed numerically in Figure 2.

C. Finite Sample Analysis

In addition to the asymptotic analysis described in the pre-

vious subsections, there have also been many recent efforts in

establishing finite-sample performance guarantees for various

streaming PCA algorithms. We begin with analysis in the case

of fully observed data vectors.

One of the earlier works is [36], where the authors analyze a

block variant of Oja’s method: within each iteration, multiple

sample vectors are drawn, whose empirical covariance matrix

is then used in place of xnx
T
n in (37). Under the generative

model (31), the authors show that this algorithm can reach

accuracy ‖Un −U∗‖ ≤ ε, in the rank-one case, if the total

number of samples is of order

n = O
(

(1 + 3(σ + σ2)
√
d)2 log(d/ε)

ε2 log[(σ2 + 3/4)/(σ2 + 1/2)]

)
,

where σ is the noise level in (31). Similar analysis is available

for the general rank-k case. Block Oja’s methods have also

been studied in [37], [56], but the analysis is done under a

model much more general than (31): the data vectors xn are

assumed to be drawn i.i.d. from a general distribution on R
d

with zero-mean and covariance Σ.

The performance of Oja’s original method has also been

studied under the above general model. For the rank-1 case,

Li et al. [38] established that the error is on the order of

O
(

λ1λ2

(λ1−λ2)2
d logn

n

)
, which is near optimal up to a logarithmic

factor, with the step size ηn = 2 logn
(λ1−λ2)n

. Similarly, Jain

et al. [69] provide a near-optimal result for Oja’s method,

with a time-varying learning rate ηn = 1
(λ1−λ2)(n+n1)

, where

n1 is some starting time. Other results include Balsubramani

et al. [18], Shamir [39], Li et al. [70]. Allen-Zhu and Li [40]

provide a near-optimal guarantee for rank-k Oja’s method very

recently. This paper also contains a comprehensive table that

summarizes many recent results.

Most of the existing analysis and performance guarantees

in the literature assume that there is a positive gap between λk

and λk+1. This eigengap assumption was removed in Shamir

[39] and Allen-Zhu and Li [40], where the authors provide

sample complexity bounds that are gap-free, i.e. they do not

require a strictly positive eigengap.

For fully observed data vectors, the global convergence of

the GROUSE algorithm was established in [59], [60] under

the generative model (31) for the special noise-free case, i.e.,

σ = 0. Define ζn := det
(
U∗TUnU

T
n U∗

)
∈ [0, 1] to be the
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“determinant similarity6” between two subspaces, which will

be 0 when the subspaces have any orthogonal direction and

will be 1 if and only if the two subspaces are equal. Let ζ∗ < 1
be the desired accuracy of our estimated subspace. Initialize

the starting point (U0) of GROUSE as the orthonormalization

of a d×k matrix with entries being standard normal variables.

Then for any ρ > 0, after

n ≥
(
2k2

ρ
+ 1

)
µ0 log(d)

︸ ︷︷ ︸
n1

+2k log

(
1

2ρ(1− ζ∗)

)

︸ ︷︷ ︸
n2

iterations of GROUSE Algorithm 4, ζn ≥ ζ∗ with probability

at least 1−2ρ, where µ0 = 1+
log

(1−ρ′)
C

+k log(e/k)

k log d with C > 0
a constant approximately equal to 1. This result is divided into

two parts: n1 is the bound on the number of observed vectors

(also iterations) required to get to a basin of attraction, and

n2 is the number required for linear convergence in the basin

of attraction. In practice we see that the bound on n1 is loose

but n2 is accurate when discarding dependence on ρ (see [59],

[60] for more details.)

In contrast to the fully observed case, the literature is much

sparser for finite-sample analysis in the missing data case.

While a great deal of work has established performance guar-

antees in the batch setting (i.e. the low-rank matrix completion

problem [7], [71]–[74]), the only results in the streaming case

with missing data are local convergence results for GROUSE

and the work of [75], where the authors consider recovering

a low-rank positive semidefinite matrix observed with missing

data using stochastic gradient descent; while the authors of

[75] did not study streaming PCA in particular, their method

could be applied in the streaming data case.

Bounds on the expected improvement at each iteration for

the GROUSE algorithm has been given for the case of noisy

data [59] and missing or compressed data [58], [60]. Under

some assumptions of data regularity and subspace incoherence,

these convergence results show that the GROUSE algorithm

improves ζn+1 in expectation as follows:

E

[
ζn+1

∣∣Un

]
≥
(
1 + η

|Ωn|
d

1− ζn
k

)
ζn (43)

with high probability, where η ≈ 1 is slightly different for

each sampling type [59], [60]. The expectation is taken with

respect to the generative model (31) and the subsampling

model (32). These results for missing or compressed data can

be generalized to a local convergence result [58], [60].

In the work of [75], the authors propose a step size scheme

for general Euclidean stochastic gradient descent with which

they prove global convergence results from a randomly gen-

erated initialization. Their choice of step size depends on the

knowledge of some parameters that are likely to be unknown

in practical problems. Without this knowledge, the results only

hold with sufficiently small step size that implies very slow

convergence.

6Note that the rank-k generalization of the aforementioned cosine similarity
(38) is given as ‖UT

n U
∗‖2

F
for Un and U

∗ with orthonormal columns.
Therefore the two similarity measures are related via the singular values of
U

T
n U

∗.

It remains an important open problem to establish finite

sample global performance guarantees in the missing data

case for GROUSE and other algorithms such as Oja’s and

PETRELS.

VI. NUMERICAL EXPERIMENTS

We benchmark the performance of several competitive algo-

rithms reviewed in this paper that are able to handle missing

data, including GROUSE [22], PETRELS [23], PIMC [54],

MD-ISVD [3], Brand’s algorithm [15] and Oja’s algorithm

[17] adapted to the missing data case as proposed in this paper

in Algorithm 3. The code for these simulations is available

in Python Jupyter notebooks at http://gitlab.eecs.umich.edu/

girasole/ProcIEEEstreamingPCA/.

A. Simulation Setup

Let d = 200 and k = 10. We select the ground truth

subspace as U∗ = orth(Ũ) ∈ R
d×k where Ũ is composed

of standard i.i.d. Gaussian entries. The coefficient vectors are

generated as an ∼ N (0, diag(c)), where the loading vector c

is given as

c = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T ,

for a well-conditioned system, and

c = [1, 1, 1, 1, 1, 0.3, 0.3, 0.3, 0.1, 0.1]T

for an ill-conditioned system. The data vector is generated

using (31), where εn is composed of i.i.d. N (0, σ2) entries,

with the noise level given as σ = [10−2, 10−5, 0]. Each

vector is observed with a fixed percent α = [0.1, 0.5, 1]
of entries selected uniformly at random. We note that the

lowest sampling fraction is near the information-theoretic

lower bound of the number of uniform random samples that

will guarantee matrix reconstruction. The reconstruction error

is calculated as the projection error ‖(I−P
Û
)U∗‖2F , where Û

is the estimated (orthogonalized) subspace. All the algorithms

are initialized with the same orthogonalized random subspace.

We assume all algorithms are given the true rank. Throughout

the simulations, we set the discount parameter η = 0.98 in

PETRELS and β = 0.98 in Brand’s algorithm, and set η = 0.5
in Oja’s algorithm. Note that we did a grid search for these

parameters using the setting σ = 10−5, α = 0.5, and so

picking them differently will likely yield different trade-offs in

performance for other levels of noise and missing data. Our

goal is to illustrate their typical behaviors without claiming

relative superiority.

B. Performance Evaluations

We first examine the performance of subspace estimation

with streaming observations of a static subspace. Fig. 3 shows

the reconstruction error of the algorithms with respect to the

number of snapshots for both the well-conditioned case and

the ill-conditioned case. For each algorithm, the dark line is

the median of 50 runs, and the transparent ribbon shows the

25% and 75% quantiles. Note how in most algorithms, the

ribbon is nearly invisible, meaning that the algorithm execution

with different initialization, generative subspace, random data
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