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Abstract—For many modern applications in science and engi-
neering, data are collected in a streaming fashion carrying time-
varying information, and practitioners need to process them with
a limited amount of memory and computational resources in a
timely manner for decision making. This often is coupled with
the missing data problem, such that only a small fraction of data
attributes are observed. These complications impose significant,
and unconventional, constraints on the problem of streaming
Principal Component Analysis (PCA) and subspace tracking,
which is an essential building block for many inference tasks
in signal processing and machine learning. This survey article
reviews a variety of classical and recent algorithms for solving
this problem with low computational and memory complexities,
particularly those applicable in the big data regime with missing
data. We illustrate that streaming PCA and subspace tracking
algorithms can be understood through algebraic and geometric
perspectives, and they need to be adjusted carefully to handle
missing data. Both asymptotic and non-asymptotic convergence
guarantees are reviewed. Finally, we benchmark the performance
of several competitive algorithms in the presence of missing data
for both well-conditioned and ill-conditioned systems.

Index Terms—subspace tracking, streaming PCA, subspace
and low-rank models, missing data, ODE analysis

I. INTRODUCTION

The explosion of data collection across a variety of domains,
for purposes that range from scientific to commercial to policy-
oriented, has created a data deluge that requires new tools
for extracting useful insights from data. Principal Component
Analysis (PCA) [1] and subspace tracking are arguably some
of the most commonly used tools for exploring and under-
standing data. The fundamental mathematics and algorithms
for identifying signal subspaces from data have been studied
for nearly a century. However, in the modern context, many
novel challenges arise, due to the severe mismatch between
limited resources available at computational platforms and
increasing demand of processing high-dimensional data. In
particular, this survey article is motivated by the following
aspects of modern data processing.

o Large-scale and high-rate. Data are collected at an
extremely large scale with many variables, such as in
video surveillance or internet monitoring, and they can
accumulate at such high rates that real-time processing is
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necessary for timely decision making. Therefore, classical
batch algorithms for data processing are replaced by
online, streaming algorithms that have much smaller
memory and computational footprints.

o Missing data. At each time instance, only a very small
subset of the data attributes may be measured, due to
hardware limitations, power constraints, privacy concerns,
or simple lack of observations. Therefore, classical al-
gorithms that do not account for missing data may
yield highly sub-optimal performance and need to be
redesigned.

To elaborate on these modern challenges, we describe two
concrete examples in more detail. First, consider recommen-
dation systems [2], where users’ past product use and opinions
are collected. Based on such data, the system attempts to
predict other products of interest to those (and potentially
other) users. This is of course a scenario involving extremely
sparse observations in high dimensions—a user has only
purchased or rated a vanishingly small number of products
from a company. Moreover, as the users rate more products and
as new products become available, it is desirable to update the
system’s predictions on user preference in an online manner.

As another example, consider the rigid structure from mo-
tion problem in computer vision [3], [4]. One seeks to build
a 3D model of a scene based on a sequence of 2D images
that, for an orthographic camera, are projections of that scene
onto a plane. Features in the scene can be tracked through the
images, and a matrix of their locations in the images has a
low-rank (3-dimensional) factorization in terms of the true 3D
locations of feature points and the locations of the cameras at
each image frame. The problem is obviously high dimensional,
and it is also natural to consider the streaming setting, as large
numbers of features can be tracked across image frames that
arrive sequentially at a high rate. Moreover, many points in
the scene are not visible in all image frames due to occlusion.
Therefore, while the low-rank subspace of the data recovers
the 3D structure of the entire scene, one must estimate this
subspace in the presence of missing data.

The list of modern applications continues. The question is:
can we have scalable and accurate algorithms for subspace
learning that work well even in the presence of missing data
in a dynamic environment?

A. Subspace Models and Missing Data

Subspace models have long been an excellent model for cap-
turing intrinsic, low-dimensional structures in large datasets. A
celebrated example, PCA [1], has been successfully applied to



many signal processing applications including medical imag-
ing, communications, source localization and clutter tracking
in radar and sonar, computer vision for object tracking, system
identification, traffic data analysis, and speech recognition, to
name just a few. The calculated principal components and best-
fit subspaces to a dataset not only allow dimensionality reduc-
tion but also provide intermediate means for signal estimation,
noise removal, and anomaly detection [5]. As we highlight
in this paper, the principal components can be updated using
incoming data in a streaming manner, thus offering tracking
capabilities that are necessary for real-time decision making.

While there are a plethora of traditional algorithms for
performing PCA on a batch dataset and for estimating and
tracking the principal components in a streaming scenario
(see, e.g., [6], for a survey of earlier literature), most of these
algorithms were developed during a time when datasets of
interest had a moderate number of variables (say 10-100)
and were collected in a controlled environment with little
or no missing entries. As argued earlier, modern datasets are
being collected on vast scales, in a much less controlled way,
often with overwhelmingly many missing entries. In light of
this prevalent and modern challenge in signal processing and
machine learning, classical algorithms must be adjusted in
order to gracefully handle missing data.

When do we have hope to recover missing data? If the
complete high-dimensional data are well-approximated by
their projection onto a lower-dimensional subspace, and hence
in some sense redundant, then it is conceivable that incomplete
or subsampled data may provide sufficient information for the
recovery of that subspace. A related problem in the batch
setting is the celebrated problem of low-rank matrix comple-
tion [7], [8], which suggests that it is possible to recover a
highly incomplete matrix if its rank is much smaller than the
dimension. This is the central intuition that motivates work
on streaming PCA and subspace tracking with missing data.
A burst of research activity has been devoted to developing
algorithms and theoretical underpinnings for this problem over
the last several years in signal processing, machine learning,
and statistics. Moreover, powerful results from random matrix
theory and stochastic processes have been leveraged to de-
velop performance guarantees for both traditional and newly
proposed methods. At the same time, these methods are also
finding new applications to emerging data science applications
such as monitoring of smart infrastructures [9], neurological,
and physiological signal processing and understanding [10].

B. Overview of Subspace Tracking Algorithms

There is a long history of subspace tracking algorithms
in the literature of signal processing. An extensive survey of
methods prior to 1990 was provided in a popular Proceedings
of the IEEE article by Comon and Golub [6]. As the common
problem dimension was relatively small at that time, the focus
was mostly on performance and computational complexity for
fully observed data of moderate dimensions. Since then, new
algorithms have been and continue to be developed with a
focus on minimizing computation and memory complexity for
very high-dimensional problems with missing data, without

suffering too much on performance [11]. Consider the problem
of estimating or tracking a k-dimensional subspace in R?,
where k£ < d. For modern applications, it is desirable that both
the computational complexity (per update) and the memory
complexity scale at most linearly with respect to d. Moreover,
modern applications may require the algorithm to handle a
range of missing data, from just a small fraction of missing
entries to the information-theoretic limit of only O(klog d)
entries observed in each data vector'.

Broadly speaking, there are two perspectives from which
researchers have developed and studied streaming PCA and
subspace tracking algorithms, as categorized by Smith [14].
The first class of algorithms can be interpreted through an
algebraic lens; these can be regarded as variants of incremental
methods for calculating top-k eigenvectors or singular vectors
of a time-varying matrix, such as the sample covariance
matrix. Since this time-varying matrix is typically updated
by a rank-one modification, various matrix manipulation tech-
niques can be exploited to reduce computational and memory
complexities. This viewpoint is particularly useful for under-
standing algorithms such as Incremental SVD [15], Karasalo’s
method [16], Oja’s method [17], Krasulina’s method [18], [19],
and other algorithms based on power iterations [20], [21], to
name a few.

The other class of algorithms can be interpreted through
a geometric lens. These algorithms are constructed as the
solution to the optimization of a certain loss function, e.g.,
via gradient descent, designed in either Euclidean space or
on a matrix manifold such as the Grassmannian. We focus
mainly on methods where the loss function is updated by one
additional term per streaming column vector, and the previous
estimate can be used as a warm start or initialization. This
viewpoint is particularly useful in the presence of missing
data, since missing data are easily incorporated into a loss
function, and has therefore been leveraged more often than
the algebraic viewpoint in the design of subspace tracking
algorithms that are tolerant to missing data. Examples include
GROUSE [22], PETRELS [23], ReProCS [24], PAST [25],
online nuclear norm minimization [26], and other algorithms
based on stochastic approximation [27], to name a few.

The two classes of algorithms, while having distinct fea-
tures, can often be unified, as an algorithm can often be
interpreted through both perspectives. The trade-off between
convergence speed in static environments and tracking speed
in dynamic environments is also an important consideration in
practice, achieved by balancing the influence from historical
data and current data. This can be done by discounting
historical data in the construction of the time-varying matrix in
algebraic methods, and in the construction of the loss function
or selection of step sizes in geometric methods.

There is also a vast literature on establishing theoretical per-
formance guarantees for various streaming PCA and subspace
tracking algorithms. Classical analysis is primarily done in the
asymptotic regime (see, e.g., [28], [29]), where the discrete-

IThis is the information-theoretic lower bound of measurements for an
arbitrary incoherent rank-k matrix when entries from about d total column
vectors are observed uniformly at random [12]. For a generic matrix, we need
only O(max(k,logd)) entries per column with O(kd) total columns [13].



time stochastic processes associated with the algorithms are
shown to converge, in the scaling limit [30], [31], to the
solution of some deterministic differential equations. Recent
developments in performance analysis include new and more
tractable asymptotic analysis for high-dimensional cases [32]-
[35], as well as finite-sample probabilistic performance guar-
antees [36]-[40].

C. Organization of the Paper

We first describe in Section II the problem formulation of
PCA and streaming PCA in the presence of missing data.
We then survey algorithms that perform streaming subspace
estimation and tracking with full or incompletely observed
columns: Section III focuses on those using algebraic ap-
proaches and Section I'V on those using geometric approaches.
Many of these algorithms have associated theoretical analy-
sis with regards to the estimation accuracy and algorithmic
convergence rates, which we discuss in Section V. We then
provide numerical comparisons of a number of competitive
algorithms in Section VI and conclude in Section VII.

D. Notations

Throughout this paper, we use boldface letters to denote
vectors and matrices, e.g., a and A. For a positive semidefinite
(PSD) matrix A, we write A > 0. The transpose of A
is denoted by AT, and ||A|, |A|r, and Tr(A) denote the
spectral norm, the Frobenius norm and the trace, respectively.
The expectation of a random variable « is written as E[a]. The
identity matrix of dimension k is written as Ij. We shall use d
to denote the dimension of the fully observed data vector and
k to denote the dimension of the subspace to be estimated. A
subscript n on the data vector x,, € R? refers to its order in
a sequence of vectors, and the notation () refers to the ith
component of the vector x,,.

II. PROBLEM FORMULATION

In this section, we will start by formulating the problem
of subspace estimation in the batch setting, which serves as a
good starting point to motivate streaming PCA and subspace
tracking in the streaming setting with missing data.

A. PCA in the Batch Setting

The PCA or subspace estimation problem can be formulated
either probabilistically, where data are assumed to be random
vectors drawn from a distribution with mean zero and some co-
variance matrix whose principal subspace we wish to estimate,
or deterministically, where we seek the best rank-k subspace
that fits the given data. Both models are used extensively
throughout the literature. The former is used more prevalently
in the signal processing and statistics literature, while the latter
is more prevalent in applied mathematics, optimization, and
computer science literature. The problem formulations result
in equivalent optimization problems, and so we put them here
together for a unified view.

(a) Probabilistic view: Consider a stationary, d-dimensional
random process & € R, which has a zero mean and a

covariance matrix 3 = E[za”].> Denote the eigenvalue de-
composition (EVD) of the covariance matrix as 3 = UAUT,
where U = [uy,...,uq] has orthonormal columns, and
A = diag{\1,..., A}, where \y > Ag > -+ > Ay > 0 are
the eigenvalues arranged in a non-increasing order. Our goal
is to estimate the top-k eigenvectors, also called the principal
components U* = [uq,...,u], of X, given a finite number
of i.i.d. data samples, x1,x2,...,x, ~ x. Note that we do
not require X be a rank-£ matrix.

(b) Deterministic view: In a deterministic formulation, the
data samples x1,...,x, € R? are considered arbitrary. We
wish to find the rank-%k subspace that best fits these data in
the sense of minimizing the {5 projection error, that is

U. Sl ~Poul@n],

= argmin
UeRdxk UTU=I, j—;
2
= argmin X, -UUTX, )
UeRdxk UTU=I, F
= argmax Tr (UUTEH) , 3)

UcRdxk UTU=I,

where Py denotes the projection operator onto the column
span of the matrix U and Py = UU7T when U has orthonor-
mal columns, X,, = [®1,®2,...,x,] concatenates the data
vectors as columns into a matrix, and X,, = 22:1 wgwéT =
X, X is the (unscaled) Sample Covariance Matrix (SCM).

The equivalence of (2) and (3) suggests that finding the
subspace that maximizes the explained variance of 3, is
equivalent to minimizing the approximation error of the data
matrix X,,. While the formulations (2) or (3) are non-convex,
both due to the cost function’s non-convexity in U and the
non-convex constraint UTU = I, they admit a well-defined
solution, solved by the SVD of X,,, equivalently the EVD of
3., as was discovered independently by [42] (see [43], [44]
for details) and [45]. Specifically, the solution U, is given as
the top-k eigenvectors of the SCM X,,.

(c) Unified perspective: Consider the following expected
loss function

JU)=E|z-UU" |3, (4)

where U € R%** and the expectation is taken with respect
to = which is zero mean with a covariance matrix 3. The
following important result was proven in [25]: if Ay > Agy1,
i.e., if there is a strict eigengap, then the global optima of J(U)
correspond to U that contains the top-k eigenvectors of X
up to an orthonormal transformation, matching the solution of
PCA in the probabilistic view. Interestingly, the solution to the
deterministic formulation (1) can be thought of as an empirical
version of (4), if the data samples are indeed drawAn according
to the probabilistic model. Moreover, in this case, U,, produces
an order-wise near-optimal estimate to U™ for a large family
of distributions [46]. In this regard, the two formulations are
equivalent in some sense, though in the deterministic setting,
there need not be any generative model or “ground truth” for
the underlying subspace.

21t is straightforward to consider the complex-valued case 2 € C%, but we
only consider the real case in this survey for simplicity. For more information,
see [41].



B. Streaming PCA and Subspace Tracking

In a streaming setting, the data samples arrive sequentially
over time, with each sample only seen once,’ and one wishes
to update the subspace estimate sequentially without accessing
historical data. In a dynamic environment, either the covari-
ance matrix or the best rank-k subspace can be time-varying
— therefore, we wish to track such changes as quickly as
possible.

In this survey article, we use the terminology “streaming
PCA” and “subspace tracking” interchangeably to refer to
algorithms that can update and track a data subspace using
streaming observations. Nonetheless, we acknowledge they
have different connotations and indeed they have arisen from
different contexts. The terminology ‘“‘subspace tracking” is
common in the literature of signal processing [6], where one
often needs to update the subspace in a dynamic environment
as in array signal processing or communications. The more
recent terminology of “online PCA” or “streaming PCA” can
be found in the machine learning literature, motivated by the
study in computer science of trying to replicate the behavior
of batch PCA with streaming data [47] or data too large for
memory. In addition, “incremental SVD” [15] or “updating the
SVD” [48] are terminology used more classically in numerical
methods. It turns out that all of the algorithms reviewed herein
can handle both the settings where the underlying subspace
is static or time-varying by adjusting parameters within the
algorithm such as data discounting factors or step sizes.

Streaming PCA can be considered as a nonconvex stochastic
approximation problem, given by (4). The solution to the
batch problem that we outlined in Section II-A is no longer
appropriate for the streaming setting — it requires one to
formulate and store the SCM X,, which has a memory
complexity of O(d?), and to estimate the top-k eigenvectors
directly from the SCM, which has a time complexity of
O(nd?). Both these memory and time complexities are too
expensive for large-scale problems. It is greatly desirable to
have algorithms with computation and memory complexities
that grow at most linearly in d.

C. Missing Data

An important setting that we will consider in this survey
is missing data, where only a subset of the coordinates of of
each sample x,, are observed. We denote this measurement as

,PQW, (wn)a (5)

where Pq, is a projection operator onto the coordinates
represented by an observation mask, {2, € {0,1}d, where
@, (i) (the ith entry of x,) is observed if and only if
0,,(7) = 1. This issue poses severe challenges for most PCA
algorithms, particularly when the number of observed entries
is much smaller than d. To begin, one may be concerned
with identifiability: can we find a unique subspace of rank-
k that is consistent with the partial observations? Luckily, the
answer to this question is yes, at least in the batch setting

3This is different from what is known as a stochastic setting, where samples
may be accessed at multiple times or in multiple passes.

where the problem is equivalent to that of low-rank matrix
completion: under mild assumptions, the low-rank subspace
can be reconstructed from subsampled column vectors as long
as there are enough observations.* It may also be tempting to
execute subspace tracking algorithms by ignoring the missing
data and padding with zeros at the missing entries, however
the sample covariance matrix constructed in this way leads to
a biased estimator [49], [50]. Therefore, one must think more
carefully about how to handle missing data in this context.

III. ALGEBRAIC METHODS

In this section and the next, we will discuss two classes
of algorithms based on algebraic approaches and geometric
approaches respectively, as outlined in Section I-B. The alge-
braic approaches are based on finding the top eigenvectors of
a recursively updated SCM, or a surrogate of it, given as

En = anEnfl + 5nwnw;€a (6)

where «,, and [3,, balance the contributions from the previous
SCM and the current data sample. Two popular choices are
equal weights on all time slots, which is

ap =1, B,=1;
and discounting on historical data, which is
O‘n:/\a ﬂn:l, 0K A<].

Equivalently, the above can be reworded as finding the top
singular vectors of a recursively updated data matrix X,. As
we are interested in calculating or approximating the top-k
eigenvectors of 3,,, algebraic methods use matrix manipu-
lations and exploit the simplicity of the rank-one update to
reduce complexity.

A. Incremental Singular Value Decomposition (ISVD)

We begin by discussing the ISVD approach of Bunch and
Neilsen [48], which is an exact method to compute the full
SVD of a streaming full data matrix, i.e., with sequentially
arriving, full data vectors. This algorithm is given in Algo-
rithm | and is the result of some simple observations about
the relationship of the SVD of X, and that of X,, ;. Suppose
we are given the compact SVD of the data matrix at time n—1,

Xn—l = [331 mn—l] - ﬁnflgnfl‘f}njllv

where U,_, € R¥*4 and V, 1 € R=Dx(n=1) are or
thonormal, and S,_; € R4X(n=1) {5 the concatenation of
two matrices: a diagonal matrix (of size min{d,n — 1}) with
non-negative non-increasing diagonal entries, and an all-zero
matrix. Note that we are using the U notation for the square
orthogonal matrix as opposed to U for a d x k matrix, as
in Section II-A, because we are computing the full SVD, not
a low-rank approximation. For simplicity of exposition, let’s
assume d > n (but both cases d < n and d > n are described
in Algorithm 1). We wish to compute the SVD of

X, = [Xn—l xn] = ﬁngnVnTy

4“Enough” observations per vector here will depend both on the number
of vectors and the conditioning or coherence [7] of the subspace.



where ﬁn, §n, and ‘7” are defined similarly as ﬁn,l, gn,l,
and V,,_;.
Recognizing that

X, X=X, 1 X' | +ax,xl

and
ﬁT

n—

Tr7 Q QT T
1Xan Un—l = Sn_lsn_l + ZnZ,,

where z,, = ~§_1mn, we can compute the new singular values
by finding the eigenvalues of S,_1S87 | + z,zT using the
zeros of the characteristic equation [51], which in this case
has a special structure; in particular, if o; are the diagonal
values of S,,_1, then the zeros of

d N2
1+3° ;g(f) N %)
i=1 ?

with respect to the variable )\ identify the eigenvalues of
S,-18T | + 2z,2T. Denote the resulting eigenvalues as
A; for i = 1,...,d. To update the left singular vec-
tors to the new U, = [u1 ug4|, we need to solve

(gn,lgz_l + znz?;> u; = \;u; and normalize the solution.
Therefore [6], [51],

 (SpaSI =Nz,
' H(§n—1§$_1 - AiI)_lzn

u i=1,...,d. (8

So far, the above derivations assume ﬁn_l is a square
orthonormal matrix, and the resulting computations are suit-
able for incremental updates of the full SVD. However, this
still requires O(dn? + n3) complexity’ for every iteration
computing the full SVD (i.e., all singular values and left/right
singular vectors) using Algorithm 1, and the memory require-
ment grows as n grows if the data are full rank (or low rank
with even a very small amount of additive noise), which are
both undesirable.

On the other hand, estimating a thin SVD or the top k-
dimensional singular subspace can improve computation. In
fact, if X,,_ is exactly rank-k, this incremental approach re-
quires fewer computations as pointed out in [52]. In this case,
take the first k£ columns of U,,_; and call these U,,_1. We only
need these to represent X, _; because the others correspond to
zero singular values. Let S,,_; and V;,_; be the corresponding
matrices for this thin SVD so that X,,_1 = U,,_1S, 1V, ;.
We then notice as in [52], [53] that

w, | [VE, 0
mnH 0 1] (2

where w,, = ULz, are the projection weights onto the span
of this now tall matrix U,,_; and r,, = x,, —U,,_1UI_ |z, is
the residual from the projection. We only must diagonalize the
center matrix of (12) to find the SVD of X,. We only assumed
X, —1 is rank-k, but then to make this assumption at every step

X, = [U,F1 ”:7:”} [S%l

_ SThis complexity is assuming d > 7. In this case, the bottleneck is updating
U, in (10), Whigh needs O(an) operations for a naive matrix multiplication;
then to update V/,, we require O(n?) operations for the same step.

Algorithm 1 ISVD

I: Given @1, set Uy = 1 /||x1||, S1 = ||, Vi = 1;
2: Setn =2;

3: repeat _
4:  Define w,, := Ug_lmn;
Define Pn ‘= Up_1Wy; Ty i= Ty — Pn;

5
6:  if ||r,]| # O then
7: Compute the SVD of the update matrix:

A~~~

=USVT, 9)

gn—l Wy,
0 |

by solving (7) for A, which gives the diagonal entries
of S, where 57 are the diagonal entries of S,,_; and
T

Zn = {wg Il 0} , and then solving (8) for
U.
8: Set
U, = {ﬁn,l ”j;z”} U S,=58. (10
vV o Vn—l 0|
V, = [ 0 1] V.
9: else if |7, || = O then
10: (this happens when n > d or x,, € span{U,_1})
11: Compute the SVD of the update matrix:
[§n,1 wn} —USVT, (11

by solving (7) for A, which gives the diagonal entries
of S, where 51-2 are the diagonal entries of S,,_; and
T ~
Zn = [wg O] , and then solving (8) for U.
12: Set

S, = S.

13:  end if
14: n:=n+1;
15: until termination

is a strong assumption and means the matrix is exactly low-
rank. However, this technique is used successfully as a heuris-
tic, by truncating smaller singular values and corresponding
singular vectors, even when this assumption does not hold.
This method is described in the following section. Finally, we
point out that Karasalo’s subspace averaging algorithm [16]
is similar to ISVD, but it uses specific information about the
noise covariance.

B. MD-ISVD, Brand’s Algorithm and PIMC

A major drawback of many linear algebraic techniques is
their inapplicability to datasets with missing data. While it is
not straightforward how to adapt the ISVD for missing data,
there are several different approaches in the literature [3], [15],
[54]. All approaches begin in the same way, by considering



Algorithm 2 MD-ISVD, Brand’s algorithm, PIMC

Algorithm 3 Oja’s algorithm with missing data

1: Given an orthonormal matrix Uy € R4**, S, = 0;
2: For PIMC, o = 1.

3: Setn=1;

4: repeat

5. Define w,, := argmin, ||Pq, (U,—1w — x,) ||3;
6 Define p,, := U,,_1w,;

rn(i) = {wn(i) —pn(i) Qu(i)=1 |

0 otherwise

7. Compute the SVD of the update matrix:

Fn—l wy N N e
=USV", 13)
[ 0 ||m,,||} (
where
Sn—1 for MD-ISVD,
Pn1 = ASh-1 for Brand’s algorithm,
HS,j%lHFSnfL for PIMC,

with 72 =~2_, + ||Pq,, (z,)||3 for PIMC.

8 SetU, := |:Un—1 ﬁ} U:;

9:  Set Uy, as the first k£ columns of U, and S,, as the top
k-by-k block of S.

10 n:=n+1;

11: until termination

how to compute two key quantities, the projection weights w,,
and the residual r,,, given missing data. Whereas for complete
data, we have w,, = argmin,, ||z, — U,_1w||3 = UL ;z,,
for missing data one may solve

w, = argmin |Pq, (z, — Up—1w) [|3 (14)
w

where Pq,, is the measurement operator with missing data as

in (5). Then letting p,, = U,,_,w,,, define the residual to be

rn(i){w"(i)_Pn(i) if0,() =1

0 otherwise (13

All the methods we describe in this section use these quantities
in place of w,, and r,, in Algorithm 1. They also all mimic (9)
for the update, and once they have observed enough vectors
they truncate the k + 1 singular value and corresponding
singular vectors.

The methods diverge only in the way they replace the
singular value matrix S,,_1 in (9). Brand [15] replaces S, _1
with AS,,_1 where 0 < A < 1 is a scalar weight that
diminishes the influence of previous singular values. If one
takes A = 1, this is arguably the most direct extension of
ISVD to missing data, and following [3] we call this algorithm
Missing Data-ISVD (MD-ISVD). Kennedy et al. [54] present a
Polar Incremental Matrix Completion (PIMC) method, which
weights S, _1 with a scalar based on the norm of the data
observed thus far. These are different approaches to modeling
the uncertainty in the singular values arising from incomplete
observations. These algorithms are together summarized in

1: Given an orthonormal matrix Uy € Rdxk.

2: Setn:=1;

3: repeat

4:  Define w,, := argmin,, ||Pq,, (€, —

5: Set pp, = Up—1w,,.

6 Set @, = {""”(?) it 2,(0) = 1
pn(i)  otherwise

7. U, =I(U,_1 +n,&,wl),

8 mn:=n+1;

9: until termination

Un—lw) ||% 5

Algorithm 2. These different rules provide different trade-
offs in (6), as they represent different weighting schemes on
historical data.

C. Oja’s method

Oja’s method was originally proposed in 1982 [17]. It is a
very popular method for streaming PCA, and recent attention
has yielded significant insight into its practical performance
(see discussion in Section V). Given an orthonormal initial-
ization Uy € R¥**_ at the nth time Oja’s method updates to
U,, according to the input data x,, as

Un = H(Unfl + nnwnwz;Unfl)v (16)

where II(W') = Q@ is an orthogonalization operator, i.e., W =
QR is the QR decomposition. The parameter 7),, is the step
size or learning rate that may change with time.

While Oja’s method has not been derived for the missing
data case in the literature, following our discussion on ISVD,
one realizes that if as before we let w,, = UnT_lmn be the
coefficient of x,, in the previous estimate U,,_;, then Oja’s
method is equivalent to

U, =1TU,_1 +npz,wl). (17)

A straightforward extension in the missing data case is then to

estimate the coefficient w,, as (14), and to fill in the missing

entries in x,, as follows. Let p, = U, _,w,, and the data
vector can be interpolated as

- f,(9)

T, = .

P (i)

Then Oja’s update rule in the missing data case becomes

ifQ,() =1
otherwise

U, =T(U,_ + nu@,w?) . (18)

This algorithm is summarized in Algorithm 3. Note that Oja’s
original method with full data becomes a special case of this
update. We study this extension in the numerical experiments
reported in Section VI.

Finally, we note that closely related to Oja’s is another
method called Krasulina’s algorithm [19], which is developed
for updating a rank-1 subspace with full data:

Ugflwnngn,lI U
[V EE i

Un — Unfl + Mn <CEniE;1; -
(19)



It can be viewed as a stochastic gradient descent method
with the Rayleigh quotient as its objective. Oja’s method is
equivalent to Krasulina’s method up to the second order terms
[18], [55].

Remark 1 (Block Power Method). A block variant of Oja’s
method has been developed in the literature [36], [37], [56],
where it partitions the input into blocks and each time pro-
cesses one block in a way similar to Oja’s method. These
methods are referred to as the block power method, or block
Oja’s method, or the noisy power method. They are easier to
analyze but yield suboptimal performance [40].

IV. GEOMETRIC METHODS

In this section, we review subspace tracking algorithms
developed via geometric approaches. These are developed
by optimizing certain loss functions over d x k matrices
in Euclidean space or the Grassmann manifold of rank-k
subspaces in R?. Subspace tracking is enabled by optimizing
a recursively updated loss function, such as the squared
projection loss onto the subspace, as

Fo(U) = anFos(U) + By || @0 — Pula)|2,

(20
where U € R?**, and n is the time index, which is typically
updated by using the previous estimate as a warm start.
Similarly, the choice of «,, and ,, balances the convergence
rate (how fast it converges with data from a static subspace)
and the tracking capability (how fast it can adapt to changes
in the subspace). Additionally, the step size of some gradient
algorithms can also be used as a tuning knob for tracking;
a more aggressive step size will adapt more quickly to new
data. Given the necessity of scalable and memory-efficient
algorithms, first-order and second-order stochastic gradient
descent [57] are gaining a lot of popularity recently in signal
processing and machine learning.

A. GROUSE

Grassmannian Rank-One Update Subspace Estimation
(GROUSE) was first introduced in [22] as an incremental
gradient algorithm to build high quality subspace estimates
from very sparsely sampled vectors, and has since been
analyzed with fully sampled data [58], [59], noisy data [59],
and missing or compressed data [58], [60] (see Section V).
The objective function for the algorithm is given by

Fu(U) = 3 ||Pa, (e — UU )3,
=1
which is a special case of (20) with a,, = 5,, = 1. GROUSE
implements a first-order incremental gradient procedure [61]
to minimize this objective with respect to the subspace variable
U constrained to the Grassmannian [62], the manifold of all
subspaces with a fixed rank, given as

F,(U).

2y

min
UeR»xk:UTU=I}
GROUSE has iteration complexity O(dk + |Q,,|k?) at the nth
update and so is scalable to very high-dimensional applica-
tions. The algorithm steps are described in Algorithm 4.

The GROUSE update in (23) can also be written as:

Un _ Un,1 _ Un—lwnzujz; ynujyjl1
[[wn || ynllllwnl
where P .
Yn = cos(0,) ——— +sin(f,) —— .
" “pall "l

This form makes it clear that GROUSE is simply replacing
a direction in the current subspace estimate, p, = U,,_1w,,
with a new vector y,, that is a linear combination of p,, and
the residual vector 7,,. This of course makes y,, orthogonal to
the rest of U,,_1, which is why U,, will necessarily also have
orthogonal columns.

We note that, if the step size is not given, one can use the
step size prescribed in (22). This step size maximizes the per-
iteration improvement of the algorithm in a greedy way, but
can therefore be susceptible to noise. For example, with fully
observed data, this greedy step size will replace the direction
pn in the current iterate U, _; with the observed data x,.
If bounds on the noise variance are known, one can use the
noise-dependent step-size given in [59], which decreases the
step as the noise floor is reached.

Algorithm 4 GROUSE [22]

1: Given Ug, an d x k orthonormal matrix, 0 < k < d;
2: Optional input: Step size scheme 7,, > 0;

3: Setn:=1;

4: repeat

5. Define w,, := argmin,, |Pq, (z, — U,_1w) ||%;
6: Define p,, := U, _1wy,;

ra(i) = { 0 g otherwise

if 7, given then
Set O = 1|7 [Pn]l-

9: else
10: Set
0,, = arctan <”T"”) . (22)
[n |
11:  end if
U, =U,_1 + (cos(6,) — 1) Pn Lf
[Pl Jwn |
4 sin(6,) " Pn (23)
sin(6,,) —— —2— .
|7l flwn |

122 n:=n+1;
13: until termination

In a follow-up work, Balzano er al. describe SAGE
GROUSE [3], [53], which was derived in the context of
Algorithm 2. SAGE GROUSE replaces S,,_; with an identity
matrix the same size as S,,_;, which makes the algorithm
completely agnostic to singular values or the relative weight of
singular vectors that have been learned. This can be considered
as yet another way of modeling uncertainty in the singular
values learned thus far in a streaming context. SAGE GROUSE



Algorithm 5 PAST [25]

Algorithm 6 PETRELS [23]

1: Given Uy € R¥*F Ry = 61}

2: Setn:=1;

3: repeat

4 Define w, == Ul |x,;

55 Bo=1+2"'wlR, jw,,

6 Uy =A"'R,_iw,,

7: R, = /\71Rn—1 - (/Bn)ilvn’v;l;a

8 U,=U, 1+ (x, - U, 1wl)R,w,.
9. n:=n-+1;

10: until termination

has been proven to be equivalent to the GROUSE gradient
algorithm for a given step size [53], showing that indeed the
distinction of “algebraic” and “geometric” algorithms is not
fundamental.

Remark 2 (SNIPE). A block variant of GROUSE was pre-
sented in [63], called Subspace Navigation via Interpolation
from Partial Entries (SNIPE). This algorithm partitions the
input into blocks and for each block optimizes a subspace to
fit the observed entries on that block but remain close to the
previous subspace estimate.

B. PAST

The Projection Approximation Subspace Tracking (PAST)
is proposed by Yang [25], [28] for subspace tracking with full
data, which is described in Algorithm 5. PAST optimizes the
following function at time n without constraining U to have
orthogonal columns:

n
U, = argmin E

Nz, —UU 2|2, (24)

where prior observations are discounted by a geometric factor
0 < A < 1. The name “projection approximation” comes
from the fact that the projection onto the subspace U is
approximated by UUT, without the constraint UTU = I,
This sum is further approximated by replacing the second U
in (24) by U,_, yielding

n
U, = argmin Z)\”_Zﬂwg - UUgT,lébeH%
UeRkaZ:]_

(25)

Let the coefficient vector be w, = UéT_ 1, then (25) can be
rewritten as

n
U,, = argmin E
UeRdxk {—5

Az — Uwelf3, (26)

whose solution can be written in a closed-form and efficiently
found via recursive least-squares. The PAST algorithm has
a computational complexity of O(dk). PAST has been very
popular due to its efficiency, and it has been extended and
modified in various ways [20], [64], [65].

1: Given Uy = [up,ud,--- ,ud]?, and R} = 61}, § > 0 for
alli=1,---.d.

2: Setn:=1;

3: repeat

4. Define w,, := argmin,, |Pa, (n — Up—1w) ||3 ;

5 fori=1,---,d do

6 Bl =1+ A"1wlR! |jw,,

7: vl = \TIR!_w,,

8 R, = \"'R},_; — Q,(i)v},(v})" /L,

9 ul =ul | +Q,(i) [a:n(z) — wguihl] R w,.

10: end for
11: n:=n+1;
12: until termination

C. PETRELS

The PETRELS algorithm, proposed in [23], can be viewed
as a modification of the PAST algorithm to handle missing
data, which is summarized by Algorithm 6. PETRELS opti-
mizes the following function at time n without constraining
U to have orthogonal columns:

U,, = argmin Z

A" min ||Pg, (xe — Uwy)|3.  (27)
UcRdxk — R*

weE

At each time n, PETRELS alternates between coefficient
estimation and subspace update. We first estimate the coeffi-
cient vector by minimizing the projection residual using the
previous subspace estimate:

w,, = argmin | Py, (z, — U,_1w) ||3, (28)
w

where Uy € R4** is a random subspace initialization. The

subspace U is then updated by minimizing

U, = argéninz NPy, (e — Uwy) |5, (29)

=1
where wy, £ = 1,--- | n are estimates from (28). The objective
function in (29) decomposes into a parallel set of smaller
problems, one for each row of U, = [ul,uZ, - ul]T

3 n
where u!, € R¥. Thus the ith row can be estimated by solving

i

n
ul = arglgnz N EQ (i) (e (i) — wi w)?
weR® p—1

=y + () - [2ali) — whu]

— WUy

—1
n

SN wew] | wy (30)
=1
fori=1,---,d. Again, the problem can be solved efficiently

via recursive least-squares. Moreover, PETRELS can be made
very efficient by parallelizing the implementation of (30).
Both PAST and PETRELS can be regarded as applying
second-order stochastic gradient descent [57] to the loss func-
tion, and each step of the update is approximately a Newton
step. Therefore, it is expected that the algorithm will converge
quadratically when it is close to the optimal solution. Several



algorithms can be developed along similar lines of PETRELS,
where the loss function is revised to include regularization
terms on the Frobenius norms of the subspace U and the
weight vector w,,, which we refer the readers to [26], [27].

V. PERFORMANCE ANALYSIS

In this section we will describe general analysis methodolo-
gies as well as specific theoretical results for characterizing
the performance of the aforementioned streaming PCA and
subspace tracking algorithms.

To carry out the analysis, we need to make assumptions on
how the data are generated. A popular approach that has been
taken in the literature is to assume that each data vector is
generated according to the following “spiked model” [66]:

xz, =U"a, + o€, (31)

where U™* is a deterministic d x k orthogonal matrix, a,, is
a random signal vector with covariance matrix 3, and €, is
the noise vector. For simplicity, we assume that the covariance
matrix of €, is the identity matrix I;, and we use o to denote
the noise level. This model arises in applications such as array
signal processing, where U™ is the “steering matrix” and k
denotes the number of targets to be tracked by the array.
The generative model (31) can also be seen as a special case
of the probabilistic model described in Section II-A, since
Elx,zl] = U*S,U*T + 021, is a sum of an exact low-rank
matrix and a full-rank identity matrix. In the missing data case
studied in this paper, only a subset of the coordinates of x,,
are observed. Thus, the actual measurement is y,, = Pqo,, ()
as in (5), where Pq,, denotes the projection operator onto
an observation mask, Q, € {0, 1}d. The ith entry of x,, is
observed if and only if €, (i) = 1. For simplicity, we shall
assume that {€2,(7)} is a collection of i.i.d. binary random
variables such that

(32)

for some constant « € (0, 1).

A. Classical Asymptotic Analysis

Historically, the first analysis of subspace tracking algo-
rithms was done in the asymptotic regime (see, e.g., [28],
[29]), where the algorithms are shown to converge, in the small
step size limit, to the solution of some deterministic Ordinary
Differential Equations (ODEs).

To understand the basic ideas underlying such analysis,
we note that the essence of almost all the online algorithms
described in Section III and Section IV is a stochastic recursion
of the form

Un = Unfl + an(Unfly Ln, Qn)

Here, U, is the estimate at time n; Q(-, -, -) is some nonlinear
function of the previous estimate U,,_1, the new complete data
vector x,,, and its observation mask €2,,; and 7,, is the step size
(i.e., the learning rate). For example, Krasulina’s method given
in (19) is just a special case of (33) [with ,(7) = 1]. When
the step size 7, is small, we can perform Taylor’s expansion
(with respect to 7,,) on the recursion formulas of Oja’s method

(33)

(16) and GROUSE (23), and show that these two algorithms
can also be written in the form of (33) after omitting higher-
order terms in 7,.

Under the statistical model (31) and (32), the general
algorithm (33) is simply a Markov chain with state vectors
U, € R¥*. The challenge in analyzing the convergence of
(33) comes from the nonlinearity in the function Q(-,-,). In
the literature, a very powerful analytical tool is the so-called
ODE method. It was introduced to the control and signal
processing communities by Ljung [30] and Kushner [31] in
the 1970s, and similar approaches have an even longer history
in the literature of statistical physics and stochastic processes
(see, e.g., [67], [68] for some historical remarks).

The basic idea of the ODE method is to associate the
discrete-time stochastic process (33) with a continuous-time
deterministic ODE. Asymptotically, as the step size 7, — 0
and the number of steps n — oo, the process (33) can be
shown to converge to the solution of an ODE. Specifically,
we let the step sizes be such that

oo (oo}
277” = oo and Zni < 00.
n=1 n=1

For example, a popular choice is 7,, = ¢/n for some ¢ > 0. By
defining ¢, = ), n¢ as the “fictitious” time, we can convert
the discrete-time process U, to a continuous-time process Uy
via linear interpolation:

Ut == Un—l“”%(Un*Un—l)y tn—l S t S tn~ (34)
tn - tnfl
Under certain regularity conditions on the function Q(-,-,-),
one can then show that, as ¢ — oo, the randomness in the
trajectory of U; will diminish and U, will converge to the
deterministic solution of an ODE [30], [31].

Although a rigorous proof of the above convergence is
technical, the limiting ODE, if the convergence indeed holds,
can be easily derived, at least in a non-rigorous way. To start,
we can rewrite (33) as

Un - Un— 1
n

where E o, |u,_,[] denotes the conditional expectation of
the “new information” x,, {2, given the current state U,,_1,
and m,, captures the remainder terms. From the construction of
U, in (34), the left-hand side of (35) is equal to (Uy, 4y, —
Uy, _,)/"n, which converges to -2 U, since the step size 7,, —
0. Moreover, one can show that the remainder m,, is of order
o(1). Tt follows that we can write the limit form of (35) as an
ODE
d

aUt = h(U),

where h(U;) = Eg o v [Q(U, z,Q)].

The ODE approach is a very powerful analysis tool. By
studying the fixed points of the limiting dynamical system
in (36), we can then draw conclusions about the convergence
behavior of the original stochastic process (33). This approach
was taken in [28], where the author used an ODE analysis to
show that the PAST algorithm [25] globally converges to the
target signal subspace U* with probability one. This result

= Ea‘;n,Qn|Un,1 [Q(Un—la w'fﬂ Qn)] + mnv (35)

(36)



was later adapted in [23] to analyze PETRELS for the fully
observed case.

B. Asymptotic Analysis in the High-Dimensional Regime

Despite its versatility and strong theoretical value, the above
classical asymptotic approach has several limitations: First, the
analysis requires the step size 7, to tend to zero as n —
oo. While using a decreasing sequence of step sizes 7, helps
the stochastic algorithm to converge to the globally optimal
solution, it is not a good strategy for applications where the
target low-dimensional subspace can be time-varying. In that
scenario, a small but fixed step size is often more preferable,
as it would make the algorithms more nimble in tracking the
changing subspace. Second, the classical asymptotic analysis
leads to an ODE with O(d) variables. In modern applications,
the number of variables, i.e., d can be very large, making it
less practical to numerically solve the ODE.

In what follows, we briefly review a different asymptotic
analysis approach [32]-[35] that addresses the above prob-
lems. For simplicity, we present the underlying idea using the
example of Oja’s method (16) for learning a one-dimensional
subspace using full data, although the same approach applies
to the general rank-k case with missing data.

When k = 1, the orthogonalization operator II in (16) is just
a normalization, and thus the update rule can be simplified as

_ Unfl + anﬂnfﬂZUnfl
- HUnfl + nnwnw%ﬂUnfl H .

U, (37)
This stochastic process is a Markov chain in R?, where the
dimension d can be large. To reduce the underlying dimension
of the system we need to analyze, we note that the quality of
the estimate U,, can be fully captured by a scalar quantity

w UIU*
(teAliitead

Clearly, s, € [-1,1], with s, = =1 indicating perfect
alignment of U* and U,. In what follows, we refer to s,

as the cosine similarity.
Substituting (37) and (31) into (38), we get a recursion
formula for the cosine similarity:

(38)

Sn

Sp =
Sn—1 + Mn(an + opn)(ansSn—1 + ogn)
(14 na(ansn—1 + 0¢n)22 + 1 (a3 + 02||en]|* + 20a5p,)))

)

Nf=

(39)

where a,, €, are the signal and noise vector in the generating
model (31), respectively, and p, = e’'U* and ¢, def U, 1.
The expression (39) might appear a bit complicated, but the
key observation is the following: If the noise vector €, is
drawn from the normal distribution N (0, I;), then it follows
from the rotational symmetry of the multivariate normal dis-
tribution that

1 Sn—
P(pn:‘]n“g”—l) NN(O’ |:8 —1 1 1:| )

In other words, given s,,_1, the two random variables p,, and
gn are joint normal random variables whose distribution is a

function of s,,_;. Consequently, the recursion (39) from s,
to s, forms a one-dimensional Markov chain. Note that this
exact Markovian property relies on the assumption that the
noise vector €, be normally distributed. However, due to the
central limit theorem, we can show that this property still holds
asymptotically, when the underlying dimension d is large and
when the elements of €,, are independently drawn from more
general distributions with bounded moments [35]. Moreover,
these arguments can be generalized to the missing data case,
provided that the subsampling process follows the probabilistic
model in (32).

Further analysis shows that, by choosing the step size
nn, = 7/d for some fixed 7 > 0, we can apply the similar
ODE idea used in the classical asymptotic analysis to obtain
a deterministic, limit process for the cosine similarity. More
specifically, we can show that a properly time-rescaled version
of s(d)(t) def s(tq) will converge weakly, as d — oo, to
a deterministic function that is characterized as the unique
solution of an ODE (see [32]-[35] for details).

In [33], [35], the exact dynamic performance of Oja’s
method, GROUSE and PETRELS was analyzed in this asymp-
totic setting. In what follows, we only state the results for
k = 1. For simplicity, we also assume that the covariance
matrix of the signal vector a, in (31) is ¥, = Ij. For
PETRELS, it turns out that we just need to study two scalar
processes: the cosine similarity s,, as defined in (38) and an
auxiliary parameter

gn = dR’rL||UnH_2 ,

where R,, is the average of the quantities {R;} in Algo-
rithm 6. Accordingly, the parameter § in the algorithm also
needs to be rescaled such that § = ¢’/d for some fixed
§’ > 0. By introducing the “fictitious” time ¢ = n/d, we
can embed the discrete-time sequences s, g,, into continuous-
time as s(4 (t) = 5|ta) and g D(t) = 9|td)- As the underlying
dimension d — oo, we can show that the stochastic processes
{s(d)(t), gt (t)} converge weakly to the unique solution of
the following systems of coupled ODEs:

ds(t

s(t) _ as(1—s%)g — % (as® + 02)sg?
dd(tt) (40)
%t =—g*(c%g + 1)(as® + 0%) + pg,

where « is the probability with which each coordinate of the
data vectors can be observed [see (32)], and iz > 0 is a constant
such that the discount parameter A in (27) is set to A = 1—p/d.

Compared to the classical ODE analysis [23], [28] which
keeps the ambient dimension d fixed and studies the asymp-
totic limit as the step size tends to 0, the ODEs in (40)
only involve 2 variables s(¢) and g(t). This low-dimensional
characterization makes the new limiting results more practical
to use, especially when the dimension is large.

Similar asymptotic analysis can also be carried out for
Oja’s method and GROUSE (see [35]). Interestingly, the time-
varying cosine similarities s, associated with the two algo-
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Fig. 1: Monte Carlo simulations of the Oja’s method,
GROUSE and PETRELS v.s. asymptotic predictions obtained
by the limiting ODEs given in (40) and (41). The error is
defined as 1 — s?(t). The signal dimension is d = 10, the
noise parameter is o = 0.2, and the subsampling probability is
o = 0.17. The error bars shown in the figure correspond to one
standard deviation over 50 independent trials. The simulation
results also confirm the prediction that Oja’s method and
GROUSE converge to the same deterministic limit.
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Fig. 2: The grayscale in the figure visualizes the steady-state
errors of the PETRELS algorithm corresponding to different
values of the noise variance o2, the subsampling ratio «, and
the discount parameter p. The red curve is the theoretical
prediction given in (42) of a phase transition boundary, below
which no informative solution can be achieved by the algo-
rithm. The theoretical prediction matches well with numerical
results.

rithms are asymptotically equivalent, with both converging, as
d — 00, to the solution of a limiting ODE:

ds

E:T(a—%)s—ar(l—&—%ﬁ)sg, (41)

where 7 > 0 is a constant such that the step size parameter
7, used in Algorithms 3 and 4 is 7, = 7/d, and « is again
the subsampling probability. Numerical verifications of the
asymptotic results are shown in Figure 1. We can see that
the theoretical prediction given by the ODEs (40) and (41)
can accurately characterize the actual dynamic performance
of the three algorithms.

The convergence behavior of the algorithms can also be
established by analyzing the fixed points of the dynamical
system associated with the limiting ODEs. For example, by
studying the stability of the fixed points of (40) for PETRELS
(see [35]), one can show that lim;_, o, s(t) > 0 if only if

9 2
s (Qa/a + 1/2) —1/4, 42)

where o € (0,1) is the subsampling probability and o > 0
is the noise level in (31). A “noninformative” solution corre-
sponds to s(t) = 0, in which case the estimate U,, and the
underlying subspace U* are orthogonal (i.e., uncorrelated).
The expression in (42) predicts a phase transition phenomenon
for PETRELS, where a critical choice of p (as a function of «
and o) separates informative solutions from non-informative
ones. This prediction is confirmed numerically in Figure 2.

C. Finite Sample Analysis

In addition to the asymptotic analysis described in the pre-
vious subsections, there have also been many recent efforts in
establishing finite-sample performance guarantees for various
streaming PCA algorithms. We begin with analysis in the case
of fully observed data vectors.

One of the earlier works is [36], where the authors analyze a
block variant of Oja’s method: within each iteration, multiple
sample vectors are drawn, whose empirical covariance matrix
is then used in place of @,z in (37). Under the generative
model (31), the authors show that this algorithm can reach
accuracy || U, — U*|| < ¢, in the rank-one case, if the total
number of samples is of order

_o (1+ 3(0 + 0?)Vd)?log(d/e)
"\ Plogllo? +3/0)/(0> +1/2)] )

where o is the noise level in (31). Similar analysis is available
for the general rank-k case. Block Oja’s methods have also
been studied in [37], [56], but the analysis is done under a
model much more general than (31): the data vectors x,, are
assumed to be drawn i.i.d. from a general distribution on R¢
with zero-mean and covariance 3.

The performance of Oja’s original method has also been
studied under the above general model. For the rank-1 case,
Li et al. [38] established that the error is on the order of

(@) ﬁ ‘“‘;’f "), which is near optimal up to a logarithmic
factor, with the step size 7, = (/\21137%3”. Similarly, Jain

et al. [69] provide a near-optimal result for Oja’s method,
with a time-varying learning rate n,, = m, where
ny is some starting time. Other results include Balsubramani
et al. [18], Shamir [39], Li et al. [70]. Allen-Zhu and Li [40]
provide a near-optimal guarantee for rank-k Oja’s method very
recently. This paper also contains a comprehensive table that
summarizes many recent results.

Most of the existing analysis and performance guarantees
in the literature assume that there is a positive gap between Ay
and Ag41. This eigengap assumption was removed in Shamir
[39] and Allen-Zhu and Li [40], where the authors provide
sample complexity bounds that are gap-free, i.e. they do not
require a strictly positive eigengap.

For fully observed data vectors, the global convergence of
the GROUSE algorithm was established in [59], [60] under
the generative model (31) for the special noise-free case, i.e.,
o = 0. Define ¢, := det (U*TU,UU*) € [0,1] to be the



“determinant similarity®” between two subspaces, which will
be 0 when the subspaces have any orthogonal direction and
will be 1 if and only if the two subspaces are equal. Let (* < 1
be the desired accuracy of our estimated subspace. Initialize
the starting point (Ujy) of GROUSE as the orthonormalization
of a d x k matrix with entries being standard normal variables.
Then for any p > 0, after

2k? 1
n> <p + 1) po log(d) + 2k log (2p(1—C*)>

ni na
iterations of GROUSE Algorithm 4, (,, > ¢* with probability

at least 1—2p, where o = 1+ 28 S iklog(e/k) i ¢ s )
a constant approximately equal to 1. This result is divided into
two parts: n; is the bound on the number of observed vectors
(also iterations) required to get to a basin of attraction, and
ng is the number required for linear convergence in the basin
of attraction. In practice we see that the bound on n; is loose
but ny is accurate when discarding dependence on p (see [59],
[60] for more details.)

In contrast to the fully observed case, the literature is much
sparser for finite-sample analysis in the missing data case.
While a great deal of work has established performance guar-
antees in the batch setting (i.e. the low-rank matrix completion
problem [7], [71]-[74]), the only results in the streaming case
with missing data are local convergence results for GROUSE
and the work of [75], where the authors consider recovering
a low-rank positive semidefinite matrix observed with missing
data using stochastic gradient descent; while the authors of
[75] did not study streaming PCA in particular, their method
could be applied in the streaming data case.

Bounds on the expected improvement at each iteration for
the GROUSE algorithm has been given for the case of noisy
data [59] and missing or compressed data [58], [60]. Under
some assumptions of data regularity and subspace incoherence,
these convergence results show that the GROUSE algorithm
improves (,+1 in expectation as follows:

|Qn|1_Cn
U )Cn

E[Gui|Un] 2 (1 + 43)
with high probability, where n ~ 1 is slightly different for
each sampling type [59], [60]. The expectation is taken with
respect to the generative model (31) and the subsampling
model (32). These results for missing or compressed data can
be generalized to a local convergence result [58], [60].

In the work of [75], the authors propose a step size scheme
for general Euclidean stochastic gradient descent with which
they prove global convergence results from a randomly gen-
erated initialization. Their choice of step size depends on the
knowledge of some parameters that are likely to be unknown
in practical problems. Without this knowledge, the results only
hold with sufficiently small step size that implies very slow
convergence.

Note that the rank-k generalization of the aforementioned cosine similarity
(38) is given as ||[UIU*||% for U, and U* with orthonormal columns.
Therefore the two similarity measures are related via the singular values of
Uru*.

It remains an important open problem to establish finite
sample global performance guarantees in the missing data
case for GROUSE and other algorithms such as Oja’s and
PETRELS.

VI. NUMERICAL EXPERIMENTS

We benchmark the performance of several competitive algo-
rithms reviewed in this paper that are able to handle missing
data, including GROUSE [22], PETRELS [23], PIMC [54],
MD-ISVD [3], Brand’s algorithm [15] and Oja’s algorithm
[17] adapted to the missing data case as proposed in this paper
in Algorithm 3. The code for these simulations is available
in Python Jupyter notebooks at http://gitlab.eecs.umich.edu/
girasole/ProcIEEEstreamingPCA/.

A. Simulation Setup

Let d = 200 and k£ = 10. We select the ground truth
subspace as U* = orth(U) € R¥* where U is composed
of standard i.i.d. Gaussian entries. The coefficient vectors are
generated as a,, ~ N (0,diag(c)), where the loading vector ¢
is given as

c=11,1,1,1,1,1,1,1,1,1]%,

for a well-conditioned system, and
c=11,1,1,1,1,0.3,0.3,0.3,0.1,0.1]"

for an ill-conditioned system. The data vector is generated
using (31), where €, is composed of i.i.d. A'(0,0?) entries,
with the noise level given as o = [1072,107°,0]. Each
vector is observed with a fixed percent « = [0.1,0.5,1]
of entries selected uniformly at random. We note that the
lowest sampling fraction is near the information-theoretic
lower bound of the number of uniform random samples that
will guarantee matrix reconstruction. The reconstruction error
is calculated as the projection error ||(I—Pg)U*||%., where U
is the estimated (orthogonalized) subspace. All the algorithms
are initialized with the same orthogonalized random subspace.
We assume all algorithms are given the true rank. Throughout
the simulations, we set the discount parameter n = 0.98 in
PETRELS and 5 = 0.98 in Brand’s algorithm, and set = 0.5
in Oja’s algorithm. Note that we did a grid search for these
parameters using the setting ¢ = 107°,a = 0.5, and so
picking them differently will likely yield different trade-offs in
performance for other levels of noise and missing data. Our
goal is to illustrate their typical behaviors without claiming
relative superiority.

B. Performance Evaluations

We first examine the performance of subspace estimation
with streaming observations of a static subspace. Fig. 3 shows
the reconstruction error of the algorithms with respect to the
number of snapshots for both the well-conditioned case and
the ill-conditioned case. For each algorithm, the dark line is
the median of 50 runs, and the transparent ribbon shows the
25% and 75% quantiles. Note how in most algorithms, the
ribbon is nearly invisible, meaning that the algorithm execution
with different initialization, generative subspace, random data
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Fig. 3: Reconstruction error versus the number of observed snapshots for various algorithms in both well-conditioned and
ill-conditioned cases for streaming PCA where every data vector is observed once.

draw from that subspace, and random missing data patterns
have highly consistent behavior, especially as the number of
observed entries gets larger. All of the examined algorithms
are capable of estimating the subspace after seeing sufficiently
many data vectors. It can be seen that as the fraction of missing
data increases, more snapshots are needed for the algorithms
to converge. Also as the noise level increases, the algorithms
converge to a higher error level.

We next show the same plots but as a function of com-
putation time, i.e. assuming that the streaming vectors are
available as soon as each algorithm finishes processing the

previous vector. Fig. 4 shows the reconstruction error of the
algorithms with respect to the wall-clock time for both the
well-conditioned case and the ill-conditioned case. For each
algorithm, we take the median computation time at each
iteration over 50 runs to get values on the x-axis. Then the the
dark line is the median error of 50 runs interpolated to those
computation times. Again the transparent ribbon shows the
25% and 75% error quantiles. We show the time on a log axis
since different algorithms take different orders of magnitude
computation time. Note that PETRELS can be accelerated by
computing in parallel the updates for each row of the subspace,
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Fig. 4: Reconstruction error versus the wall-clock time for various algorithms in both well-conditioned and ill-conditioned

cases for one-pass streaming PCA.

which is not implemented here. Again, while many algorithms
converge very quickly with complete data, they may take
significantly longer in the presence of missing data.

Next, we examine the performance of the algorithms on
subspace tracking, where we assume there is an abrupt change
in the underlying subspace and the goal is to examine how
fast the algorithms are able to track the change. Moreover, we
generate the loading vector ¢ before and after the same with
entries drawn from a uniform distribution in [0, 1]. The noise
level is set as ¢ = 107> and the fraction of observation is set as
a = 0.3. Fig. 5 shows the performance of the algorithms when

the subspace changes abruptly at the 4000th snapshot. Note
that MD-ISVD and PIMC have poor performance after the
subspace change; these algorithms seem to rely more heavily
on historical data through their singular value estimates.
Finally in a second experiment for subspace tracking, we
assume the underlying subspace is slowly rotating over time.
We achieve this by initializing a random subspace with or-
thonormal columns Uy € R?** and sample a skew-symmetric
matrix B € R%*? with independent, normally distributed
entries. We set U; = exp(d9B)U;_ for some small rotation
parameter ¢y and where exp is the matrix exponential. In our
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experiments we set dp = 1075, Again, the noise level is set as
o = 1075 and the fraction of observation is set as & = 0.3, but
here we set c to be the all-ones loading vector. The results can
be seen in Fig. 6; notice both that some of the algorithms fail to
converge (again MD-ISVD and PIMC), and the rest converge
but do not achieve as good accuracy as in the static case.
This is to be expected since none of the algorithms is doing a
prediction, but instead only tracking based on available data;
therefore the constant difference between the true subspace at
two consecutive time steps contributes to the noise floor for
the algorithms.

VII. CONCLUDING REMARKS

In this paper, we have reviewed a variety of streaming
PCA and subspace tracking algorithms, focusing on the ones
that have a near-linear memory complexity and computa-
tional time, appealing convergence rates, and can tolerate
missing data. Convergence guarantees based on classical and
new asymptotic analysis as well as recent finite-sample non-
asymptotic analysis are discussed. While we divide our discus-

sions intro algebraic and geometric approaches, it is important
to point out that these approaches are not actually distinct.
For example, Oja’s is equivalent to Krasulina’s, a stochastic
gradient descent method, by ignoring second-order terms;
GROUSE is equivalent to a version of Incremental SVD that is
agnostic to past singular values [53]; and the PAST algorithm
can also be interpreted from both perspectives [21]. It is an
exciting open question to understand the connections between
algebraic and geometric methods more generally.

Due to space limitations, we have focused on the problem
of estimating a single low-dimensional subspace under the
squared loss for streaming data with possibly missing entries,
which is most suitable when the noise is modeled as Gaussian.
There are many important extensions, motivated by real-world
applications, including subspace tracking for non-Gaussian
data [76], [77], tracking a union-of-subspace model [78],
[79], tracking a low-dimensional subspace with multi-scale
representations [80], subspace tracking in the presence of
outliers and corruptions [27], [81]-[85], adaptive sampling
[86], for an incomplete list. Interested readers are invited to
go to the above cited references for details.
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