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Abstract

Deep neural networks are increasingly used on mobile

devices, where computational resources are limited. In this

paper we develop CondenseNet, a novel network architec-

ture with unprecedented efficiency. It combines dense con-

nectivity between layers with a mechanism to remove un-

used connections. The dense connectivity facilitates feature

re-use in the network, whereas learned group convolution-

s remove connections between layers for which this feature

re-use is superfluous. At test time, our model can be imple-

mented using standard grouped convolutions—allowing for

efficient computation in practice. Our experiments demon-

strate that CondenseNets are much more efficient than state-

of-the-art compact convolutional networks such as Mo-

bileNets and ShuffleNets.

1. Introduction

The high accuracy of convolutional networks (CNNs)

in visual recognition tasks, such as image classification

[11, 12], has fueled the desire to deploy these networks

on platforms with limited computational resources, e.g., in

robotics, self-driving cars, and on mobile devices. Unfortu-

nately, the most accurate deep CNNs, such as the winners

of the ImageNet [5] and COCO [31] challenges, were de-

signed for scenarios in which computational resources are

abundant. As a result, these models cannot be used to per-

form real-time inference on low-compute devices.

This problem has fueled development of computational-

ly efficient CNNs that, e.g., remove redundant connection-

s [8, 10, 27, 29, 32], use low-precision or quantized weight-

s [3, 21, 36], or use more efficient network architectures

[4, 12, 16, 19, 22, 47]. These efforts have lead to substantial

improvements: On ImageNet, to achieve comparable accu-

racy as VGG [38], residual networks (ResNets; [12]) reduce
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the amount of computation by a factor 5×, DenseNets [19]

by a factor of 10×, and MobileNets [16] and ShuffleNet-

s [47] by a factor of 25×.

A typical set-up for deep learning on mobile devices

is one where CNNs are trained on multi-GPU machines

but deployed on devices with limited compute. Therefore,

a good network architecture allows for fast parallelization

during training, but is compact at test-time.

Recent work [3,20] shows that there is a lot of redundan-

cy in CNNs. The layer-by-layer connectivity pattern forces

networks to replicate features from earlier layers throughout

the network. The DenseNet architecture [19] alleviates the

need for feature replication by directly connecting each lay-

er with all layers before it, which induces feature re-use.

Although more efficient, we hypothesize that dense con-

nectivity introduces redundancies when early features are

not needed in later layers. We propose a novel method to

prune such redundant connections between layers and then

introduce a more efficient architecture. In contrast to prior

pruning methods, our approach learns a sparsified network

automatically during the training process, and produces a

regular connectivity pattern that can be implemented effi-

ciently using group convolutions. Specifically, we split the

filters of a layer into multiple groups, and gradually remove

the connections to less important features per group during

training. Importantly, the groups of incoming features are

not predefined, but learned. The resulting model, named

CondenseNet, can be trained efficiently on GPUs, and has

high inference speed on mobile devices.

Our experiment on three image-classification datasets

show that CondenseNets consistently outperform alterna-

tive network architectures. Compared to DenseNets, Con-

denseNets use only 1/10th of the computation at compara-

ble accuracy levels. On the ImageNet dataset [5], a Con-

denseNet with 275 million FLOPs1 achieved a 29% top-1

1Throughout this paper, FLOPs refers to the number of multiplication-

addition operations.

1











gradient descent (SGD) using similar optimization hyper-

parameters as in [12, 19]. Specifically, we adopt Nesterov

momentum with a momentum weight of 0.9 without damp-

ening, and use a weight decay of 10
−4. All models are

trained with mini-batch size 64 for 300 epochs, unless oth-

erwise specified. We use a cosine shape learning rate which

starts from 0.1 and gradually reduces to 0. Dropout [40]

with a drop rate of 0.1 was applied to train CondenseNets

with >3 million parameters (shown in Table 1).

Component analysis. Figure 6 compares the computation-

al efficiency gains obtained by each component of Con-

denseNet: learned group convolution (LGR), exponential-

ly increasing learning rate (IGR), full dense connectivity

(FDC). Specifically, the figure plots the test error as a func-

tion of the number of FLOPs (i.e., multiply-addition op-

erations). The large gap between the two red curves with

dot markers shows that learned group convolution signifi-

cantly improves the efficiency of our models. Compared to

DenseNets, CondenseNetlight only requires half the num-

ber of FLOPs to achieve comparable accuracy. Further, we

observe that the exponentially increasing growth rate, yield-

s even further efficiency. Full dense connectivity does not

boost the efficiency significantly on CIFAR-10, but there

does appear to be a trend that as models getting larger, full

connectivity starts to help. We opt to include this architec-

ture change in the CondenseNet model, as it does lead to

substantial improvements on ImageNet (see later).

Comparison with state-of-the-art efficient CNNs. In Ta-

ble 1, we show the results of experiments comparing a

160-layer CondenseNetlight and a 182-layer CondenseNet

with alternative state-of-the-art CNN architectures. Follow-

ing [49], our models were trained for 600 epochs. From

the results, we observe that CondenseNet requires approxi-

mately 8× fewer parameters and FLOPs to achieve a com-

parable accuracy to DenseNet-190. CondenseNet seem-

s to be less parameter-efficient than CondenseNetlight, but

is more compute-efficient. Somewhat surprisingly, our

CondenseNetlight model performs on par with the NASNet-

A, an architecture that was obtained using an automated

search procedure over 20, 000 candidate architectures com-

posed of a rich set of components, and is thus careful-

ly tuned on the CIFAR-10 dataset [49]. Moreover, Con-

denseNet (or CondenseNetlight) does not use depth-wise

separable convolutions, and only use simple convolutional

filters with size 1×1 and 3×3. It may be possible to in-

clude CondenseNet as a meta-architecture in the procedure

of [49] to obtain even more efficient networks.

Comparison with existing pruning techniques. In Ta-

ble 2, we compare our CondenseNets and CondenseNetslight

with models that are obtained by state-of-the-art filter-level

weight pruning techniques [14, 29, 32]. The results show

that, in general, CondenseNet is about 3× more efficient in

terms of FLOPs than ResNets or DenseNets pruned by the

Model Params FLOPs C-10 C-100

ResNet-1001 [13] 16.1M 2,357M 4.62 22.71

Stochastic-Depth-1202 [20] 19.4M 2,840M 4.91 -

Wide-ResNet-28 [45] 36.5M 5,248M 4.17 20.50

ResNeXt-29 [43] 68.1M 10,704M 3.58 17.31

DenseNet-190 [19] 25.6M 9,388M 3.46 17.18

NASNet-A∗ [49] 3.3M - 3.41 -

CondenseNetlight-160∗ 3.1M 1,084M 3.46 17.55

CondenseNet-182∗ 4.2M 513M 3.76 18.47

Table 1. Comparison of classification error rate (%) with other con-

volutional networks on the CIFAR-10(C-10) and CIFAR-100(C-

100) datasets. * indicates models that are trained with cosine shape

learning rate for 600 epochs.

Model FLOPs Params C-10 C-100

VGG-16-pruned [29] 206M 5.40M 6.60 25.28

VGG-19-pruned [32] 195M 2.30M 6.20 -

VGG-19-pruned [32] 250M 5.00M - 26.52

ResNet-56-pruned [14] 62M 8.20 -

ResNet-56-pruned [29] 90M 0.73M 6.94 -

ResNet-110-pruned [29] 213M 1.68M 6.45 -

ResNet-164-B-pruned [32] 124M 1.21M 5.27 23.91

DenseNet-40-pruned [32] 190M 0.66M 5.19 25.28

CondenseNetlight-94 122M 0.33M 5.00 24.08

CondenseNet-86 65M 0.52M 5.00 23.64

Table 2. Comparison of classification error rate (%) on CIFAR-

10 (C-10) and CIFAR-100 (C-100) with state-of-the-art filter-level

weight pruning methods.

CondenseNet Feature map size

3×3 Conv (stride 2) 112×112
[

1×1 L-Conv

3×3 G-Conv

]

×4 (k=8) 112×112

2×2 average pool, stride 2 56×56
[

1×1 L-Conv

3×3 G-Conv

]

×6 (k=16) 56×56

2×2 average pool, stride 2 28×28
[

1×1 L-Conv

3×3 G-Conv

]

×8 (k=32) 28×28

2×2 average pool, stride 2 14×14
[

1×1 L-Conv

3×3 G-Conv

]

×10 (k=64) 14×14

2×2 average pool, stride 2 7×7
[

1×1 L-Conv

3×3 G-Conv

]

×8 (k=128) 7×7

7×7 global average pool 1×1

1000-dim fully-connected, softmax

Table 3. CondenseNet architectures for ImageNet.

method introduced in [32]. The advantage over the other

pruning techniques is even more pronounced. We also re-

port the results for CondenseNetlight in the second last row

of Table 2. It uses only half the number of parameters to

achieve comparable performance as the most competitive

baseline, the 40-layer DenseNet described by [32].



4.2. Results on ImageNet

In a second set of experiments, we test CondenseNet on

the ImageNet dataset.

Model configurations. Detailed network configurations

are shown in Table 3. To reduce the number of parameter-

s, we prune 50% of weights from the fully connected (FC)

layer at epoch 60 in a way similar to the learned group con-

volution, but with G=1 (as the FC layer could not be split

into multiple groups) and C=2. Similar to prior studies on

MobileNets and ShuffleNets, we focus on training relative-

ly small models that require less than 600 million FLOPs to

perform inference on a single image.

Training details. We train all models using stochastic gra-

dient descent (SGD) with a batch size of 256. As before,

we adopt Nesterov momentum with a momentum weight of

0.9 without dampening, and a weight decay of 10−4. Al-

l models are trained for 120 epochs, with a cosine shape

learning rate which starts from 0.1 and gradually reduces to

0. We use group lasso regularization in all experiments on

ImageNet; the regularization parameter is set to 10
−5.

Comparison with state-of-the-art efficient CNNs. Ta-

ble 4 shows the results of CondenseNets and several state-

of-the-art, efficient models on the ImageNet dataset. We ob-

serve that a CondenseNet with 274 million FLOPs obtains

a 29.0% Top-1 error, which is comparable to the accuracy

achieved by MobileNets and ShuffleNets that require twice

as much compute. A CondenseNet with 529 million FLOPs

produces to a 3% absolute reduction in top-1 error com-

pared to a MobileNet and a ShuffleNet of comparable size.

Our CondenseNet even achieves a the same accuracy with

slightly fewer FLOPs and parameters than the most com-

petitive NASNet-A, despite the fact that we only trained a

very small number of models (as opposed to the study that

lead to the NASNet-A model).

Actual inference time. Table 5 shows the actual infer-

ence time on an ARM processor for different models. The

wall-time to inference an image sized at 224× 224 is high-

ly correlated with the number of FLOPs of the model.

Compared to the recently proposed MobileNet, our Con-

denseNet (G=C = 8) with 274 million FLOPs inferences

an image 2× faster, while without sacrificing accuracy.

4.3. Ablation Study

We perform an ablation study on CIFAR-10 in which

we investigate the effect of (1) the pruning strategy, (2) the

number of groups, and (3) the condensation factor. We also

investigate the stability of our weight pruning procedure.

Pruning strategy. The left panel of Figure 7 compares

our on-the-fly pruning method with the more common ap-

proach of pruning weights of fully converged models. We

use a densely connected network with 50 layers as the basis

for this experiment. We implement a “traditional” pruning

Model FLOPs Params Top-1 Top-5

Inception V1 [42] 1,448M 6.6M 30.2 10.1

1.0 MobileNet-224 [16] 569M 4.2M 29.4 10.5

ShuffleNet 2x [47] 524M 5.3M 29.1 10.2

NASNet-A (N=4) [49] 564M 5.3M 26.0 8.4

NASNet-B (N=4) [49] 488M 5.3M 27.2 8.7

NASNet-C (N=3) [49] 558M 4.9M 27.5 9.0

CondenseNet (G=C=8) 274M 2.9M 29.0 10.0

CondenseNet (G=C=4) 529M 4.8M 26.2 8.3

Table 4. Comparison of Top-1 and Top-5 classification error rate

(%) with other state-of-the-art compact models on ImageNet.

Model FLOPs Top-1 Time(s)

VGG-16 15,300M 28.5 354

ResNet-18 1,818M 30.2 8.14

1.0 MobileNet-224 [16] 569M 29.4 1.96

CondenseNet (G=C=4) 529M 26.2 1.89

CondenseNet (G=C=8) 274M 29.0 0.99

Table 5. Actual inference time for an input image with resolution

224× 224 on an ARM processor.

method in which the weights are pruned in the same way as

in as in CondenseNets, but the pruning is only done once af-

ter training has completed (for 300 epochs). Following [32],

we finetune the resulting sparsely connected network for an-

other 300 epochs with the same cosine shape learning rate

that we use for training CondenseNets. We compare the tra-

ditional pruning approach with the CondenseNetapproach,

setting the number of groups G is set to 4. In both settings,

we vary the condensation factor C between 2 and 8.

The results in Figure 7 show that pruning weights grad-

ually during training outperforms pruning weights on ful-

ly trained models. Moreover, gradual weight pruning re-

duces the training time: the “traditional pruning” model-

s were trained for 600 epochs, whereas the CondenseNets

were trained for 300 epochs. The results also show that re-

moving 50% the weights (by setting C =2) from the 1×1

convolutional layers in a densely connected network incurs

hardly any loss in accuracy.

Number of groups. In the middle panel of Figure 7, we

compare four CondenseNets with exactly the same network

architecture, but a number of groups, G, that varies between

1 and 8. We fix the condensation factor, C, to 8 for all the

models, which implies all models have the same number of

parameters after training has completed. In CondenseNets

with a single group, we discard entire filters in the same way

that is common in filter-pruning techniques [29, 32]. The

results presented in the figure demonstrate that test errors

tends to decrease as the number of groups increases. This

result is in line with our analysis in Section 3, in particular,

it suggests that grouping filters gives the training algorithm

more flexibility to remove redundant weights.
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