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SUMMARY 
Validation of result accuracy for indoor environment 
modeling and simulation usually requires high-quality data 
collected by expensive sensors and human operators. This 
becomes a problem when dealing with building retrofits, 
specifically when obtaining building geometry for later use in 
airflow, envelope, or human-building interaction simulations. 
Thus, we developed a low-cost acoustic sensor array (less 
than $70) to automatically detect and map building geometry 
using echolocation. Our focus of this research is to allow 
building modelers to obtain geometric as well as spatial 
information of existing buildings. The underlying hardware 
uses the Open Source Computer Vision Library which allows 
multi-core processing and enables hardware acceleration of 
the underlying heterogeneous compute platform, allowing us 
to perform distributive calculation among multiple devices. 
Likewise, this is useful when clustering devices for aggregate 
data collection for use in large mapping projects. Overall, this 
study proposes a prototype for future work in this field.  

INTRODUCTION 
Advances in architectural design have caused a rise in 
complex building geometries. Similarly, the modernization of 
building design has caused an increase in demand for quick 
indoor building environment simulations for the verification 
and optimization of the final design. Yet, the limiting factor for 
the accuracy of these simulations is the detail of the indoor 
geometry of the building in question. To provide an accurate 
level of detail, indoor environment modelers must rely on 
precise 3D geometries to depict a realistic performance of 
the air flow, envelope effects, or human interaction inside of 
the space (Prívara et al. 2013). Ultimately, obtaining the 
correct building geometry provides for accurate model 
creation and precise simulation results. Recent methods for 
obtaining high-quality data rely on expensive sensors and 
human operators manually guiding the systems throughout a 
building. Not to mention, most research in this field focuses 
on using the obtained geometric data for robotic applications 
instead of modeling purposes (Francis et al. 2015). Current 
applications use various methods to capture the indoor and 
external geometry of a building, such systems include RGB 
depth cameras (RGB-D), light based sensors (LIDAR), and 
acoustic based mapping. All these systems rely on the same 
basic principles of Time-of-Flight (ToF) which itself has 
inherent disadvantages yet individually each of the systems 
have their own advantages. Finally, a ToF camera is a range 
imaging system that resolves distances based on the known 
speed of light or sound, and the measured time of flight of 

the signal sent to the object being pictured. This distance 
data is then processed as a point in 3D space (Pycinski et al. 
2016). 
 
As previously stated, ToF cameras suffer from several 
disadvantages such as interference due to external signals, 
distortions due to unwanted reflections, and background light 
(only applicable to light based systems) (He et al. 2017). Yet, 
the concept behind ToF cameras is still a prevalent method 
for obtaining distance measurement based images. For 
example, RGB-D cameras have recently come into play to 
build content rich 3D environments for robotic navigation, 
manipulation, telepresence, and semantic mapping. An 
RGB-D camera is a combination of a regular color camera 
with a depth camera which can provide RGB data along with 
pixel depth data. Nevertheless, regular depth cameras suffer 
from an inability to extract accurate depth data in indoor 
environments with dark or sparsely textured areas (Peter 
Henry 2010). Yet, by using, RGB-D cameras, researchers 
have been able to overcome these drawbacks and are able 
to obtain somewhat accurate representations of the space 
being analyzed. On the other hand, laser based, LIDAR, 
mapping has become a popular choice for mapping indoor 
environments. LIDAR works by illuminating a target surface 
with pulsed laser light and then waiting for the reflected 
signal. Similarly, LIDAR suffers from the regular ailments of 
ToF cameras, yet are very expensive when compared to an 
acoustic based ToF camera. 
 
Likewise, acoustic based ToF cameras have become 
commonplace in the industry to map locations specifically for 
low cost robotics applications. Yet, the accuracy of this 
system still does not provide the level of 3D topographical 
detail which would be beneficial for indoor environment 
modeling applications but with the right processing, can 
potentially reach the details of an RGB-D camera for a 
fraction of the cost.  Consequently, we propose a low-cost 
acoustic sensor array (less than $70) to automatically detect 
and map building geometry using echolocation as well as 
indoor room topography. Our focus of this research is to 
allow building modelers to obtain geometric information of 
existing buildings for use in indoor environment simulations. 
Nevertheless, for the experiments conducted in this study, 
the camera used consisted of an array of ten sonar sensors 
whose purpose was to calculate the distance of the device to 
the walls in a room. Finally, three cases were considered to 
provide points for comparison. In the first two cases, we 
study the feasibility of creating images out of the raw range 
data using image processing techniques. The techniques 
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used in the algorithm were: interpolation, point spread 
function estimation and deconvolution, filtering using a Gabor 
filter, and edge improvements using Laplacian masking. 
Next, we study the mapping of a corner in a room, here the 
results are presented in the form of raw distance data 
overlaid onto the space. Finally, conclusions and further 
suggestions are made based on the results.  

METHODS 
The following sections introduce the ToF device, its 
downfalls, the theory behind ToF systems, and the 
processing algorithm used to process the data for the case 
studies.   

ToF Device and Its Downfalls 

The ToF device used in this study consisted of an array of 
sonar sensors controlled by a Micro-controller, the raw data 
was then sent to Raspberry Pi and processed using 
OpenCV. The parts used in the device were ten HC-SR04 
ultrasonic range sensors (sonar sensors), one Arduino 
MEGA Microcontroller, and a pair of 180° rotation servos. 
Finally, these components were assembled in a fashion as 
seen in Figure 1. As one can see, the assembly consisted of 
pieces of wood to hold the system together, Table 1 shows 
the cost brake down for the unit.  
 

 
Figure 1. Echolocation device used for automatic geometry 
detection. 
 
Table 1. Bill of Materials for Sensor System 

Part Cost 

Wood / Wires / Misc.  $5 

Arduino MEGA $35 

Servos $10 

HC-SR04 ultrasonic range sensors $15 

Total $65 

 

From Figure 1, one can see the sensor array where each 
sensor has a separation of about 4-cm from each other. This 
was done to reduce the risk of cross talk between each 
ultrasonic sensor and avoid any false readings that may 
arise. Conversely, this creates the first problem in the overall 
output. By spacing each sensor, one is effectively creating 
missing data points. From our calculations, it was estimated 
that each 4-cm gap would create 152 missing pixels in the 
final image. Likewise, during the operation of the unit, the 
system automatically sweeps from left to right and up and 
down to “photograph” the area correctly. This again creates 
an artifact in the data, as the device sweeps through the 
azimuth plane, a gap of 1 cm is created which results in 36 

missing pixels. The missing data is then corrected in the 
studies by an interpolation based on a Delaunay triangulation 
to match missing data. 

Theory 

Now, one must understand the basics behind sonar based 
distance measurements to understand the importance of 
post-processing the raw data. A distance measurement 
taken by the sonar sensors is done by sending a PING (a 
small burst of a high frequency signal) using its emitter and 
waiting for its echo on a receiver. Finally, once the echo 
arrives at the sensor, the time of flight, t, (time it takes the 
echo to return) is multiplied by the speed of sound, v, 340 
m/s, then distance to the object is then given by Equation 1. 
 

𝑑𝑑 = 𝑣𝑣∗∆𝑡𝑡
2

                                     (1) 
 
One can assume that for most measurement calculations, 
the process described above works quite well. However, this 
is far from the truth. In practice, when taking measurements 
by using air-based sonar, certain factors come into play such 
as, interaction with the target (specular or surface 
reflections), variation of propagation speed due to 
temperature in the environment, and finally the opening 
angle of the transmitted beam. These issues affect the final 
distance measurement and in term affect the final range 
image. 
 
The device used in this study, uses a PING that consists of a 
40 KHz tone that is held for 40-uSec. Consequently, this type 
of beam is proficient for up close imaging yet it becomes very 
poor at further distances due to its far field pressure 
characteristics as we will see in the second case study. 
Thus, this is one of the major disadvantages of using sonar 
based ToF cameras. One way to fix this issue is by 
increasing the tone frequency of the PING. However, 
constructing a piezoelectric transmitter capable of such 
frequencies is quite expensive. Thus, in this study, by using 
image-processing techniques, this, and other distortions in 
the final image may be corrected without the need for 
expensive hardware-based solutions.  
 
Processing Algorithm 

As previously mentioned, the raw data of the ToF device has 
a variety of issues ranging from missing data values to 
distorted edges due to servo movement. However, the digital 
image-processing algorithm proposed below, we believe, can 
help alleviate these failures, Figure 2.  
 

 
Figure 2. Image Processing Flow Chart  

 
First, raw data comes from the Arduino Micro-controller. This 
information is composed of distances and locations 
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calculated by the sonar. These distances have been 
translated from spherical coordinates to a Cartesian 
representation. One could consider this a type of “lens 
correction” for system. Then, the raw data from the sensor is 
interpolated by using the Delaunay Triangulation. This fills in 
the missing pixel values caused by the gaps between the 
sensors and the sweep angle. Nevertheless, the triangulation 
makes several distortions in the image which will then need 
to be corrected. Next, to decrease the blur in the image due 
to the triangulation and the motion of the sensor, the 
deconvolution of the point-spread function (PSF) was 
implemented. The point-spread function of the image can 
also be interpreted as the impulse response of the system. 
The PSF contains all the information about the artifacts 
introduced by the system. Therefore, in practice, one could 
describe the resulting output image of a system as follows, 
Equation 2. 
 

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑚𝑚, 𝑛𝑛) = 𝐻𝐻(𝑚𝑚, 𝑛𝑛) ∗ 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚, 𝑛𝑛)             (2) 
 

The equation above represents an unwanted convolution of 
the PSF with the original image. Here, H represents the PSF 
of the system and Ireal describes the image without any 
distortions. Finally, Ioutput describes the distorted output image 
caused by the system. In practice, by translating Equation 1 
into the Fourier domain one may manipulate it in such a way 
to obtain the original image, Ireal. The manipulation can be 
seen below, Equation 3. Notice that the (𝑚𝑚, 𝑛𝑛) have now 
become (𝑥𝑥, 𝑦𝑦) due to the Fourier transformation.  
 

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑥𝑥,𝑦𝑦)
𝐻𝐻�(𝑥𝑥,𝑦𝑦)

=  𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑥𝑥, 𝑦𝑦)                           (3) 
 

Finally, in application, this process of distortion removal is 
not perfect. The biggest drawback comes from estimating the 
PSF for the system. Without an accurate PSF estimation, 
one might not fix the image or in the worst-case scenario, 
destroy it. However, if done correctly, deconvolution from an 
unwanted signal can reduce blurring in a shaky camera, and 
many other artifacts. In other words, the purpose of 
deconvolution is to reconstruct the signal, as it existed before 
the unwanted distortion convolution took place.  
 
For this experiment, the PSF was estimated by emulating a 
technique used for microscopes (Zahreddine 2013). The 
technique calls for imaging an impulse like shape and then 
extracting the intensity values from the diameter of the 
imaged shape. Finally, the extracted intensity values from 
several trials are concatenated to form the estimated PSF. In 
the case of a microscope it calls for using beads with a 200-
nm diameter. Yet, for this study, a circular block of wood 
measuring 10.16-cm in diameter was used instead. The 
circular shapes are of preference due to their likeness to an 
impulse in the Fourier domain.  
 
Now, due to the ringing effects created by the deconvolution 
of the PSF, the next step to improve the image was to use a 
filter that removes such artifacts. For this, a Gabor Filter was 
used. Gabor filters exhibit several properties which 
conventional smoothing filters lack (Liu et al. 2014). The 
Gabor Filter is a composition of a Gaussian filter multiplied 
by a complex sinusoid. Mathematically, this can be 
expressed as, Equations 4-6. 
 

𝐻𝐻(𝑥𝑥, 𝑦𝑦) = 𝑠𝑠(𝑥𝑥, 𝑦𝑦)𝑔𝑔(𝑥𝑥, 𝑦𝑦)                          (4) 
 

𝑠𝑠(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒−𝑖𝑖2𝜋𝜋(𝑢𝑢𝑥𝑥+𝑣𝑣𝑦𝑦)                            (5) 
 

𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 1
√2𝜋𝜋𝜋𝜋

𝑒𝑒
−1
2

(𝑥𝑥
2

𝜎𝜎𝑥𝑥
2+

𝑦𝑦2

𝜎𝜎𝑦𝑦
2)

                          (6) 
 

Equation 4, shows the composition for the filter, s represents 
the complex sinusoid, and g represents the Gaussian filter. 
Finally, the multiplication by the complex sinusoid is 
equivalent to translating the Gaussian function by (uo,vo) in 
the frequency domain. Thus, this allows us to specifically 
target a direction that we wish to emphasize the edges in. 
This is useful for many types of applications such as, texture 
segmentation, edge detection, retina identification, and 
image representation. Due to this type of response, the 
Gabor filter can be described as a type of band pass filter. In 
other words, it will sharpen the edges in the direction that is 
desired while also smoothing the image. As previously 
discussed, to further improve the edge definition of the image 
a Laplacian Masking was used, which is a common 
technique for improving IR based images (İlk, Jane, and İlk 
2011). The basics behind this mask involve taking the 
second derivative of the image. Once that has been done, at 
the places where the derivative is equal to 0, is where there 
is an edge in the image. Therefore, by adding this filtered 
version of the image back to the original, one effectively 
improves the edge distinction, this can be mathematically 
modeled as Equation 7. 
 

𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) + 𝑐𝑐[∆2𝑓𝑓(𝑥𝑥, 𝑦𝑦)]                    (7) 
 
 

Here, 𝑔𝑔(𝑥𝑥, 𝑦𝑦) represents the final sharpened image. 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is 
the original image and ∆2𝑓𝑓(𝑥𝑥, 𝑦𝑦)  represents its derivative. 
The factor of c is also there as a scaling factor for the 
derivatives contribution. However, for the mask used in this 
study a factor of -1 was used. Overall, the results for using 
the Laplacian mask were quite interesting as will be later 
seen in this paper.  

EXPERIMENTAL SETUP: 
Case 1- Description:  

By using the ToF camera mentioned earlier in this paper, 3 
range images were captured at different distances away from 
the sensor. Two of those images consisted of a block of 
wood, and the final image consisted of a wall in a room 
containing several objects. A regular image of the block of 
wood at the varying distances and the wall of a room can be 
seen below in Figure 3.  
 

 

 
Figure 3. Image of the Wooden Block Used at 0.5-m from 
sensor away (top-left), 0.15-m away from sensor (top-right) 
and the room wall, 1.83-m away from sensor (bottom). 
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Implementation 

The device was set up in front of the blocks of wood and 
started photographing the items by scanning up and down. In 
other words, the device started tilted up, it then would take a 
range measurement, and then move the device head down 
5º. This process was done until the system had scanned the 
full object. During this time, the Arduino Micro-controller was 
connected via USB and the raw data was captured to a log 
file and transferred into the algorithm where the individual 
range data pixels were processed in real time. The 
processing algorithm was coded using C and implemented 
using the OpenCV library and ran on Raspberry Pi. The 
algorithm followed the flowchart found in Figure 2.  An 
overview of the processing steps can be seen in Figure 4, 
here the steps show the processing for imagining a block of 
wood at 0.5-m away from the sensor.  
 

 
Figure 4. Process of the Image Processing Algorithm for the 
Wooden Block Used at 0.5-m away from the sensor. 
 
As one can see from Figure 4, the processing of the image is 
quite remarkable. Starting from the top left of the figure 
(section I), one can see that the range data is quite sparse 
and that interpolation must take place to compose a rational 
image. The next step in the chain is to create the 
interpolation between the data points. This is seen in the top 
middle of the figure (section II), likewise some of the artifacts 
mentioned before of the Delaunay triangulation used to 
estimate the interpolation causes a triangular distortion. 
Next, the PSF deconvolution is applied and the results can 
be seen in the top right of the figure (section III). Finally, the 
image is filtered using the Gabor filter and then adjusted for 
contrast, the results can be seen at the bottom left and 
bottom middle (section IV, V), respectively. The final results 
are displayed by color mapping the image, this can be seen 
at the bottom right of the figure (section VI). The results for 
all the three images in Figure 3 are further analyzed in the 
later sections of this study. 
 
Case 2- Description:  

Following the first case, we focused the ability of the unit to 
mapping the dimensions of a space. This is the most 
beneficial aspect for the 3D modeling besides the internal 
topography of a space which can be captured using the 
techniques outlined and used in Case 1. The space in 
question for this test was chosen to be the corner of a room. 
Specifically, the system would be in-between a west wall, 
and a piece of furniture on the east and a north wall. The 
room in question can be seen in Figure 5.  The walls are 
made of drywall with wooden studs found every 0.3-m. 
Finally, the piece of furniture is made from wood with a 
specular finish on the surface.  
 

 
Figure 5. Room corner used for the room mapping 
experiment. 
 
Implementation 

Once again, the device was set up in the middle of the south 
section of the corner in the room. Then, it began measuring 
the distance by scanning from left to right. In other words, the 
device was set a specified level, it then would take a range 
measurement, and then move the device head 1º to the 
right. This process was done until the system had scanned 
the full space. The Arduino Micro-controller was again 
connected via USB and the raw data was captured to a log 
file and transferred into the processing algorithm which 
mapped the range values on a Cartesian plane. The results 
were then compared by overlaying the room image with the 
mapped results. The results were then analyzed and 
discussed in the next sections.  

RESULTS 
This section explores the results for the two case studies. 
They have all been color mapped to provide more visual 
contrast. For visualization purposes, in Figures 5 and 6, the 
red portion in the output image represents objects closer to 
the sensors.  
 
Case 1- Results: 

As mentioned before, for this case we imaged a block of 
wood at two different distances as well as a wall of a room. 
The block of wood was set at 0.5-m and 0.15-m away from 
the sensor.  The comparison between the real image and the 
acoustically imaged piece for the 0.5-m and 0.15-m away 
blocks are found in Figures 5 and 6 respectively.  
 

 
Figure 5. Final Output Comparison of the Post-Processing 
System for a Block of Wood at 0.5-m Away from the sensors.  

 

 
Figure 6. Final Output Comparison of the Post-Processing 
System for a Block of Wood at 0.15-m Away from the 
sensors.  
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By putting the images alongside the original pictures, one 
can better see how accurately the sonar sensors captured 
the objects. Also one must take note that the angle at which 
the original, regular, photographs were taken is as close to 
the viewing angle that the sensors had to the objects. On the 
other hand, Figure 6 exemplifies how the ToF camera has 
better lateral resolution at closer distances. We can see that 
the edges are more defined for the output image. As 
mentioned at the beginning of the paper this is due to the far 
field pressure of the 40kHz tone used to measure the 
ranges. In other word, the PING beam is narrower at closer 
distances thus providing better later resolutions. 
 
Finally, an image of a room’s wall was taken. This proved to 
be the biggest challenge for the ToF camera. The 
comparison results can be seen below in Figure 7. Here, red 
symbolizes objects farther away from the sensors.  
 

 
Figure 7. Final Output Comparison of the Post-Processing 
System for Room Wall at 1.83-m Away from the sensors.  

 
In this image, the back wall is 1.83-m away and the objects 
are around 0.91-m away from the sensor. Therefore, in the 
example of the room, one can really see the accuracy of the 
post processing system and the downfalls of using the sonar 
sensors. As a disclaimer, the final output of Figure 7 has 
been mosaicked due to the ToF camera’s physical limitations 
of only creating very directional, narrow images. 
Subsequently, the algorithm can define the edges of those 
objects that were closer in the image. For instance, if one 
looks closely to the left side of the output image for Figure 7, 
one will notice that the sensor is able to pick up the side 
edge of the desk, i.e. the blue vertical lines at the edge of the 
image represent the desk edge in the actual picture. Moving 
on to the middle of the image one can appreciate a large 
amount of red. This is due to the far away distance of the TV 
in the original image.  
 
Finally, due to the reflective properties of the TV’s glass, it 
made the data acquisition by the sensor a lot more difficult 
thus the resulting shape, even after processing, is quite poor. 
As for the drawer in the original image, it suffered the most 
lateral definition distortion at the sonar output. One can see 
that in the processed sonar image, the drawer is almost non-
existent. The only trace in the sonar image of the drawer is at 
the middle-right of the image in a light green tint.  
 
Case 2- Results:  

Finally, for Case 2 we explored the feasibility to use the 
sensor to map a space. In this case, the mapping is just a 2-
D distance measurement which can then be used to 
extrapolate a 3-D space if combined with the topographical 
results of Case 1 and if measurements are taken at different 
heights. Nevertheless, the results for the mapping are 
overlaid onto the original room corner picture and can be 

seen in Figure 8.  The red lines display the 2-D data 
collected by the sensor system.  
 

 
Figure 8. Final Output Comparison of the Post-Processing 
System for Room corner obtained by the sensors.  
 
From the acquired results in Figure 8 one can see that the 
North wall of the room corner is the best recognized by the 
system and can be accurately matched to the space. It is 
detected to be at about 40-cm away from the sensor which 
was placed on the south edge of the corner, at (0-cm, 0-cm). 
Nevertheless, if we look at the west wall of the corner or the 
east wall with the furniture one may notice that the red line 
diverges from the measurement and reflects up the wall or 
furniture. This is due to the angle at which the sensor sends 
the PING. Since the PING is quite directional the angle due 
to the rotation of the device creates a poor reflection when 
returned and this creates the artifact of a larger distance than 
what should be detected. Once again this displays the fact 
that sonar based ToF cameras are not very good due to 
interference or reflections.  

DISCUSSION 
From the results in the two cases studied in this paper, we 
see that the imaging accuracy for an acoustic ToF camera 
can be improved if the image is processed correctly and if 
the objects are close to the camera itself. Likewise, the 2-D 
results found during the second case of this study show that 
the distance can be accurately obtained by the sensors, 
however, due to the directionality of the PING unwanted 
artifacts due to reflections are created when the sensor is in 
mid rotation.  
 
Also, If the 2-D distance data obtained in the second case is 
combined with the imagining date from the first case, we 
would be able to create a full system for mapping a 3D 
space. Unlike conventional methods being used in the 
industry like LIDAR and RGB-D the cost of the system is 
quite low considering the result obtained by both LIDAR and 
RGB-D are very like the results obtained here for the 2-D 
distance measurement. A LIDAR system can go for around 
$1,500 while a RGB-D system can cost around $150. 
Nevertheless, an RGB-D system can give more details than 
our acoustic imaging system and algorithm. Eventually, if our 
algorithm were to be tailored to be better during the 
interpolation process, we believe that the images obtained 
would be much more representative of the real space. Also, 
if we were to modify the existing system to reduce the 
distance between each of the sensor, then we could ideally 
reduce the number of points that must be interpolated and 
ultimately increase pixel density and overall image definition.  
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Physical Property Interaction  

During the study, an idea to obtain the imaged objects 
physical properties based on the reflected signal strength 
was considered. However, this was not possible due to the 
sensors inability to output raw intensity values. Nevertheless, 
an image was taken of a piece of glass to show how its high-
reflectance affected the final edge definition.  
 

 
Figure 9. Final Output Comparison of the Post-Processing 
System for a Glass Sheet at 0.3-m Away from the sensors.  

 
From Figure 9 one can see that it looks quite like the 
previous examples done with the blocks of wood. 
Nonetheless, one should see how there is a wider green halo 
and more changes in the background around the solid blue 
block. This is due to the scattered reflection of the PING from 
the glass. Instead of a smooth background, the sensors 
picked up more “garbage” data from the echoes, even if the 
sensor was not pointing directly at the glass. Lastly, one can 
see that the sensors did not detect the base holding the 
glass and thus filled in the space with glass information 
during the interpolation step due to the missed reading 
caused by the gaps in the sensors.  Now, another example 
was done using a set of concrete bricks since they would 
exhibit a mixture of high and low reflective properties due to 
their surface texture and hardness characteristics. The final 
output comparison can be seen below in Figure 10.  
 

 
Figure 10. Final Output Comparison of the Post-Processing 
System for Concrete Bricks at 0.3-m Away from the sensors.  
 
By comparing the two figures of the glass panel and the 
concrete block we can see that the block creates more of a 
blur of its overall shape. This is solely due to the reflective 
characteristics of the block itself. One could argue that the 
rough surface texture could prove to be disruptive for the 
PING and thus cause such artifacts in the final image, yet no 
other tests were done. Overall, changing the imaged material 
did not fully change the edge definition. Yet, it did change the 
overall smoothness of the scene. In our opinion, this helps 
validate that having false readings due to increased PING 
reflections in term affects overall output image.  

CONCLUSIONS 
This study focused on improving ToF range images obtained 
by inexpensive sonar sensors as well as lay the foundation 
for a low-cost acoustic sensor array for building geometry 
mapping using echolocation for real-time building model 
creation. The results, in our opinion, were quite impressive 
for objects that were very close to the sensor. Likewise, the 

post-processing techniques used, did help improve the 
overall result of the final image. The best example of this was 
Figure 6. In that image, it is easy to appreciate well-defined 
edges undisrupted by the poor lateral resolution of the 
sensors. Likewise, in Figure 4, one can see the full power of 
concatenating different techniques into producing a final 
image from the sonar range data. All in all, even though the 
poor lateral resolution of the sensors and the device 
distortions can’t be fully rectified by the post-processing 
system, they can be reduced a considerable amount, enough 
to produce usable data. Likewise, we believe that even 
though the results for either of the two cases are not perfect 
in representing a space. The combination of the two features 
in future studies could provide a path for creating a portable, 
affordable, solution for quick building mapping to be used in 
interior building modeling. Specifically, we find our system to 
be valuable to architects or engineers who require the 
mapped data to plan retrofits or renovations without investing 
time and money in more expensive solutions. Some other 
examples which require 3D indoor models include indoor 
airflow simulation using Computational Fluid Dynamics, 
disaster management simulation studies, and interior design 
tools. 
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