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SUMMARY

Validation of result accuracy for indoor environment
modeling and simulation usually requires high-quality data
collected by expensive sensors and human operators. This
becomes a problem when dealing with building retrofits,
specifically when obtaining building geometry for later use in
airflow, envelope, or human-building interaction simulations.
Thus, we developed a low-cost acoustic sensor array (less
than $70) to automatically detect and map building geometry
using echolocation. Our focus of this research is to allow
building modelers to obtain geometric as well as spatial
information of existing buildings. The underlying hardware
uses the Open Source Computer Vision Library which allows
multi-core processing and enables hardware acceleration of
the underlying heterogeneous compute platform, allowing us
to perform distributive calculation among multiple devices.
Likewise, this is useful when clustering devices for aggregate
data collection for use in large mapping projects. Overall, this
study proposes a prototype for future work in this field.

INTRODUCTION

Advances in architectural design have caused a rise in
complex building geometries. Similarly, the modernization of
building design has caused an increase in demand for quick
indoor building environment simulations for the verification
and optimization of the final design. Yet, the limiting factor for
the accuracy of these simulations is the detail of the indoor
geometry of the building in question. To provide an accurate
level of detail, indoor environment modelers must rely on
precise 3D geometries to depict a realistic performance of
the air flow, envelope effects, or human interaction inside of
the space (Privara et al. 2013). Ultimately, obtaining the
correct building geometry provides for accurate model
creation and precise simulation results. Recent methods for
obtaining high-quality data rely on expensive sensors and
human operators manually guiding the systems throughout a
building. Not to mention, most research in this field focuses
on using the obtained geometric data for robotic applications
instead of modeling purposes (Francis et al. 2015). Current
applications use various methods to capture the indoor and
external geometry of a building, such systems include RGB
depth cameras (RGB-D), light based sensors (LIDAR), and
acoustic based mapping. All these systems rely on the same
basic principles of Time-of-Flight (ToF) which itself has
inherent disadvantages yet individually each of the systems
have their own advantages. Finally, a ToF camera is a range
imaging system that resolves distances based on the known
speed of light or sound, and the measured time of flight of
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the signal sent to the object being pictured. This distance
data is then processed as a point in 3D space (Pycinski et al.
2016).

As previously stated, ToF cameras suffer from several
disadvantages such as interference due to external signals,
distortions due to unwanted reflections, and background light
(only applicable to light based systems) (He et al. 2017). Yet,
the concept behind ToF cameras is still a prevalent method
for obtaining distance measurement based images. For
example, RGB-D cameras have recently come into play to
build content rich 3D environments for robotic navigation,
manipulation, telepresence, and semantic mapping. An
RGB-D camera is a combination of a regular color camera
with a depth camera which can provide RGB data along with
pixel depth data. Nevertheless, regular depth cameras suffer
from an inability to extract accurate depth data in indoor
environments with dark or sparsely textured areas (Peter
Henry 2010). Yet, by using, RGB-D cameras, researchers
have been able to overcome these drawbacks and are able
to obtain somewhat accurate representations of the space
being analyzed. On the other hand, laser based, LIDAR,
mapping has become a popular choice for mapping indoor
environments. LIDAR works by illuminating a target surface
with pulsed laser light and then waiting for the reflected
signal. Similarly, LIDAR suffers from the regular ailments of
ToF cameras, yet are very expensive when compared to an
acoustic based ToF camera.

Likewise, acoustic based ToF cameras have become
commonplace in the industry to map locations specifically for
low cost robotics applications. Yet, the accuracy of this
system still does not provide the level of 3D topographical
detail which would be beneficial for indoor environment
modeling applications but with the right processing, can
potentially reach the details of an RGB-D camera for a
fraction of the cost. Consequently, we propose a low-cost
acoustic sensor array (less than $70) to automatically detect
and map building geometry using echolocation as well as
indoor room topography. Our focus of this research is to
allow building modelers to obtain geometric information of
existing buildings for use in indoor environment simulations.
Nevertheless, for the experiments conducted in this study,
the camera used consisted of an array of ten sonar sensors
whose purpose was to calculate the distance of the device to
the walls in a room. Finally, three cases were considered to
provide points for comparison. In the first two cases, we
study the feasibility of creating images out of the raw range
data using image processing techniques. The techniques



used in the algorithm were: interpolation, point spread
function estimation and deconvolution, filtering using a Gabor
filter, and edge improvements using Laplacian masking.
Next, we study the mapping of a corner in a room, here the
results are presented in the form of raw distance data
overlaid onto the space. Finally, conclusions and further
suggestions are made based on the results.

METHODS
The following sections introduce the ToF device, its
downfalls, the theory behind ToF systems, and the

processing algorithm used to process the data for the case
studies.

ToF Device and Its Downfalls

The ToF device used in this study consisted of an array of
sonar sensors controlled by a Micro-controller, the raw data
was then sent to Raspberry Pi and processed using
OpenCV. The parts used in the device were ten HC-SR04
ultrasonic range sensors (sonar sensors), one Arduino
MEGA Microcontroller, and a pair of 180° rotation servos.
Finally, these components were assembled in a fashion as
seen in Figure 1. As one can see, the assembly consisted of
pieces of wood to hold the system together, Table 1 shows
the cost brake down for the unit.

Figure 1. Echolocation device used for automatic geometry
detection.

Table 1. Bill of Materials for Sensor System

Part Cost
Wood / Wires / Misc. $5
Arduino MEGA $35
Servos $10
HC-SR04 ultrasonic range sensors $15
Total $65

From Figure 1, one can see the sensor array where each
sensor has a separation of about 4-cm from each other. This
was done to reduce the risk of cross talk between each
ultrasonic sensor and avoid any false readings that may
arise. Conversely, this creates the first problem in the overall
output. By spacing each sensor, one is effectively creating
missing data points. From our calculations, it was estimated
that each 4-cm gap would create 152 missing pixels in the
final image. Likewise, during the operation of the unit, the
system automatically sweeps from left to right and up and
down to “photograph” the area correctly. This again creates
an artifact in the data, as the device sweeps through the
azimuth plane, a gap of 1 cm is created which results in 36
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missing pixels. The missing data is then corrected in the
studies by an interpolation based on a Delaunay triangulation
to match missing data.

Theory

Now, one must understand the basics behind sonar based
distance measurements to understand the importance of
post-processing the raw data. A distance measurement
taken by the sonar sensors is done by sending a PING (a
small burst of a high frequency signal) using its emitter and
waiting for its echo on a receiver. Finally, once the echo
arrives at the sensor, the time of flight, ¢, (time it takes the
echo to return) is multiplied by the speed of sound, v, 340
m/s, then distance to the object is then given by Equation 1.

_ vxAt
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One can assume that for most measurement calculations,
the process described above works quite well. However, this
is far from the truth. In practice, when taking measurements
by using air-based sonar, certain factors come into play such
as, interaction with the target (specular or surface
reflections), variation of propagation speed due to
temperature in the environment, and finally the opening
angle of the transmitted beam. These issues affect the final
distance measurement and in term affect the final range
image.

The device used in this study, uses a PING that consists of a
40 KHz tone that is held for 40-uSec. Consequently, this type
of beam is proficient for up close imaging yet it becomes very
poor at further distances due to its far field pressure
characteristics as we will see in the second case study.
Thus, this is one of the major disadvantages of using sonar
based ToF cameras. One way to fix this issue is by
increasing the tone frequency of the PING. However,
constructing a piezoelectric transmitter capable of such
frequencies is quite expensive. Thus, in this study, by using
image-processing techniques, this, and other distortions in
the final image may be corrected without the need for
expensive hardware-based solutions.

Processing Algorithm

As previously mentioned, the raw data of the ToF device has
a variety of issues ranging from missing data values to
distorted edges due to servo movement. However, the digital
image-processing algorithm proposed below, we believe, can
help alleviate these failures, Figure 2.

Obtain raw data
Interpolate missing data
Deconvolute image

Polish image

Adjust contrasts

Display results

Figure 2. Image Processing Flow Chart

First, raw data comes from the Arduino Micro-controller. This
information is composed of distances and locations



calculated by the sonar. These distances have been
translated from spherical coordinates to a Cartesian
representation. One could consider this a type of “lens
correction” for system. Then, the raw data from the sensor is
interpolated by using the Delaunay Triangulation. This fills in
the missing pixel values caused by the gaps between the
sensors and the sweep angle. Nevertheless, the triangulation
makes several distortions in the image which will then need
to be corrected. Next, to decrease the blur in the image due
to the triangulation and the motion of the sensor, the
deconvolution of the point-spread function (PSF) was
implemented. The point-spread function of the image can
also be interpreted as the impulse response of the system.
The PSF contains all the information about the artifacts
introduced by the system. Therefore, in practice, one could
describe the resulting output image of a system as follows,
Equation 2.

Ioutput(m: n) = H(m,n) * Leq; (M, n) (2)
The equation above represents an unwanted convolution of
the PSF with the original image. Here, H represents the PSF
of the system and lea describes the image without any
distortions. Finally, loutout describes the distorted output image
caused by the system. In practice, by translating Equation 1
into the Fourier domain one may manipulate it in such a way
to obtain the original image, lea. The manipulation can be
seen below, Equation 3. Notice that the (m,n)have now
become (x,y) due to the Fourier transformation.

iautput(xvy) _ 7
A(xy) - Ireal (x'y)

3)
Finally, in application, this process of distortion removal is
not perfect. The biggest drawback comes from estimating the
PSF for the system. Without an accurate PSF estimation,
one might not fix the image or in the worst-case scenario,
destroy it. However, if done correctly, deconvolution from an
unwanted signal can reduce blurring in a shaky camera, and
many other artifacts. In other words, the purpose of
deconvolution is to reconstruct the signal, as it existed before
the unwanted distortion convolution took place.

For this experiment, the PSF was estimated by emulating a
technique used for microscopes (Zahreddine 2013). The
technique calls for imaging an impulse like shape and then
extracting the intensity values from the diameter of the
imaged shape. Finally, the extracted intensity values from
several trials are concatenated to form the estimated PSF. In
the case of a microscope it calls for using beads with a 200-
nm diameter. Yet, for this study, a circular block of wood
measuring 10.16-cm in diameter was used instead. The
circular shapes are of preference due to their likeness to an
impulse in the Fourier domain.

Now, due to the ringing effects created by the deconvolution
of the PSF, the next step to improve the image was to use a
filter that removes such artifacts. For this, a Gabor Filter was
used. Gabor filters exhibit several properties which
conventional smoothing filters lack (Liu et al. 2014). The
Gabor Filter is a composition of a Gaussian filter multiplied
by a complex sinusoid. Mathematically, this can be
expressed as, Equations 4-6.

(4)
®)

H(x,y) = s(x,y)g(x,y)

—i27t (Ux+Vy)

s(x,y) =e
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Equation 4, shows the composition for the filter, s represents
the complex sinusoid, and g represents the Gaussian filter.
Finally, the multiplication by the complex sinusoid is
equivalent to translating the Gaussian function by (uo,vo) in
the frequency domain. Thus, this allows us to specifically
target a direction that we wish to emphasize the edges in.
This is useful for many types of applications such as, texture
segmentation, edge detection, retina identification, and
image representation. Due to this type of response, the
Gabor filter can be described as a type of band pass filter. In
other words, it will sharpen the edges in the direction that is
desired while also smoothing the image. As previously
discussed, to further improve the edge definition of the image
a Laplacian Masking was used, which is a common
technique for improving IR based images (ilk, Jane, and ilk
2011). The basics behind this mask involve taking the
second derivative of the image. Once that has been done, at
the places where the derivative is equal to 0, is where there
is an edge in the image. Therefore, by adding this filtered
version of the image back to the original, one effectively
improves the edge distinction, this can be mathematically
modeled as Equation 7.

900, y) = f(x,y) + c[A*f (x,y)] )

Here, g(x,y) represents the final sharpened image. f(x,y) is
the original image and A?f(x,y) represents its derivative.
The factor of ¢ is also there as a scaling factor for the
derivatives contribution. However, for the mask used in this
study a factor of -1 was used. Overall, the results for using
the Laplacian mask were quite interesting as will be later
seen in this paper.

EXPERIMENTAL SETUP:
Case 1- Description:

By using the ToF camera mentioned earlier in this paper, 3
range images were captured at different distances away from
the sensor. Two of those images consisted of a block of
wood, and the final image consisted of a wall in a room
containing several objects. A regular image of the block of
wood at the varying distances and the wall of a room can be
seen below in Figure 3.

Figure 3. Image of the Wooden Block Used at 0.5-m from
sensor away (top-left), 0.15-m away from sensor (top-right)
and the room wall, 1.83-m away from sensor (bottom).



Implementation

The device was set up in front of the blocks of wood and
started photographing the items by scanning up and down. In
other words, the device started tilted up, it then would take a
range measurement, and then move the device head down
5°. This process was done until the system had scanned the
full object. During this time, the Arduino Micro-controller was
connected via USB and the raw data was captured to a log
file and transferred into the algorithm where the individual
range data pixels were processed in real time. The
processing algorithm was coded using C and implemented
using the OpenCV library and ran on Raspberry Pi. The
algorithm followed the flowchart found in Figure 2. An
overview of the processing steps can be seen in Figure 4,
here the steps show the processing for imagining a block of
wood at 0.5-m away from the sensor.

. .
I
v

I
Figure 4. Process of the Image Processing Algorithm for the

VI
Wooden Block Used at 0.5-m away from the sensor.

A%

As one can see from Figure 4, the processing of the image is
quite remarkable. Starting from the top left of the figure
(section 1), one can see that the range data is quite sparse
and that interpolation must take place to compose a rational
image. The next step in the chain is to create the
interpolation between the data points. This is seen in the top
middle of the figure (section II), likewise some of the artifacts
mentioned before of the Delaunay triangulation used to
estimate the interpolation causes a triangular distortion.
Next, the PSF deconvolution is applied and the results can
be seen in the top right of the figure (section III). Finally, the
image is filtered using the Gabor filter and then adjusted for
contrast, the results can be seen at the bottom left and
bottom middle (section 1V, V), respectively. The final results
are displayed by color mapping the image, this can be seen
at the bottom right of the figure (section VI). The results for
all the three images in Figure 3 are further analyzed in the
later sections of this study.

Case 2- Description:

Following the first case, we focused the ability of the unit to
mapping the dimensions of a space. This is the most
beneficial aspect for the 3D modeling besides the internal
topography of a space which can be captured using the
techniques outlined and used in Case 1. The space in
question for this test was chosen to be the corner of a room.
Specifically, the system would be in-between a west wall,
and a piece of furniture on the east and a north wall. The
room in question can be seen in Figure 5. The walls are
made of drywall with wooden studs found every 0.3-m.
Finally, the piece of furniture is made from wood with a
specular finish on the surface.
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Figure 5. Room corner used for the room mapping
experiment.

Implementation

Once again, the device was set up in the middle of the south
section of the corner in the room. Then, it began measuring
the distance by scanning from left to right. In other words, the
device was set a specified level, it then would take a range
measurement, and then move the device head 1° to the
right. This process was done until the system had scanned
the full space. The Arduino Micro-controller was again
connected via USB and the raw data was captured to a log
file and transferred into the processing algorithm which
mapped the range values on a Cartesian plane. The results
were then compared by overlaying the room image with the
mapped results. The results were then analyzed and
discussed in the next sections.

RESULTS

This section explores the results for the two case studies.
They have all been color mapped to provide more visual
contrast. For visualization purposes, in Figures 5 and 6, the
red portion in the output image represents objects closer to
the sensors.

Case 1- Results:

As mentioned before, for this case we imaged a block of
wood at two different distances as well as a wall of a room.
The block of wood was set at 0.5-m and 0.15-m away from
the sensor. The comparison between the real image and the
acoustically imaged piece for the 0.5-m and 0.15-m away
blocks are found in Figures 5 and 6 respectively.

4

r

Figure 5. Final Output Comparison of the Post-Processing
System for a Block of Wood at 0.5-m Away from the sensors.
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Figure 6. Final Output Comparison of the Post-Processing
System for a Block of Wood at 0.15-m Away from the
sensors.




By putting the images alongside the original pictures, one
can better see how accurately the sonar sensors captured
the objects. Also one must take note that the angle at which
the original, regular, photographs were taken is as close to
the viewing angle that the sensors had to the objects. On the
other hand, Figure 6 exemplifies how the ToF camera has
better lateral resolution at closer distances. We can see that
the edges are more defined for the output image. As
mentioned at the beginning of the paper this is due to the far
field pressure of the 40kHz tone used to measure the
ranges. In other word, the PING beam is narrower at closer
distances thus providing better later resolutions.

Finally, an image of a room’s wall was taken. This proved to
be the biggest challenge for the ToF camera. The
comparison results can be seen below in Figure 7. Here, red
symbolizes objects farther away from the sensors.

el

Figure 7. Final Output Comparison of the Post-Processing
System for Room Wall at 1.83-m Away from the sensors.

In this image, the back wall is 1.83-m away and the objects
are around 0.91-m away from the sensor. Therefore, in the
example of the room, one can really see the accuracy of the
post processing system and the downfalls of using the sonar
sensors. As a disclaimer, the final output of Figure 7 has
been mosaicked due to the ToF camera’s physical limitations
of only creating very directional, narrow images.
Subsequently, the algorithm can define the edges of those
objects that were closer in the image. For instance, if one
looks closely to the left side of the output image for Figure 7,
one will notice that the sensor is able to pick up the side
edge of the desk, i.e. the blue vertical lines at the edge of the
image represent the desk edge in the actual picture. Moving
on to the middle of the image one can appreciate a large
amount of red. This is due to the far away distance of the TV
in the original image.

Finally, due to the reflective properties of the TV’s glass, it
made the data acquisition by the sensor a lot more difficult
thus the resulting shape, even after processing, is quite poor.
As for the drawer in the original image, it suffered the most
lateral definition distortion at the sonar output. One can see
that in the processed sonar image, the drawer is almost non-
existent. The only trace in the sonar image of the drawer is at
the middle-right of the image in a light green tint.

Case 2- Results:

Finally, for Case 2 we explored the feasibility to use the
sensor to map a space. In this case, the mapping is just a 2-
D distance measurement which can then be used to
extrapolate a 3-D space if combined with the topographical
results of Case 1 and if measurements are taken at different
heights. Nevertheless, the results for the mapping are
overlaid onto the original room corner picture and can be
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seen in Figure 8. The red lines display the 2-D data
collected by the sensor system.
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Figure 8. Final Output Comparison of the Post-Processing
System for Room corner obtained by the sensors.

From the acquired results in Figure 8 one can see that the
North wall of the room corner is the best recognized by the
system and can be accurately matched to the space. It is
detected to be at about 40-cm away from the sensor which
was placed on the south edge of the corner, at (0-cm, 0-cm).
Nevertheless, if we look at the west wall of the corner or the
east wall with the furniture one may notice that the red line
diverges from the measurement and reflects up the wall or
furniture. This is due to the angle at which the sensor sends
the PING. Since the PING is quite directional the angle due
to the rotation of the device creates a poor reflection when
returned and this creates the artifact of a larger distance than
what should be detected. Once again this displays the fact
that sonar based ToF cameras are not very good due to
interference or reflections.

DISCUSSION

From the results in the two cases studied in this paper, we
see that the imaging accuracy for an acoustic ToF camera
can be improved if the image is processed correctly and if
the objects are close to the camera itself. Likewise, the 2-D
results found during the second case of this study show that
the distance can be accurately obtained by the sensors,
however, due to the directionality of the PING unwanted
artifacts due to reflections are created when the sensor is in
mid rotation.

Also, If the 2-D distance data obtained in the second case is
combined with the imagining date from the first case, we
would be able to create a full system for mapping a 3D
space. Unlike conventional methods being used in the
industry like LIDAR and RGB-D the cost of the system is
quite low considering the result obtained by both LIDAR and
RGB-D are very like the results obtained here for the 2-D
distance measurement. A LIDAR system can go for around
$1,500 while a RGB-D system can cost around $150.
Nevertheless, an RGB-D system can give more details than
our acoustic imaging system and algorithm. Eventually, if our
algorithm were to be tailored to be better during the
interpolation process, we believe that the images obtained
would be much more representative of the real space. Also,
if we were to modify the existing system to reduce the
distance between each of the sensor, then we could ideally
reduce the number of points that must be interpolated and
ultimately increase pixel density and overall image definition.



Physical Property Interaction

During the study, an idea to obtain the imaged objects
physical properties based on the reflected signal strength
was considered. However, this was not possible due to the
sensors inability to output raw intensity values. Nevertheless,
an image was taken of a piece of glass to show how its high-
reflectance affected the final edge definition.

A

Figure 9. Final Output Comparison of the Post-Processing
System for a Glass Sheet at 0.3-m Away from the sensors.

From Figure 9 one can see that it looks quite like the
previous examples done with the blocks of wood.
Nonetheless, one should see how there is a wider green halo
and more changes in the background around the solid blue
block. This is due to the scattered reflection of the PING from
the glass. Instead of a smooth background, the sensors
picked up more “garbage” data from the echoes, even if the
sensor was not pointing directly at the glass. Lastly, one can
see that the sensors did not detect the base holding the
glass and thus filled in the space with glass information
during the interpolation step due to the missed reading
caused by the gaps in the sensors. Now, another example
was done using a set of concrete bricks since they would
exhibit a mixture of high and low reflective properties due to
their surface texture and hardness characteristics. The final
output comparison can be seen below in Figure 10.

Figure 10. Final Output Comparison of the Post-Processing
System for Concrete Bricks at 0.3-m Away from the sensors.

By comparing the two figures of the glass panel and the
concrete block we can see that the block creates more of a
blur of its overall shape. This is solely due to the reflective
characteristics of the block itself. One could argue that the
rough surface texture could prove to be disruptive for the
PING and thus cause such artifacts in the final image, yet no
other tests were done. Overall, changing the imaged material
did not fully change the edge definition. Yet, it did change the
overall smoothness of the scene. In our opinion, this helps
validate that having false readings due to increased PING
reflections in term affects overall output image.

CONCLUSIONS

This study focused on improving ToF range images obtained
by inexpensive sonar sensors as well as lay the foundation
for a low-cost acoustic sensor array for building geometry
mapping using echolocation for real-time building model
creation. The results, in our opinion, were quite impressive
for objects that were very close to the sensor. Likewise, the
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post-processing techniques used, did help improve the
overall result of the final image. The best example of this was
Figure 6. In that image, it is easy to appreciate well-defined
edges undisrupted by the poor lateral resolution of the
sensors. Likewise, in Figure 4, one can see the full power of
concatenating different techniques into producing a final
image from the sonar range data. All in all, even though the
poor lateral resolution of the sensors and the device
distortions can’t be fully rectified by the post-processing
system, they can be reduced a considerable amount, enough
to produce usable data. Likewise, we believe that even
though the results for either of the two cases are not perfect
in representing a space. The combination of the two features
in future studies could provide a path for creating a portable,
affordable, solution for quick building mapping to be used in
interior building modeling. Specifically, we find our system to
be valuable to architects or engineers who require the
mapped data to plan retrofits or renovations without investing
time and money in more expensive solutions. Some other
examples which require 3D indoor models include indoor
airflow simulation using Computational Fluid Dynamics,
disaster management simulation studies, and interior design
tools.
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