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Abstract

Not all people are equally easy to identify: color statis-
tics might be enough for some cases while others might re-
quire careful reasoning about high- and low-level details.
However, prevailing person re-identification(re-ID) meth-
ods use one-size-fits-all high-level embeddings from deep
convolutional networks for all cases. This might limit their
accuracy on difficult examples or makes them needlessly ex-
pensive for the easy ones. To remedy this, we present a
new person re-1D model that combines effective embeddings
built on multiple convolutional network layers, trained with
deep-supervision. On traditional re-ID benchmarks, our
method improves substantially over the previous state-of-
the-art results on all five datasets that we evaluate on.
We then propose two new formulations of the person re-
ID problem under resource-constraints, and show how our
model can be used to effectively trade off accuracy and com-
putation in the presence of resource constraints.

1. Introduction

Consider the two men shown in Figure 1. The man on the
left is easier to identify: even from far away, or on a low-
resolution photograph, one can easily recognize the brightly
colored attire with medals of various kinds. By contrast, the
man on the right has a nondescript appearance. One might
need to look closely at the set of the eyes, the facial hair,
the kind of briefcase he is holding or other such subtle and
fine-grained properties to identify him correctly.

Current person re-identification(re-ID) systems treat
both persons the same way. Both images would be
run through deep convolutional neural networks (CNNs).
Coarse-resolution and semantic embeddings from the last
layer would be used to look the image up in the database.
However, this kind of an architecture causes two major
problems: first, for the hard cases such as the man on the
right in Figure 1, these embeddings are too coarse and dis-
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Figure 1. Some people have distinctive appearance and are easy
to identify (left), while others have nondescript appearance and
require sophisticated reasoning to identify correctly (right).

card too much information. Features from the last layer of
a CNN mostly encode semantic features, like object pres-
ence [15], but lose all information about the fine spatial de-
tails such as the pattern of one’s facial hair or the particular
shape of one’s body. Instead, to tackle both cases, ideally
we would want to reason jointly across multiple levels of se-
mantic abstraction, taking into account both high-resolution
(shape and color), as well as highly semantic details (objects
or object parts).

In contrast, for the easy cases such as the man on the left
in Figure 1, using a 50-layer network is overkill. A color
histogram or the low-level statistics computed in the early
layers of the network might work just as well. This may not
be a problem if all we are interested in is the final accuracy.
However, sometimes we need to be more resource efficient
in terms of time, memory, or power. For example, a robot
might need to make decisions within a time limit, or it may
have a limited battery supply that precludes the running of
a massive CNN on every frame.

Thus standard CNN-based person re-ID systems are only
one point on a spectrum. On one end, early layers of the
CNN can be used to identify people quickly under some
resource constraints, but might sacrifice accuracy on hard
images. On the other end of the spectrum, highly accurate
person re-ID might require reasoning across multiple layers
of the CNN. Ideally, we want a single model that encapsu-



lates the entire spectrum. This can allow downstream appli-
cations to choose the right trade-off between accuracy and
computation.

In this paper we present such a person re-ID system.
Our model has a simple architecture, consisting of a stan-
dard base network with two straightforward modifications.
First, embeddings across multiple layers are combined into
a single embedding. Second, embeddings at each stage are
trained in a supervised manner for the end task. While both
ideas have appeared before in various forms for object de-
tection and segmentation [&, 15, 53], we show for the first
time the benefit of these ideas for person re-ID problems,
and connect these ideas to the goal of performance under
resource constraints.

We evaluate our approach on five well-known person re-
ID benchmark datasets. Not only does our method outper-
form all previous approaches across all datasets, it is also to
our knowledge the first person re-ID algorithm applicable
to the resource budget settings in test time.

2. Related Work

We briefly review prior work on person re-ID and deep
supervision.

2.1. Person re-ID

Traditional person re-ID methods first extract discrimi-
native hand-crafted features that are robust to illumination
and viewpoint changes [9, 13,24,32,40,41,59], and then use
metric learning [2,6,12,18,22,31,32,33,36,43,54,58,63] to
ensure that features from the same person are close to each
other while from different people are far away in the embed-
ding space. Meanwhile, researchers have worked on creat-
ing ever more complex person re-ID datasets [28,44,60,61]
to imitate real-world challenges.

Inspired by the success of CNNs [25] on a variety of
vision tasks, recent papers have employed deep learning in
person re-ID [1,5,28,29,34,38,50,52,64,65]. CNN-based
models are on the top of the scoreboard. This paper belongs
to this large family of CNN-based person re-ID approaches.

There are three types of deep person re-ID models:
classification, verification, and distance metric learning.
Classification models consider each identity as a sepa-
rate class, converting re-ID into a multi-class recognition
task [48,52,62]. Verification models [28,49,55] take a pair
of images as input to output a similarity score determining
whether they are the same person. A related class of mod-
els learns distance metrics [3,5,7, 17,46] in the embedding
space directly in an expressive way. Hermans et al. [17]
propose a variant of these models that uses the triplet loss
with batch hard negative and positive mining to map images
into a space where images with the same identity are closer
than those of different identities. We also utilize the triplet
loss to train our network, but focus on improvements to the

architecture. Combinations of these loss functions have also
been explored [4, | 1,38].

Instead of tuning the loss function, other researchers
have worked on improving the training procedure, the net-
work architecture, and the pre-processing. In order to alle-
viate problems due to occlusion, Zhong et al. [67] propose
to randomly erase some parts of the input images as the
antidote. Treating re-ID as a retrieval problem, re-ranking
approaches [66] aim to get robust ranking by lifting up the
k-reciprocal nearest neighbors. Under the assumption that
correlated weight vectors damp the retrieval performance,
Sun et al. [48] attempt to de-correlate the weights of the
last layer. These improvements are orthogonal to our pro-
posed approach. In fact, we integrate random erasing and
re-ranking into our approach for better performance.

Some works explicitly consider local features or multi-
scale features in the neural networks [11,27,30,37,47,56,

]. By contrast, we implicitly combine features across
scale and abstraction by tapping into the different stages of
the convolutional network.

2.2. Deep supervision and skip connections

The idea of using multiple layers of a CNN has been ex-
plored before. Combining features across multiple layers
using skip connections has proved to be extremely benefi-
cial for segmentation [, 15,39] and object detection [35]. In
addition, prior work has found that injecting supervision by
making predictions at intermediate layers improves perfor-
mance. This deep supervision improves both image classi-
fication [26] and segmentation [53]. We show that the com-
bination of deep supervision with distance metric learning
leads to significant improvements in solving person re-ID
problems.

We also present that, under limited resource, accurate
prediction is still possible with deep supervision and skip
connections. In spite of the key role that efficiency of in-
ference plays in real-world applications, there is very little
work incorporating such resource constraints, not even in
general image classification setting (exception: [19]).

3. Deep supervision for person re-ID

We first consider the traditional person re-ID setting.
Here, the system has a gallery G of images from different
people with known identities. It is then given a query/probe
image ¢ of an unidentified person, which can also be mul-
tiple images. The objective of the system is to match the
probe with image(s) in the gallery to identify that person.

Previous approaches to person re-ID only use the most
high level features to encode an image, e.g., outputs of the
last convolution layer form the ResNet-50 [16]. Although
high-level features are indeed useful in forming abstract
concepts for object recognition, they might discard low-
level signals like color and texture, which are important
clues for person re-ID. Furthermore, later layers in CNNs
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Figure 2. Illustration of Deep Anytime Re-ID (DaRe) for person re-ID. The model is based on ResNet-50 [
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stages, each with decreasing resolution. DaRe adds extra global average pooling and fully connected layers right after each stage starting
from stage 1 (corresponding to conv_2-5x in [16]). Different parts are trained jointly with loss £, = 23:1 Ls + Lrusion. When inferring
under constrained-resource settings, DaRe will output the most recent available embeddings from intermediate stages (and the ensemble
embedding when computation resource is enough for a full pass of the network). (Example image copyright Kaique Rocha (CCO License)).

are at a coarser resolution, and may not see fine-level de-
tails such as patterns on clothes, facial features, subtle pose
differences etc. This suggests that person re-ID will benefit
from fusing information across multiple layers.

However, such fusion of multiple features will only be
useful if each individual feature vector is discriminative
enough for the task at hand. Otherwise, adding in unin-
formative features might end up adding noise and degrade
task performance.

With this intuition in mind, we introduce a novel archi-
tecture for person re-ID, which we refer to as Deep Anytime
Re-ID (DaRe), as illustrated in Figure 2. Compared to prior
work on person re-ID, the architecture a) fuses information
from multiple layers [8, 5], and b) has intermediate losses
that train the embeddings from different layers (deep super-
vision [53]) for person re-ID directly with a variant of the
triplet loss.

3.1. Network architecture

Our base network is a residual network (ResNet50) [16].
This network has four stages, each halves the resolution of
the previous. Each stage contains multiple convolutional
layers operating on feature maps of the same resolution. At
the end of each stage, the feature maps are down-sampled
and fed into the next layer.

We take the feature map at the end of each stage and use
global average pooling followed by two fully connected lay-
ers to produce an embedding at each stage. The first fully
connected layer has 1204 units including batch normaliza-
tion and ReLU and the second layer has 128 units. The
function of the fully connected layers is only to bring all
embeddings to the same dimension.

Given an image z, denote by ¢(x) the embedding pro-
duced at stage s. We fuse these embeddings using a simple
weighted sum:

(/)fusion(x) = Z:Zl U)s(f)s(l‘), (D

where the weights w, are learnable parameters.

3.2. Loss function

The loss function we use to train our network is the sum
of per-stage loss functions /s operating on the embedding
¢s(x) from every stage s and a loss function on the final
fused embedding Grusion(2): Lan = S ey £s + Lrusion-

For each loss function, we use the the triplet loss. The
triplet loss is commonly used in metric learning [45,51] and
recently introduced to person re-ID [5, 1 7].

The reason for using triplet loss is threefold: 1) It mini-
mizes the nearest neighbor loss via expressive embeddings.
2) The triplet loss does not require more parameters as the
number of identities in the training set increases. 3) Since
it uses simple Euclidean distances, it can leverage well-
engineered fast approximate nearest neighbor search (as op-
posed to the verification models, which construct feature
vectors of pairs [42]).

Specifically, we adopt the triplet loss with batch hard
mining and soft margin as proposed in [ 7], which reduces
uninformative triplets and accelerates training. Given a
batch of images X, of P individuals, the triplet loss takes
K images per person and their corresponding identities Y’
in the following form:

furthest positive
P

K
L= Z Z In (1 + exp (a:r??%KD ((b(x];), P(as))
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where ¢ () is the feature embedding of person p image k
and D(-, -) is the L2 distance between two embeddings. The
loss function encourages the distance to the furthest positive
example to be smaller than to the nearest negative example.

4. Resource-constrained person re-1D

The availability of multiple embeddings from different
stages makes our model especially suitable for re-ID ap-
plications under resource constraints. In this section, we
consider the person re-ID problem with limited computa-
tional resources and illustrate how DaRe can be applied un-
der these scenarios.

4.1. Anytime person re-ID

In the anytime prediction setting [14, 19], the computa-
tional budget for a test example is unknown a priori, and the
re-ID inference process is subject to running out of compu-
tation budget at any time. Although the anytime setting has
hardly been studied for person re-ID, it is a common sce-
nario in many settings. For example, imagine a person re-
ID app for mobile Android devices that is supposed to per-
form at a fixed frame-rate. There exist over 24, 093 distinct
Android devices [19] and it is infeasible to ship different
versions of an application for each hardware configuration
— instead one may want to ship a single network that can
guarantee a given frame rate on all hardware configurations.

Here, a traditional re-ID system is all or nothing: it can
only return any result if the budget allows for the evaluation
of the full model.

Ideally, we would expect the system to have the anytime
property, i.e., it is able to produce predictions early-on, but
can keep refining the results when the budget allows. This
mechanism can be easily achieved with DaRe: we propa-
gate the input image through the network, and use the most
recent intermediate embedding that was computed when the
budget ran out to do the identification.

4.2. Budgeted person re-ID

In the budgeted person re-ID problem, the system runs in
an online manner, but it is constrained to only use a budget
B in expectation to compute the answer. The system needs
to decide how much computation to spend on each example
as it is observing them one by one. Because it only has to
adhere to the budget in expectation, it can choose to spend
more time on the hard examples as long as it can process
easier samples more quickly.

We formalize the problem as following: let S be the
number of exits (4 in our case), and Cy > 0 the amount
of computational cost needed to obtain embedding ¢ (q) at
stage s for a single query ¢ (Cs < Csy1, Vs =1,...,5-1).
At any stage s for a given query, we can decide to “exit”:
stop computation and use the s-th embedding to identify the
query q. Let us denote the proportion of queries that exit at
stage s as ps, where Zle ps = 1. Thus the expected aver-
age computation cost for a single query is C' = 25:1 psCs.

Exit thresholds. Given the total number of queries M and
the total computation budgets B, the parameters {p,} can
be chosen such that C < B /M, which represents the com-
putation budget for each query. There are various ways to
determine {p;}. In practice we define

Ps = @ y (3)

where Z is the normalization constant and ¢ € [0,inf) a
fixed constant. Given the costs C'y, ..., Cg, there is a one-
to-one mapping between the budget B and a. If there were
infinitely many stages, eq. (3) would imply that a fraction
of a samples is exited at each stage. In the presence of
finitely many exit stages it encourages an even number of
early-exits across all stages. Given pgs, we can compute the
conditional probability that an input which has traversed all
the way to stage s will exit at stage s and not traverse any
further as ¢; = p; and ¢5 = ﬁ

Once we have solved for ¢s, we need to decide which
queries exit where. As discussed in the introduction, query
images are not equally difficult. If the system can make full
use of this property and route the “easier” queries through
earlier stages and “harder” ones through latter stages, it will
yield a better budget-accuracy trade-off. We solidify this
intuition using a simple distance based routing strategy to
decide at which stage each query should exit.
Query easiness. During testing, at stage s, we would like
to exit the top ¢, percent of “easiest” samples. We approxi-
mate how “easy” a query g is by considering the distance d,
to its nearest neighbor between the query embedding ¢, (q)
and its nearest neighbor in the gallery of the current stage
s. A small distance d, means that we have likely found a
match and thus successfully identified the person correctly.
During testing time we keep track of all previous distances
dy for all prior queries ¢'. For a given query ¢ we check if
its distance d,, falls into the fraction g, of smallest nearest
neighbor distances, and if it does exit the query at stage s.

If labels are available for the gallery at test time, one can
perform a better margin based proxy of uncertainty. For a
query ¢ one computes the distance d, to the nearest neigh-
bor, and d;, the distance to the second nearest neighbor
(with a different class membership than the nearest neigh-
bor). The difference d;, — d,; describes the “margin of cer-
tainty”. If it is large, then the nearest neighbor is sufficiently
closer than the second nearest neighbor and there is little
uncertainty. If it is small, then the first and second near-
est neighbors are close in distance, leaving a fair amount
of ambiguity. If labels are available, we use this difference
d; — dg as our measure of uncertainty, and remove the top
@s most certain queries at each stage.

5. Experiments

We evaluate our method on multiple large scale person
re-ID datasets, and compare with the state-of-the-art.



Dataset

Method Market MARS CUHKO3(L) CUHKO03(D) Duke
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
CNN+DCGAN(R) [65] 56.2 78.1 - - - - - - 67.7 47.1
ST-RNN(C) [68] - - 70.6 50.7 - - - - - -
MSCAN(C) [27] 80.3 57.5 71.8 56.1 - - - - - -
PAN(R) [64] 82.2 63.3 - - 36.9 35.0 36.3 34.0 71.6 51.5
SVDNet(R) [48] 82.3 62.1 - - 40.9 37.8 41.5 37.2 76.7 56.8
TriNet(R) [17] 84.9 69.1 79.8 67.7 - - - - - -
TriNet(R)+RE* [67] - - - - 64.3 59.8 61.8 57.6 - -
SVDNet(R)+RE [67] 87.1 71.3 - - - - - - 79.3 62.4
DaRe(R) 86.4 69.3 83.0 69.7 58.1 53.7 55.1 51.3 75.2 57.4
DaRe(R)+RE 88.5 74.2 82.6 71.7 64.5 60.2 61.6 58.1 79.1 63.0
DaRe(De) 86.0 69.9 84.2 72.1 56.4 52.2 54.3 50.1 74.5 56.3
DaRe(De)+RE 89.0 76.0 85.5 74.0 66.1 61.6 63.3 59.0 80.2 64.5
IDE(C)+ML+RR [66] 61.8 46.8 67.9 58.0 25.9 27.8 26.4 26.9 - -
IDE(R)+ML+RR [66] 77.1 63.6 73.9 68.5 38.1 40.3 34.7 37.4 - -
TriNet(R)+RR [17] 86.7 81.1 81.2 77.4 - - - - - -
TriNet(R)+RE+RR* [67] - - - - 70.9 71.7 68.9 69.36 - -
SVDNet(R)+RE+RR [67] 89.1 83.9 - - - - - - 84.0 78.3
DaRe(R)+RR 88.3 82.0 83.0 79.3 66.0 66.7 62.8 63.6 80.4 74.5
DaRe(R)+RE+RR 90.8 85.9 83.9 80.6 72.9 73.7 69.8 71.2 84.4 79.6
DaRe(De)+RR 88.6 82.2 84.8 80.3 63.4 64.1 60.2 61.6 79.7 73.3
DaRe(De)+RE+RR 90.9 86.7 85.1 81.9 73.8 74.7 70.6 71.6 84.4 80.0

Table 1. Rank-1 and mAP comparison of DaRe with other state-of-the-art methods on the Market-1501 (Market), MARS, CUHKO03 and
DukeMTMC-RelD (Duke) datasets. Results that surpass all competing methods are bold. For convenience of the description, we abbreviate
CaffeNet to C, ResNet-50 to R, DenseNet-201 to De, Random erasing to RE and Re-ranking to RR. For CUHKO03 dataset, we use the new

evaluation protocol shown in [

], where L stands for hand labeled and D for DPM detected. * denotes that the result was obtained by our

own re-implementation, which yields higher accuracy than the original result.

Datasets and evaluation metrics: Table 2 describes the
datasets used in our experiments. The images in both
Market-1501 [61] and MARS [60] are collected by 6 cam-
eras (with overlapping fields of view) in front of a super-
market. Person bounding boxes are obtained from a DPM
detector [10]. Each person is captured by two to six cam-
eras. The images in CUHKO3 [28] are also collected by
6 cameras, but without overlapping. The bounding boxes
are either manually labeled or automatically generated. The
DukeMTMC-reID [65] contains 36,411 images of 1,812
identities from 8 high-resolution cameras. Among them,
1,404 identities appear in more than two cameras, while
408 identities appear in only one camera. On all datasets,
we use two standard evaluation metrics: rank-1 Cumulative
Matching Characteristic accuracy (Rank-1) and mean av-
erage precision (mAP) [61]. On the CUHKO3 dataset, we
use the new protocol to split the training and test data as
suggested by Zhong et al. [660]. For all datasets, we use the
officially provided evaluation code to obtain the results. Our
only modification is to use mean pooling on the embeddings
of a tracklet instead of max pooling on MARS.

Dataset Market [61] MARS [60] CUHKO3 [28]  Duke [65]
Format Image Video Image Image
Identities 1,501 1,261 1360 1,812
BBoxes 32,668 1,191,003 13,164 36,411
Cameras 6 6 6 8
Label method DPM DPM+GMMCP Hand/DPM Hand
Train # imgs 12,936 509,914 7,368/7,365 16,522
Train # ids 751 625 767 702
Test # imgs 19,732 681,089 1,400 2,228
Test # ids 750 635 700 702
Table 2. The person re-ID datasets used in our experiments.

All datasets include realistic challenges, amongst other things due
to occlusion, changes in lighting and viewpoint, or mis-localized
bounding boxes from object detectors.

Implementation details: We use the same settings as
in [17], except that we train the network for 60,000 itera-
tions instead of 25,000 to ensure a more thorough conver-
gence for our joint loss function (we confirm that training
the models in [|7] for more iterations does not help).

Each image is first resized to 256 x 128, amplified by
a factor 1.125, followed by a 256 x 128 crop and a ran-



dom horizontal flip. DaRe is built upon a ResNet-50 [16]
or DenseNet-201 [20] model, pre-trained on ImageNet [23]
(both have similar number of parameters). We refer to
the two versions as DaRe(R) and DaRe(D), respectively.
To allow an easier comparison to the TriNet architecture,
we performed all experiments in the ablation studies with
the ResNet architecture. For notational simplicity we will
sometimes drop the (R) in the name and assume that DaRe,
without specification refers to the ResNet architecture. We
train both versions of DaRe with Adam [21] and a batch
size of 72, which contains 18 different people, 4 different
images each. The learning rate « is adjusted similarly as in
[17], starting from ag=3x 1074

Qg if t <tp,
at) = ety (4)
ap X 0.001 %0 iftg <t <ty,

where we set to = 30,000 and t; = 60,000. ; in Adam
will reduce to 0.5 from 0.9 after ¢( as well. Following [17],
the final feature vector of each image during inference is
the average over embedding vectors of five crops and their
flips [23]. All hyperparameters were taken from [17], opti-
mized for Market and MARS. Potentially we could improve
the results of DaRe even further through proper hyperpa-
rameter tuning.

Pre-/post-processing: There are two model-agnostic pre-
and post-processing steps that increase the accuracy of the
person re-ID systems. Random erasing (RE) [67] involves
randomly masking parts of the input during training to in-
crease its robustness to occlusion. Reranking (RR) [66] uses
the nearest neighbor graph of multiple probe and gallery im-
ages to rerank matches. In our experiments, we evaluate our
model both with and without these processing steps.

5.1. Results on standard person-reID

We compare DaRe to existing state-of-the-art methods,
and find that DaRe is competitive even without any ran-
dom erasing or reranking. The results are shown in Ta-
ble 1. We ran several of the experiments four times and
found all standard deviations to be less than 0.5. In partic-
ular, DaRe(R) is uniformly better than TriNet [17], which
uses the same base network, has a similar number of param-
eters, and is trained using the same version of triplet loss
but without deep supervision or skip connections. Incor-
porating random erasing and re-ranking further boosts the
results, giving DaRe(R) state-of-the-art performance on all
four datasets. DaRe is further improved significantly when
the base network is changed from ResNet-50 to DenseNet-
201. Our model works well not only on small datasets like
Market, CUHK and Duke, but also on large scale datasets
like MARS (which contains 1 million images). Not sur-
prisingly, random erasing tends to improve the performance
substantially on the former, where overfitting can become
an issue.
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Figure 3. The Rank-1 error on the Market-1501 dataset without re-
ranking across the different stages of DaRe and the final ensemble.
Mean and std are estimated over four runs. DaRe is trained with
Random Erasing.

5.2. Ablation

The results from Table | indicate that DaRe outperforms
TriNet significantly. There are two possible factors behind
this improvement: a) the fusion of information from mul-
tiple layers, and b) deep supervision. In the following we
analyze the contribution of both factors on the ResNet-50
version of DaRe.

The impact of fusion: Figure 3 shows the performance
of the different stages of DaRe, trained with random eras-
ing and evaluated without re-ranking, on the Market-1501
dataset. As expected, the error rate decreases as one goes
deeper into the network and the fusion of features from dif-
ferent stages actually achieves the lowest error rate.

However, note that stage 4 achieves lower error rate
than stage 3. It is possible that features of the last stage
are too “high level” and lose too much information due
to an extra pooling layer. We further analyze the weights
w, for different stages. When trained with Random Eras-
ing on Market1501, the learnt weights of the four stages
are —0.54,—0.73, —0.77,—0.51. As expected, the absolute
values of the weights of the third stage (the most accurate)
is the largest.

Incidentally, note that the early layers of the network also
achieve reasonable performance, with even stage 1 reaching
a 33.3% error rate. This can probably be attributed to deep
supervision, which we evaluate next.

The impact of deep supervision: We retrain DaRe with-
out any deep supervision, i.e. we remove all intermediate
losses except the loss on the fused feature vector. The re-
sults are presented in Figure 4. Without deep supervision,
the error rates increase by 2%, suggesting that deep supervi-
sion is indeed required to make sure that each stage learns a
good representation. Intuitively, without deep supervision,
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the gradients from the loss on the fused feature vector are
not informative of how each stage fares individually.

5.3. Results on resource-constrained person re-ID

We now show results on person re-ID under resource-
constrained scenarios described in Section 4. All experi-
ments in this section are conducted on Market-1501 dataset.

5.3.1 Anytime person re-ID

Baselines: We compare our DaRe model against a sequen-
tial ensemble of three ResNets (SE-ResNets) [16], consist-
ing of a ResNet18, a ResNet34 and a ResNet50. All three
ResNet models are trained separately using the same triplet
loss as in [17]. At test time, the networks are evaluated se-
quentially in ascending order of size, and are forced to out-
put the most recent re-ID result after surpassing the budget
limit.

Anytime re-ID results: Figure 5 summarizes the results of
the anytime setting. The computational cost is reported with
respect to the cumulative number of multiplications and ad-
ditions (Mul-Add). We confirm that the actual running tim-
ing is consistent with the Mul-Add. Note that we cannot
perform re-ranking [06] in this setting since we cannot as-
sume all queries are available at once. So we report the
results from model “DaRe+RE” in Table 1.

Except for a narrow range of budgets, our DaRe model
outperforms the SE-ResNets significantly. In particular,
our model is able to achieve a high accuracy very quickly,
achieving 3 ~ 5 points higher performance for budgets
higher than 2.5 x 10° Mul-Adds. This is because unlike
the SE-ResNets, ours is a single model that shares com-
putation between the “quick-and-dirty” and the slow-and-
accurate predictions.

5.3.2 Budgeted stream person re-1D

Figure 6 shows the results in the budgeted streaming setting.
We compare three variants of four stages DaRe. Each vari-
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Figure 5. CMC rank 1 accuracy under anytime re-ID setting as a
function of the computational budget on the Market-1501 dataset.
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Figure 6. Results on the Market data set under the budgeted
streaming setting. The graph shows the CMC Rank 1 accuracy
as a function of the average budget in terms of Mul-Add.

ant uses a different method to exit queries early. In the ran-
dom setting, we interpolate between the individual stages
(indicated as blue points). The straight lines between the
blue dots are obtained by randomly deciding to exit queries
at either one of the two corresponding stages, which yields a
smooth interpolation between the budgets of the two stages.
In the distance variant, the top ¢s queries with the shortest
distance to their nearest gallery neighbor are exited at each
stage. In the margin variant inputs are exited based on their
margin of certainty between the nearest neighbor and the
second nearest neighbor of a different class. This latter ver-
sion assumes the knowledge of class labels of gallery data
points. We observe that our choice of thresholds are able
to route queries effectively, allowing us to achieve higher
accuracy at lower cost compared to prior state-of-the-art
models (which are only single points without the ability to
trade-off accuracy for computational cost). When gallery
labels are available the margin selection method is clearly



preferred over the distance based method. Both methods
outperform random interpolation.

Probe Stage 1

Stage2 Stage3  Stage 4 Fusion

Figure 7. Visualization of person re-ID results using features from
different stages of our model. We purposely selected samples
where the fused feature representation yields the correct results
to show where it improves over earlier stages.

5.4. Qualitative results

To gain a better understanding of how the features from
various stages differ in identifying people, and how the
fusion helps, we visualize the retrieved images from four
cases in Figure 7 for which the fused representation clas-
sifies the images correctly. The query images are shown in
the left most column, and the retrieved images using the fea-
tures from the four stages of ResNet-50 and the fused em-
bedding are shown in column 2 to 6, respectively. Images
with red boxes correspond to wrong identifications, while
those with green boxes are correctly identified.

In the four cases, the fused features correctly identify the
people from the query image, while low-level (e.g., from
State 1) and high-level (e.g., from State 4) features may
agree (Case 1, 2) or disagree (Case 3, 4) with each other. In
Case 1, the low-level features are more helpful as the stripes
on the clothes are important; while in Case 2, they overly
emphasize the color signal and produces a wrong identifi-
cation. In Case 3 and 4, although both low level and high
level features yield consistent prediction, they appear to rely
on very different information: the former uses more color

and texture clues, while the latter seems to use higher level
concepts to deal with large variations in pose and view an-
gle. In all cases, the fused feature combines the advantages
of both low-level and high-level features and appears to be
more reliable than others.

Figure 8 shows a number of typical query images (to-
gether with their matched images from the gallery; green
= correct) that are considered to have different difficulties
for the network under the budgeted stream re-ID setting.
Specifically, the query images (without boxes) in the top
row are those exited from the first stage of our model, which
we denote as “easy”. The bottom row shows the “hard ex-
amples”, which are not correctly identified until the last
stage of the network. Generally, the separation between
easy and hard by the network conforms to our intuitions.

Figure 8. Visualization of “easy” examples, which are confidently
classified at the first stage, and “hard” examples, which never
reach sufficient confidence until the very last stage.

6. Conclusion

We introduced a novel deeply supervised approach for
person re-ID. Our model fuses embeddings at both lower
(higher resolution) and higher (more semantics) layers of
the network. This combination yields achieves state-of-the-
art results throughout all our benchmark data sets. The
availability of multiple embeddings with different compu-
tation cost also enables trading off performance for com-
putation for the sake of efficiency. As the first work ap-
proaching the re-ID problem on a budget efficiency perspec-
tive, we show the solutions empirically on the two resource-
constrained scenarios using DaRe of person re-ID.
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