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Abstract

Not all people are equally easy to identify: color statis-

tics might be enough for some cases while others might re-

quire careful reasoning about high- and low-level details.

However, prevailing person re-identification(re-ID) meth-

ods use one-size-fits-all high-level embeddings from deep

convolutional networks for all cases. This might limit their

accuracy on difficult examples or makes them needlessly ex-

pensive for the easy ones. To remedy this, we present a

new person re-ID model that combines effective embeddings

built on multiple convolutional network layers, trained with

deep-supervision. On traditional re-ID benchmarks, our

method improves substantially over the previous state-of-

the-art results on all five datasets that we evaluate on.

We then propose two new formulations of the person re-

ID problem under resource-constraints, and show how our

model can be used to effectively trade off accuracy and com-

putation in the presence of resource constraints.

1. Introduction

Consider the two men shown in Figure 1. The man on the

left is easier to identify: even from far away, or on a low-

resolution photograph, one can easily recognize the brightly

colored attire with medals of various kinds. By contrast, the

man on the right has a nondescript appearance. One might

need to look closely at the set of the eyes, the facial hair,

the kind of briefcase he is holding or other such subtle and

fine-grained properties to identify him correctly.

Current person re-identification(re-ID) systems treat

both persons the same way. Both images would be

run through deep convolutional neural networks (CNNs).

Coarse-resolution and semantic embeddings from the last

layer would be used to look the image up in the database.

However, this kind of an architecture causes two major

problems: first, for the hard cases such as the man on the

right in Figure 1, these embeddings are too coarse and dis-
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Figure 1. Some people have distinctive appearance and are easy

to identify (left), while others have nondescript appearance and

require sophisticated reasoning to identify correctly (right).

card too much information. Features from the last layer of

a CNN mostly encode semantic features, like object pres-

ence [15], but lose all information about the fine spatial de-

tails such as the pattern of one’s facial hair or the particular

shape of one’s body. Instead, to tackle both cases, ideally

we would want to reason jointly across multiple levels of se-

mantic abstraction, taking into account both high-resolution

(shape and color), as well as highly semantic details (objects

or object parts).

In contrast, for the easy cases such as the man on the left

in Figure 1, using a 50-layer network is overkill. A color

histogram or the low-level statistics computed in the early

layers of the network might work just as well. This may not

be a problem if all we are interested in is the final accuracy.

However, sometimes we need to be more resource efficient

in terms of time, memory, or power. For example, a robot

might need to make decisions within a time limit, or it may

have a limited battery supply that precludes the running of

a massive CNN on every frame.

Thus standard CNN-based person re-ID systems are only

one point on a spectrum. On one end, early layers of the

CNN can be used to identify people quickly under some

resource constraints, but might sacrifice accuracy on hard

images. On the other end of the spectrum, highly accurate

person re-ID might require reasoning across multiple layers

of the CNN. Ideally, we want a single model that encapsu-
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lates the entire spectrum. This can allow downstream appli-

cations to choose the right trade-off between accuracy and

computation.

In this paper we present such a person re-ID system.

Our model has a simple architecture, consisting of a stan-

dard base network with two straightforward modifications.

First, embeddings across multiple layers are combined into

a single embedding. Second, embeddings at each stage are

trained in a supervised manner for the end task. While both

ideas have appeared before in various forms for object de-

tection and segmentation [8, 15, 53], we show for the first

time the benefit of these ideas for person re-ID problems,

and connect these ideas to the goal of performance under

resource constraints.

We evaluate our approach on five well-known person re-

ID benchmark datasets. Not only does our method outper-

form all previous approaches across all datasets, it is also to

our knowledge the first person re-ID algorithm applicable

to the resource budget settings in test time.

2. Related Work

We briefly review prior work on person re-ID and deep

supervision.

2.1. Person re­ID

Traditional person re-ID methods first extract discrimi-

native hand-crafted features that are robust to illumination

and viewpoint changes [9,13,24,32,40,41,59], and then use

metric learning [2,6,12,18,22,31,32,33,36,43,54,58,63] to

ensure that features from the same person are close to each

other while from different people are far away in the embed-

ding space. Meanwhile, researchers have worked on creat-

ing ever more complex person re-ID datasets [28,44,60,61]

to imitate real-world challenges.

Inspired by the success of CNNs [25] on a variety of

vision tasks, recent papers have employed deep learning in

person re-ID [1, 5, 28, 29, 34, 38, 50, 52, 64, 65]. CNN-based

models are on the top of the scoreboard. This paper belongs

to this large family of CNN-based person re-ID approaches.

There are three types of deep person re-ID models:

classification, verification, and distance metric learning.

Classification models consider each identity as a sepa-

rate class, converting re-ID into a multi-class recognition

task [48, 52, 62]. Verification models [28, 49, 55] take a pair

of images as input to output a similarity score determining

whether they are the same person. A related class of mod-

els learns distance metrics [3, 5, 7, 17, 46] in the embedding

space directly in an expressive way. Hermans et al. [17]

propose a variant of these models that uses the triplet loss

with batch hard negative and positive mining to map images

into a space where images with the same identity are closer

than those of different identities. We also utilize the triplet

loss to train our network, but focus on improvements to the

architecture. Combinations of these loss functions have also

been explored [4, 11, 38].

Instead of tuning the loss function, other researchers

have worked on improving the training procedure, the net-

work architecture, and the pre-processing. In order to alle-

viate problems due to occlusion, Zhong et al. [67] propose

to randomly erase some parts of the input images as the

antidote. Treating re-ID as a retrieval problem, re-ranking

approaches [66] aim to get robust ranking by lifting up the

k-reciprocal nearest neighbors. Under the assumption that

correlated weight vectors damp the retrieval performance,

Sun et al. [48] attempt to de-correlate the weights of the

last layer. These improvements are orthogonal to our pro-

posed approach. In fact, we integrate random erasing and

re-ranking into our approach for better performance.

Some works explicitly consider local features or multi-

scale features in the neural networks [11, 27, 30, 37, 47, 56,

57]. By contrast, we implicitly combine features across

scale and abstraction by tapping into the different stages of

the convolutional network.

2.2. Deep supervision and skip connections

The idea of using multiple layers of a CNN has been ex-

plored before. Combining features across multiple layers

using skip connections has proved to be extremely benefi-

cial for segmentation [8,15,39] and object detection [35]. In

addition, prior work has found that injecting supervision by

making predictions at intermediate layers improves perfor-

mance. This deep supervision improves both image classi-

fication [26] and segmentation [53]. We show that the com-

bination of deep supervision with distance metric learning

leads to significant improvements in solving person re-ID

problems.

We also present that, under limited resource, accurate

prediction is still possible with deep supervision and skip

connections. In spite of the key role that efficiency of in-

ference plays in real-world applications, there is very little

work incorporating such resource constraints, not even in

general image classification setting (exception: [19]).

3. Deep supervision for person re-ID

We first consider the traditional person re-ID setting.

Here, the system has a gallery G of images from different

people with known identities. It is then given a query/probe

image q of an unidentified person, which can also be mul-

tiple images. The objective of the system is to match the

probe with image(s) in the gallery to identify that person.

Previous approaches to person re-ID only use the most

high level features to encode an image, e.g., outputs of the

last convolution layer form the ResNet-50 [16]. Although

high-level features are indeed useful in forming abstract

concepts for object recognition, they might discard low-

level signals like color and texture, which are important

clues for person re-ID. Furthermore, later layers in CNNs





where φ(xk
p) is the feature embedding of person p image k

and D(·, ·) is the L2 distance between two embeddings. The

loss function encourages the distance to the furthest positive

example to be smaller than to the nearest negative example.

4. Resource-constrained person re-ID

The availability of multiple embeddings from different

stages makes our model especially suitable for re-ID ap-

plications under resource constraints. In this section, we

consider the person re-ID problem with limited computa-

tional resources and illustrate how DaRe can be applied un-

der these scenarios.

4.1. Anytime person re­ID

In the anytime prediction setting [14, 19], the computa-

tional budget for a test example is unknown a priori, and the

re-ID inference process is subject to running out of compu-

tation budget at any time. Although the anytime setting has

hardly been studied for person re-ID, it is a common sce-

nario in many settings. For example, imagine a person re-

ID app for mobile Android devices that is supposed to per-

form at a fixed frame-rate. There exist over 24, 093 distinct

Android devices [19] and it is infeasible to ship different

versions of an application for each hardware configuration

— instead one may want to ship a single network that can

guarantee a given frame rate on all hardware configurations.

Here, a traditional re-ID system is all or nothing: it can

only return any result if the budget allows for the evaluation

of the full model.

Ideally, we would expect the system to have the anytime

property, i.e., it is able to produce predictions early-on, but

can keep refining the results when the budget allows. This

mechanism can be easily achieved with DaRe: we propa-

gate the input image through the network, and use the most

recent intermediate embedding that was computed when the

budget ran out to do the identification.

4.2. Budgeted person re­ID

In the budgeted person re-ID problem, the system runs in

an online manner, but it is constrained to only use a budget

B in expectation to compute the answer. The system needs

to decide how much computation to spend on each example

as it is observing them one by one. Because it only has to

adhere to the budget in expectation, it can choose to spend

more time on the hard examples as long as it can process

easier samples more quickly.

We formalize the problem as following: let S be the

number of exits (4 in our case), and Cs > 0 the amount

of computational cost needed to obtain embedding φs(q) at

stage s for a single query q (Cs ≤ Cs+1, ∀s = 1, . . . , S−1).

At any stage s for a given query, we can decide to “exit”:

stop computation and use the s-th embedding to identify the

query q. Let us denote the proportion of queries that exit at

stage s as ps, where
∑S

s=1
ps = 1. Thus the expected aver-

age computation cost for a single query is C̄ =
∑S

s=1
psCs.

Exit thresholds. Given the total number of queries M and

the total computation budgets B, the parameters {ps} can

be chosen such that C̄ ≤ B/M , which represents the com-

putation budget for each query. There are various ways to

determine {ps}. In practice we define

ps =
1

Z
as−1, (3)

where Z is the normalization constant and a ∈ [0, inf) a

fixed constant. Given the costs C1, . . . , CS , there is a one-

to-one mapping between the budget B and a. If there were

infinitely many stages, eq. (3) would imply that a fraction

of a samples is exited at each stage. In the presence of

finitely many exit stages it encourages an even number of

early-exits across all stages. Given ps, we can compute the

conditional probability that an input which has traversed all

the way to stage s will exit at stage s and not traverse any

further as q1 = p1 and qs =
ps

1−
∑

s−1

i=1
pi

.

Once we have solved for qs, we need to decide which

queries exit where. As discussed in the introduction, query

images are not equally difficult. If the system can make full

use of this property and route the “easier” queries through

earlier stages and “harder” ones through latter stages, it will

yield a better budget-accuracy trade-off. We solidify this

intuition using a simple distance based routing strategy to

decide at which stage each query should exit.

Query easiness. During testing, at stage s, we would like

to exit the top qs percent of “easiest” samples. We approxi-

mate how “easy” a query q is by considering the distance dq
to its nearest neighbor between the query embedding φs(q)
and its nearest neighbor in the gallery of the current stage

s. A small distance dq means that we have likely found a

match and thus successfully identified the person correctly.

During testing time we keep track of all previous distances

dq′ for all prior queries q′. For a given query q we check if

its distance dq falls into the fraction qs of smallest nearest

neighbor distances, and if it does exit the query at stage s.

If labels are available for the gallery at test time, one can

perform a better margin based proxy of uncertainty. For a

query q one computes the distance dq to the nearest neigh-

bor, and d′q , the distance to the second nearest neighbor

(with a different class membership than the nearest neigh-

bor). The difference d′q − dq describes the “margin of cer-

tainty”. If it is large, then the nearest neighbor is sufficiently

closer than the second nearest neighbor and there is little

uncertainty. If it is small, then the first and second near-

est neighbors are close in distance, leaving a fair amount

of ambiguity. If labels are available, we use this difference

d′q − dq as our measure of uncertainty, and remove the top

qs most certain queries at each stage.

5. Experiments

We evaluate our method on multiple large scale person

re-ID datasets, and compare with the state-of-the-art.



Method

Dataset

Market MARS CUHK03(L) CUHK03(D) Duke

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

CNN+DCGAN(R) [65] 56.2 78.1 - - - - - - 67.7 47.1

ST-RNN(C) [68] - - 70.6 50.7 - - - - - -

MSCAN(C) [27] 80.3 57.5 71.8 56.1 - - - - - -

PAN(R) [64] 82.2 63.3 - - 36.9 35.0 36.3 34.0 71.6 51.5

SVDNet(R) [48] 82.3 62.1 - - 40.9 37.8 41.5 37.2 76.7 56.8

TriNet(R) [17] 84.9 69.1 79.8 67.7 - - - - - -

TriNet(R)+RE* [67] - - - - 64.3 59.8 61.8 57.6 - -

SVDNet(R)+RE [67] 87.1 71.3 - - - - - - 79.3 62.4

DaRe(R) 86.4 69.3 83.0 69.7 58.1 53.7 55.1 51.3 75.2 57.4

DaRe(R)+RE 88.5 74.2 82.6 71.7 64.5 60.2 61.6 58.1 79.1 63.0

DaRe(De) 86.0 69.9 84.2 72.1 56.4 52.2 54.3 50.1 74.5 56.3

DaRe(De)+RE 89.0 76.0 85.5 74.0 66.1 61.6 63.3 59.0 80.2 64.5

IDE(C)+ML+RR [66] 61.8 46.8 67.9 58.0 25.9 27.8 26.4 26.9 - -

IDE(R)+ML+RR [66] 77.1 63.6 73.9 68.5 38.1 40.3 34.7 37.4 - -

TriNet(R)+RR [17] 86.7 81.1 81.2 77.4 - - - - - -

TriNet(R)+RE+RR* [67] - - - - 70.9 71.7 68.9 69.36 - -

SVDNet(R)+RE+RR [67] 89.1 83.9 - - - - - - 84.0 78.3

DaRe(R)+RR 88.3 82.0 83.0 79.3 66.0 66.7 62.8 63.6 80.4 74.5

DaRe(R)+RE+RR 90.8 85.9 83.9 80.6 72.9 73.7 69.8 71.2 84.4 79.6

DaRe(De)+RR 88.6 82.2 84.8 80.3 63.4 64.1 60.2 61.6 79.7 73.3

DaRe(De)+RE+RR 90.9 86.7 85.1 81.9 73.8 74.7 70.6 71.6 84.4 80.0

Table 1. Rank-1 and mAP comparison of DaRe with other state-of-the-art methods on the Market-1501 (Market), MARS, CUHK03 and

DukeMTMC-ReID (Duke) datasets. Results that surpass all competing methods are bold. For convenience of the description, we abbreviate

CaffeNet to C, ResNet-50 to R, DenseNet-201 to De, Random erasing to RE and Re-ranking to RR. For CUHK03 dataset, we use the new

evaluation protocol shown in [66], where L stands for hand labeled and D for DPM detected. * denotes that the result was obtained by our

own re-implementation, which yields higher accuracy than the original result.

Datasets and evaluation metrics: Table 2 describes the

datasets used in our experiments. The images in both

Market-1501 [61] and MARS [60] are collected by 6 cam-

eras (with overlapping fields of view) in front of a super-

market. Person bounding boxes are obtained from a DPM

detector [10]. Each person is captured by two to six cam-

eras. The images in CUHK03 [28] are also collected by

6 cameras, but without overlapping. The bounding boxes

are either manually labeled or automatically generated. The

DukeMTMC-reID [65] contains 36,411 images of 1,812

identities from 8 high-resolution cameras. Among them,

1,404 identities appear in more than two cameras, while

408 identities appear in only one camera. On all datasets,

we use two standard evaluation metrics: rank-1 Cumulative

Matching Characteristic accuracy (Rank-1) and mean av-

erage precision (mAP) [61]. On the CUHK03 dataset, we

use the new protocol to split the training and test data as

suggested by Zhong et al. [66]. For all datasets, we use the

officially provided evaluation code to obtain the results. Our

only modification is to use mean pooling on the embeddings

of a tracklet instead of max pooling on MARS.

Dataset Market [61] MARS [60] CUHK03 [28] Duke [65]

Format Image Video Image Image

Identities 1,501 1,261 1360 1,812

BBoxes 32,668 1,191,003 13,164 36,411

Cameras 6 6 6 8

Label method DPM DPM+GMMCP Hand/DPM Hand

Train # imgs 12,936 509,914 7,368/7,365 16,522

Train # ids 751 625 767 702

Test # imgs 19,732 681,089 1,400 2,228

Test # ids 750 635 700 702

Table 2. The person re-ID datasets used in our experiments.

All datasets include realistic challenges, amongst other things due

to occlusion, changes in lighting and viewpoint, or mis-localized

bounding boxes from object detectors.

Implementation details: We use the same settings as

in [17], except that we train the network for 60,000 itera-

tions instead of 25,000 to ensure a more thorough conver-

gence for our joint loss function (we confirm that training

the models in [17] for more iterations does not help).

Each image is first resized to 256 × 128, amplified by

a factor 1.125, followed by a 256 × 128 crop and a ran-







preferred over the distance based method. Both methods

outperform random interpolation.

Probe Stage 1 Stage 2 Stage 3 Stage 4 Fusion

Case 1

Case 2

Case 3

Case 4

Figure 7. Visualization of person re-ID results using features from

different stages of our model. We purposely selected samples

where the fused feature representation yields the correct results

to show where it improves over earlier stages.

5.4. Qualitative results

To gain a better understanding of how the features from

various stages differ in identifying people, and how the

fusion helps, we visualize the retrieved images from four

cases in Figure 7 for which the fused representation clas-

sifies the images correctly. The query images are shown in

the left most column, and the retrieved images using the fea-

tures from the four stages of ResNet-50 and the fused em-

bedding are shown in column 2 to 6, respectively. Images

with red boxes correspond to wrong identifications, while

those with green boxes are correctly identified.

In the four cases, the fused features correctly identify the

people from the query image, while low-level (e.g., from

State 1) and high-level (e.g., from State 4) features may

agree (Case 1, 2) or disagree (Case 3, 4) with each other. In

Case 1, the low-level features are more helpful as the stripes

on the clothes are important; while in Case 2, they overly

emphasize the color signal and produces a wrong identifi-

cation. In Case 3 and 4, although both low level and high

level features yield consistent prediction, they appear to rely

on very different information: the former uses more color

and texture clues, while the latter seems to use higher level

concepts to deal with large variations in pose and view an-

gle. In all cases, the fused feature combines the advantages

of both low-level and high-level features and appears to be

more reliable than others.

Figure 8 shows a number of typical query images (to-

gether with their matched images from the gallery; green

= correct) that are considered to have different difficulties

for the network under the budgeted stream re-ID setting.

Specifically, the query images (without boxes) in the top

row are those exited from the first stage of our model, which

we denote as “easy”. The bottom row shows the “hard ex-

amples”, which are not correctly identified until the last

stage of the network. Generally, the separation between

easy and hard by the network conforms to our intuitions.

E
a
s
y

H
a
rd

Figure 8. Visualization of “easy” examples, which are confidently

classified at the first stage, and “hard” examples, which never

reach sufficient confidence until the very last stage.

6. Conclusion

We introduced a novel deeply supervised approach for

person re-ID. Our model fuses embeddings at both lower

(higher resolution) and higher (more semantics) layers of

the network. This combination yields achieves state-of-the-

art results throughout all our benchmark data sets. The

availability of multiple embeddings with different compu-

tation cost also enables trading off performance for com-

putation for the sake of efficiency. As the first work ap-

proaching the re-ID problem on a budget efficiency perspec-

tive, we show the solutions empirically on the two resource-

constrained scenarios using DaRe of person re-ID.
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