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Abstract

Evaluating generative adversarial networks (GANs) is inherently challenging. In
this paper, we revisit several representative sample-based evaluation metrics for
GANs, and address the problem of how to evaluate the evaluation metrics. We
start with a few necessary conditions for metrics to produce meaningful scores,
such as distinguishing real from generated samples, identifying mode dropping
and mode collapsing, and detecting overfitting. With a series of carefully designed
experiments, we comprehensively investigate existing sample-based metrics and
identify their strengths and limitations in practical settings. Based on these results,
we observe that kernel Maximum Mean Discrepancy (MMD) and the 1-Nearest-
Neighbor (1-NN) two-sample test seem to satisfy most of the desirable properties,
provided that the distances between samples are computed in a suitable feature
space. Our experiments also unveil interesting properties about the behavior
of several popular GAN models, such as whether they are memorizing training
samples, and how far they are from learning the target distribution.

1 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have been studied extensively
in recent years. Besides producing surprisingly plausible images (Radford et al., 2015; Larsen
et al., 2015; Karras et al., 2017; Arjovsky et al., 2017; Gulrajani et al., 2017), they have also been
innovatively applied in, for example, semi-supervised learning (Odena, 2016; Makhzani et al., 2015),
image-to-image translation (Isola et al., 2016; Zhu et al., 2017), and simulated image refinement
(Shrivastava et al., 2016). However, despite the availability of a plethora of GAN models (Arjovsky
et al., 2017; Qi, 2017; Zhao et al., 2016), their evaluation is still predominantly qualitative, very
often resorting to manual inspection of the visual fidelity of generated images. Such evaluation is
time-consuming, subjective, and possibly misleading. Given the inherent limitations of qualitative
evaluations, proper quantitative metrics are crucial for the development of GANs to guide the design
of better models.

Possibly the most popular metric is the Inception Score (Salimans et al., 2016), which measures
the quality and diversity of the generated images using an external model, the Google Inception
network (Szegedy et al., 2014), trained on the large scale ImageNet dataset (Deng et al., 2009). Some
other metrics are less widely used but still very valuable. Wu et al. (2016) proposed a sampling
method to estimate the log-likelihood of generative models, by assuming a Gaussian observation
model with a fixed variance. Bounliphone et al. (2015) propose to use maximum mean discrepancies
(MMDs) for model selection in generative models. Lopez-Paz & Oquab (2016) apply the classifier
two-sample test, a well-studied tool in statistics, to assess the difference between the generated and
target distribution.
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Figure 1: Typical sample based GAN evaluation methods.

Although these evaluation metrics are shown to be effective on various tasks, it is unclear in which
scenarios their scores are meaningful, and in which other scenarios prone to misinterpretations. Given
that evaluating GANs is already challenging it can only be more difficult to evaluate the evaluation
metrics themselves. Most existing works attempt to justify their proposed metrics by showing a strong
correlation with human evaluation (Salimans et al., 2016; Lopez-Paz & Oquab, 2016). However,
human evaluation tends to be biased towards the visual quality of generated samples and neglect the
overall distributional characteristics, which are important for unsupervised learning.

In this paper we comprehensively examine the existing literature on sample-based quantitative
evaluation of GANs. We address the challenge of evaluating the metrics themselves by carefully
designing a series of experiments through which we hope to answer the following questions: 1) What
are reasonable characterizations of the behavior of existing sample-based metrics for GANs? 2) What
are the strengths and limitations of these metrics, and which metrics should be preferred accordingly?
Our empirical observation suggests that MMD and 1-NN two-sample test are best suited as evaluation
metrics on the basis of satisfying useful properties such as discriminating real versus fake images,
sensitivity to mode dropping and collapse, and computational efficiency.

Ultimately, we hope that this paper will establish good principles on choosing, interpreting, and
designing evaluation metrics for GANs in practical settings. We will also release the source code for all
experiments and metrics examined (https://github.com/xuqiantong/GAN-Metrics),
providing the community with off-the-shelf tools to debug and improve their GAN algorithms.

2 Background

We briefly review the original GAN framework proposed by Goodfellow et al. (2014). Description of
the GAN variants used in our experiments is deferred to the Appendix A.

2.1 Generative adversarial networks

Let X = R
d×d be the space of natural images. Given i.i.d. samples Sr = {xr

1, . . . ,x
r
n} drawn from a

real distribution Pr over X , we would like to learn a parameterized distribution Pg that approximates
the distribution Pr.

A generative adversarial network has two components, the discriminator D : X → [0, 1) and the
generator G : Z → X , where Z is some latent space. Given a distribution Pz over Z (usually an
isotropic Gaussian), the distribution Pg is defined as G(Pz). Optimization is performed with respect
to a joint loss for D and G

min
G

max
D

ℓ=Ex∼Pr log [D(x)] + Ez∼Pz [log(1−D(G(z)))].

Intuitively, the discriminator D outputs a probability for every x ∈ X that corresponds to its likelihood
of being drawn from Pr, and the loss function encourages the generator G to produce samples that
maximize this probability. Practically, the loss is approximated with finite samples from Pr and Pg ,
and optimized with alternating steps for D and G using gradient descent.

To evaluate the generator, we would like to design a metric ρ that measures the “dissimilarity"
between Pg to Pr.1 In theory, with both distributions known, common choices of ρ include the
Kullback-Leibler divergence (KLD), Jensen-Shannon divergence (JSD) and total variation. However,
in practical scenarios, Pr is unknown and only the finite samples in Sr are observed. Furthermore,
it is almost always intractable to compute the exact density of Pg, but much easier to sample
Sg = {xg

1, . . . ,x
g
m} ∼ P

m
g (especially so for GANs). Given these limitations, we focus on empirical

measures ρ̂ : Xn ×Xm → R of “dissimilarity" between samples from two distributions.

1Note that ρ does not need satisfy symmetry or triangle inequality, so it is not, mathematically speaking, a
distance metric between Pg and Pr . We still call it a metric throughout this paper for simplicity.
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2.2 Sample based metrics

We mainly focus on sample based evaluation metrics that follow a common setup illustrated in
Figure 1. The metric calculator is the key element, for which we briefly introduce five representative
methods: Inception Score (Salimans et al., 2016), Mode Score (Che et al., 2016) , Kernel MMD (Gret-
ton et al., 2007), Wasserstein distance, Fréchet Inception Distance (FID) (Heusel et al., 2017), and
1-nearest neighbor (1-NN)-based two sample test (Lopez-Paz & Oquab, 2016). All of them are model
agnostic and require only finite samples from the generator.

The Inception Score is arguably the most widely adopted metric in the literature. It uses a image clas-
sification model M, the Inception network (Szegedy et al., 2016), pre-trained on the ImageNet (Deng
et al., 2009) dataset, to compute

IS(Pg) = eEx∼Pg
[KL(pM(y|x)||pM(y))],

where pM(y|x) denotes the label distribution of x as predicted by M, and pM(y) =
∫
x
pM(y|x) dPg ,

i.e. the marginal of pM(y|x) over the probability measure Pg. The expectation and the integral in
pM(y|x) can be approximated with i.i.d. samples from Pg. A higher IS has pM(y|x) close to a
point mass, which happens when the Inception network is very confident that the image belongs
to a particular ImageNet category, and has pM(y) close to uniform, i.e. all categories are equally
represented. This suggests that the generative model has both high quality and diversity. Salimans
et al. (2016) show that the Inception Score has a reasonable correlation with human judgment of
image quality. We would like to highlight two specific properties: 1) the distributions on both sides
of the KL are dependent on M, and 2) the distribution of the real data Pr, or even samples thereof,
are not used anywhere.

The Mode Score2 is an improved version of the Inception Score. Formally, it is given by

MS(Pg)=eEx∼Pg
[KL(pM(y|x)||pM(y))]−KL(pM(y)||pM(y∗)),

where pM(y∗) =
∫
x
pM(y|x) dPr is the marginal label distribution for the samples from the real

data distribution. Unlike the Inception Score, it is able to measure the dissimilarity between the real
distribution Pr and generated distribution Pg through the term KL(pM(y)||pM(y∗)).

Kernel MMD (Maximum Mean Discrepancy) is defined as

MMD2(Pr,Pg)=E
xr,x

′

r
∼Pr,

xg,x
′

g
∼Pg

[

k(xr,x
′

r
)−2k(xr,xg)+k(xg ,x

′

g
)

]

,

measures the dissimilarity between Pr and Pg for some fixed kernel function k. Given two sets of
samples from Pr and Pg, the empirical MMD between the two distributions can be computed with
finite sample approximation of the expectation. A lower MMD means that Pg is closer to Pr. The
Parzen window estimate (Gretton et al., 2007) can be viewed as a specialization of Kernel MMD.

The Wasserstein distance between Pr and Pg is defined as

WD(Pr,Pg) = inf
γ∈Γ(Pr,Pg)

E(xr,xg)∼γ [d(x
r,xg)] ,

where Γ(Pr,Pg) denotes the set of all joint distributions (i.e. probabilistic couplings) whose marginals
are respectively Pr and Pg, and d(xr,xg) denotes the base distance between the two samples. For
discrete distributions with densities pr and pg, the Wasserstein distance is often referred to as the
Earth Mover’s Distance (EMD), and corresponds to the solution to the optimal transport problem

WD(pr, pg)=minw∈Rn×m

∑n

i=1

∑m

j=1
wijd(x

r
i ,x

g
j )

s.t.
∑m

j=1
wi,j=pr(x

r
i ) ∀i,

∑n

i=1
wi,j=pg(x

g
j ) ∀j.

This is the finite sample approximation of WD(Pr,Pg) used in practice. Similar to MMD, the
Wasserstein distance is lower when two distributions are more similar.

The Fréchet Inception Distance (FID) was recently introduced by Heusel et al. (2017) to evaluate
GANs. For a suitable feature function φ (by default, the Inception network’s convolutional feature),

2We use a modified version here, as the original one reduces to the Inception Score.
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FID models φ(Pr) and φ(Pg) as Gaussian random variables with empirical means µr, µg and
empirical covariance Cr,Cg , and computes

FID(Pr,Pg) = ‖µr − µg‖+ Tr(Cr +Cg − 2(CrCg)
1/2),

which is the Fréchet distance (or equivalently, the Wasserstein-2 distance) between the two Gaussian
distributions (Heusel et al., 2017).

The 1-Nearest Neighbor classifier is used in two-sample tests to assess whether two distributions
are identical. Given two sets of samples Sr ∼ P

n
r and Sg ∼ P

m
g , with |Sr| = |Sg|, one can compute

the leave-one-out (LOO) accuracy of a 1-NN classifier trained on Sr and Sg with positive labels
for Sr and negative labels for Sg. Different from the most common use of accuracy, here the 1-NN
classifier should yield a ∼50% LOO accuracy when |Sr| = |Sg| is large. This is achieved when the
two distributions match. The LOO accuracy can be lower than 50%, which happens when the GAN
overfits Pg to Sr. In the (hypothetical) extreme case, if the GAN were to memorize every sample
in Sr and re-generate it exactly, i.e. Sg = Sr, the accuracy would be 0%, as every sample from
Sr would have it nearest neighbor from Sg with zero distance. The 1-NN classifier belongs to the
two-sample test family, for which any binary classifier can be adopted in principle. We will only
consider the 1-NN classifier because it requires no special training and little hyperparameter tuning.

Lopez-Paz & Oquab (2016) considered the 1-NN accuracy primarily as a statistic for two-sample
testing. In fact, it is more informative to analyze it for the two classes separately. For example, a
typical outcome of GANs is that for both real and generated images, the majority of their nearest
neighbors are generated images due to mode collapse. In this case, the LOO 1-NN accuracy of the
real images would be relatively low (desired): the mode(s) of the real distribution are usually well
captured by the generative model, so a majority of real samples from Sr are surrounded by generated
samples from Sg , leading to low LOO accuracy; whereas the LOO accuracy of the generated images
is high (not desired): generative samples tend to collapse to a few mode centers, thus they are
surrounded by samples from the same class, leading to high LOO accuracy. For the rest of the paper,
we distinguish these two cases as 1-NN accuracy (real) and 1-NN accuracy (fake).

2.3 Other metrics

All of the metrics above are, what we refer to as “model agnostic": they use the generator as a
black box to sample the generated images Sg. Model agnostic metrics should not require a density
estimation from the model. We choose to only experiment with model agnostic metrics, which allow
us to support as many generative models as possible for evaluation without modification to their
structure. We will briefly mention some other evaluation metrics not included in our experiments.

Kernel density estimation (KDE, or Parzen window estimation) is a well-studied method for estimating
the density function of a distribution from samples. For a probability kernel K (most often an
isotropic Gaussian) and i.i.d samples x1, . . . ,xn, we can define the density function at x as p(x) ≈
1
z

∑n
i=1 K(x− xi), where z is a normalizing constant. This allows the use of classical metrics such

as KLD and JSD. However, despite the widespread adoption of this technique to various applications,
its suitability to estimating the density of Pr or Pg for GANs has been questioned by Theis et al.
(2015) since the probability kernel depends on the Euclidean distance between images.

More recently, Wu et al. (2016) applied annealed importance sampling (AIS) to estimate the marginal
distribution p(x) of a generative model. This method is most natural for models that define a
conditional distribution p(x|z) where z is the latent code, which is not satisfied by most GAN models.
Nevertheless, AIS has been applied to GAN evaluation by assuming a Gaussian observation model.
We exclude this method from our experiments as it needs the access to the generative model to
compute the likelihood, instead of only depending on a finite sample set Sg .

3 Experiments with GAN evaluation metrics

3.1 Feature space

All the metrics introduced in the previous section, except for the Inception Score and Mode Score,
access the samples x only through pair-wise distances. The Kernel MMD requires a fixed kernel
function k, typically set to an isotopic Gaussian; the Wasserstein distance and 1-NN accuracy use
the underlying distance metric d directly; all of these methods are highly sensitive to the choice that
distance.
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than ρ̂(Sg, S
tr
r ) when Pg memorizes a part of Str

r . The difference between them can informally be
viewed as a form of “generalization gap".

We simulate the overfitting process by defining S′
r as a mix of samples from the training set Str

r and a

second holdout set, disjoint from both Str
r and Sval

r . Figure 8 shows the gap ρ̂(Sg, S
val
r )− ρ̂(Sg, S

tr
r )

of the various metrics as a function of the overlapping ratio between S′
r and Str

r . The left most point

of each curve can be viewed as the score ρ̂(S′
r, S

val
r ) computed on a validation set since the overlap

ratio is 0. For better visualization, we normalize the Wasserstein distance and MMD by dividing their
corresponding score when S′

r and Sr have no overlap. As shown in Figure 8, all the metrics except
RIS and RMS reflect that the “generalization gap" increases as S′

r overfits more to Sr. The failure
of RIS is not surprising: it totally ignores the real data distribution as we discussed in Section 2.2.
While the reason that RMS also fails to detect overfitting may again be its lack of generalization to
datasets with classes not contained in the ImageNet dataset. In addition, RMS operates in the softmax
space, the features in which might be too specific compared to the features in the convolutional space.

4 Discussions and Conclusion

Based on the above analysis, we can summarize the advantages and inherent limitations of the six
evaluation metrics, and conditions under which they produce meaningful results. With some of the
metrics, we are able to study the problem of overfitting (see Appendix C), perform model selection
on GAN models and compare them without resorting to human evaluation based on cherry-picked
samples (see Appendix D).

The Inception Score does show a reasonable correlation with the quality and diversity of generated
images, which explains the wide usage in practice. However, it is ill-posed mostly because it only
evaluates Pg as an image generation model rather than its similarity to Pr. Blunt violations like
mixing in natural images from an entirely different distribution completely deceives the Inception
Score. As a result, it may encourage the models to simply learn sharp and diversified images (or even
some adversarial noise), instead of Pr. This also applies to the Mode Score. Moreover, the Inception
Score is unable to detect overfitting since it cannot make use of a holdout validation set.

Kernel MMD works surprising well when it operates in the feature space of a pre-trained ResNet. It
is always able to identify generative/noise images from real images, and both its sample complexity
and computational complexity are low. Given these advantages, even though MMD is biased, we
recommend its use in practice.

Wasserstein distance works well when the distance is computed in a suitable feature space. However,
it has a high sample complexity, a fact that has also been observed by (Arora et al., 2017). Another
key weakness is that computing the exact Wasserstein distance has a time complexity of O(n3),
which is prohibitively expensive as sample size increases. Compared to other methods, Wasserstein
distance is less appealing as a practical evaluation metric.

Fréchet Inception Distance performs well in terms of discriminability, robustness and efficiency. It
serves as a good metric for GANs, despite only modeling the first two moments of the distributions
in feature space.

1-NN classifier appears to be an ideal metric for evaluating GANs. Not only does it enjoy all
the advantages of the other metrics, it also outputs a score in the interval [0, 1], similar to the
accuracy/error in classification problems. When the generative distribution perfectly match the true
distribution, perfect score (i.e., 50% accuracy) is attainable. From Figure 2, we find that typical
GAN models tend to achieve lower LOO accuracy for real samples (1-NN accuracy (real)), while
higher LOO accuracy for generated samples (1-NN accuracy (fake)). This suggests that GANs
are able to capture modes from the training distribution, such that the majority of training samples
distributed around the mode centers have their nearest neighbor from the generated images, yet most
of the generated images are still surrounded by generated images as they are collapsed together. The
observation indicates that the mode collapse problem is prevalent for typical GAN models. We also
note that this problem, however, cannot be effectively detected by human evaluation or the widely
used Inception Score.

Overall, our empirical study suggests that the choice of feature space in which to compute various
metrics is crucial. In the convolutional space of a ResNet pretrained on ImageNet, both MMD and
1-NN accuracy appear to be good metrics in terms of discriminability, robustness and efficiency.
Wasserstein distance has very poor sample efficiency, while Inception Score and Mode Score appear
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to be unsuitable for datasets that are very different from ImageNet. We will release our source code
for all these metrics, providing researchers with an off-the-shelf tool to compare and improve GAN
algorithms.

Based on the two most prominent metrics, MMD and 1-NN accuracy, we study the overfitting
problem of DCGAN and WGAN (in Appendix C). Despite the widespread belief that GANs are
overfitting to the training data, we find that this does not occur unless there are very few training
samples. This raises an interesting question regarding the generalization of GANs in comparison to
the supervised setting. We hope that future work can contribute to explaining this phenomenon.
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Table 1: Comparison of several GAN models on the LSUN dataset

Real DCGAN WGAN WGAN-GP LSGAN

Conv Space MMD 0.019 0.205 0.270 0.194 0.232
1-NN Accuracy 0.499 0.825 0.920 0.812 0.871
1-NN Accuracy (real) 0.495 0.759 0.880 0.765 0.804
1-NN Accuracy (fake) 0.503 0.892 0.961 0.860 0.938

D Comparison of popular GAN models based on quantitative evaluation

metrics

Based on our analysis, we chose MMD and 1-NN accuracy in the feature space of a 34-layer ResNet
trained on ImageNet to compare several state-of-the-art GAN models. All scores are computed
using 2000 samples from the holdout set and 2000 generated samples. The GAN models evaluated
include DCGAN (Radford et al., 2015), WGAN (Arjovsky et al., 2017), WGAN with gradient penalty
(WGAN-GP ) (Gulrajani et al., 2017), and LSGAN (Mao et al., 2016) , all trained on the CelebA
dataset. The results are reported in Table 1, from which we highlight three observations:

• WGAN-GP performs the best under most of the metrics.

• DCGAN achieves 0.759 overall 1-NN accuracy on real samples, slightly better than 0.765
achieved by WGAN-GP; while the 1-NN accuracy on generated (fake) samples achieved by
DCGAN is higher than that by WGAN-GP (0.892 v.s. 0.860). This seems to suggest that
DCGAN is better at capturing modes in the training data distribution, while its generated
samples are more collapsed compared to WGAN-GP. Such subtle difference is unlikely to
be discovered by the Inception Score or human evaluation.

• The 1-NN accuracy for all evaluated GAN models are higher than 0.8 , far above the ground
truth of 0.5. The MMD score of the four GAN models are also much larger than that of
ground truth (0.019). This indicates that even state-of-the-art GAN models are far from
learning the true distribution.
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