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Abstract

We investigate the arithmetic nature of Teichmüller curves in the
spirit of the theory developed for classical modular curves. We focus
on the Weierstrass curves for square discriminants introduced in [Mc1]
which give arithmetic Teichmüller curves in genus two. For these
curves, we introduce an analogue of the classical modular polynomials.
These Weierstrass polynomials have integer coefficients and give defining
equations for Weierstrass curves. We formulate, and provide evidence
towards, several conjectures concerning the factorizations of Weierstrass
polynomials in positive characteristic similar to the factorizations for
modular polynomials discovered by Kronecker and Deuring.
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1 Introduction

In this paper, we introduce the Weierstrass polynomials which give defining
equations for certain arithmetic Teichmüller curves in genus two. The Weier-
strass polynomials have integer coefficients, and allow us to investigate the
arithmetic nature of Teichmüller curves in the spirit of the theory developed
for classical modular curves.

Weierstrass polynomials. Let Mg denote the moduli space of genus g
curves. Each integer d ≥ 3 determines a Weierstrass curve

W (d) ⊂ M1 ×M1.

A pair of genus one curves (E1, E2) lies in W (d) if there exists a genus two
curve Y ∈ M2 and a primitive, degree d map

f : Y → E1

such that E2 is the kernel of the map f induces on Jacobians, and f has a
critical Weierstrass point. Primitive means that f does not factor through a
map of lower degree.

Using the j-invariant j : M1 → C, we identify M1 ×M1 with C2 and
realize W (d) as a plane curve. The Weierstrass polynomial Ψd for degree d
is the defining polynomial for W (d).

Theorem 1.1. There is a square-free polynomial Ψd ∈ Z[j1, j2], unique up
to sign, whose zero locus is equal to W (d) and whose coefficients are relatively
prime.

The irreducible components of W (d) and irreducible factors of Ψd can be
determined from [Mc1]. The number of components is one or two depending
on the parity of d.

Theorem 1.2. If d > 3 is even or d = 3, then Ψd is irreducible in C[j1, j2].
If d > 3 is odd, Ψd has two factors Ψd,0 and Ψd,1 in Z[j1, j2] both of which
are irreducible in C[j1, j2].

The j-invariant is arithmetic in nature in the sense that it is compat-
ible with automorphisms of C and reduction modulo p. The Weierstrass
polynomials give a window to the Weierstrass curves in positive characteristic.

Modular polynomials. The Weierstrass curves and polynomials are ana-
logues of the classical modular curves and the associated modular polynomials:

X0(m) ⊂ M1 ×M1 and Φm ∈ Z[j1, j2].
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For m ≥ 1, the curve X0(m) consists of pairs of genus one curves related by
a degree m map with cyclic kernel, and Φm is the square-free polynomial
with relatively prime coefficients whose zero locus is equal to X0(m).

The curve X0(m) and the polynomial Φm are both irreducible over C.

Factorizations in positive characteristic. The modular polynomials
Φm satisfy recursive congruence relations when reduced modulo primes p
dividing m. Deuring [De] showed that, if m = pen where p is a prime not
dividing n, then the following congruence holds modulo p:

Φm(j1, j2) ≡ Φn(j
pe

1 , j2) · Φn(j1, j
pe

2 ) ·
e−1∏
k=1

Φn(j
pe−k−1

1 , jp
k−1

2 )p−1. (1.1)

Specializing to the case m = p, we obtain Kronecker’s congruence relation

Φp(j1, j2) ≡ (jp1 − j2)(j1 − jp2) mod p.

These congruences were discovered in the 19th century, and they hint at the
rich and celebrated theory of integral models for modular curves developed
in the 20th century [DR, Ig, KM].

For small values of d, we find that Ψd exhibits surprising congruences
with modular polynomials in resonance with the congruence relations of
Kronecker and Deuring.

Theorem 1.3. For 3 ≤ d ≤ 9 and a prime p ≤ d, the Weierstrass polynomial
Ψd is divisible by the product of linear and modular polynomials listed in
Table 1.

The complicated factorizations of Weierstrass polynomials in positive
characteristic are especially surprising since Ψd has at most two irreducible
factors over C. Note that the factors in Table 1 involving modular polynomials,
like the terms appearing in Deuring’s congruence relation, are of the form
Φm(jk1 , j

l
2) where k and l are powers of p.

For primes p not dividing m, it is known that Φm is irreducible over the
finite field Fp with p elements, as well as over the algebraic closure Fp of Fp.
As a complement to Theorem 1.3, we establish the following

Theorem 1.4. For 3 ≤ d ≤ 9 and a prime p with d < p < 104, each
irreducible factor of Ψd is irreducible over Fp[j1, j2].

Hilbert modular surfaces for square discriminants. The Weierstrass
curve W (d) is closely related to a curve WD, introduced in [Mc1], in the
Hilbert modular surface for discriminant D = d2

Xd2 = H×H/ SL2(Od2).
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The surface XD is isomorphic to the moduli space of principally polarized
abelian surfaces with real multiplication by the quadratic ring OD of discrim-
inant D, and is birational to the moduli space of primitive, degree d covers
from genus two to genus one with no restriction on the critical points. The
curve WD consists of points in XD which correspond to covers with a critical
Weierstrass point.

There is a map XD → M1 ×M1 sending a point corresponding to the
cover f : Y → E to the pair (E,F ) where F is the kernel of the map f
induces on Jacobians. Under this map, WD maps onto W (d) and the curves
W (d) and WD are related by the diagram

WD XD M2

W (d) M1 ×M1.

The hooked arrows are inclusions, and the dashed arrow is the rational map
sending a Jacobian with real multiplication to the corresponding genus two
curve. The regular map XD → M1 × M1 is a covering map and arises
from the inclusion SL2(OD) ⊂ SL2(Z)× SL2(Z). We will show that WD is
birational onto its image in M1 ×M1.

Theorem 1.5. The curve W (d), defined by the equation Ψd = 0, is birational
to Wd2.

To prove Theorems 1.3 and 1.4, we use the equations for Hilbert modular
surfaces for square discriminants in [Ku] to explicitly compute Ψd.

Theorem 1.6. For 3 ≤ d ≤ 9, the Weierstrass polynomial Ψd is the polyno-
mial listed in Table 2.

Theorems 1.3 and 1.4 are obtained by direct computations using the
polynomials in Table 2.

Relation to Teichmüller curves. The curves Wd2 are part of a larger
family of Weierstrass curves WD in Hilbert modular surfaces indexed by
discriminants D for real quadratic orders. The curve WD is important in
Teichmüller theory because its irreducible components, of which there are
one or two, are Teichmüller curves. That is, each irreducible component
W ⊂ WD is uniformized by a lattice Veech group ΓW ≤ SL2(R), and the
algebraic immersion

W = H/ΓW → M2

is a local isometry for the Teichmüller metric on M2.
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In the case D = d2, the Fuchsian groups which arise are finite index in
SL2(Z). The Veech groups uniformizing components of Wd2 play the role of
the congruence groups Γ0(m) ≤ SL2(Z) which uniformize modular curves.

When D is not a square, there is no obvious analogue of the map Xd2 →
M1 ×M1. It would be interesting to explore the arithmetic nature of these
curves as well.

Degree of Ψd. For general d ≥ 3, the bidegree of Ψd can be expressed
simply in terms of the orbifold Euler characteristic χ(Wd2) of Wd2 .

Theorem 1.7. For each d ≥ 3, the bidegree of Ψd is given by

degj1(Ψd) = 6|χ(Wd2)| and degj2(Ψd) = 2|χ(Wd2)|.

A formula for χ(Wd2) appears in [EMS] (see also [Ba, LR]), allowing us
to explicitly compute the bidegree of Ψd. A similar formula holds for the
bidegree of each irreducible factor of Ψd (cf. Propposition 2.7).

For m > 1, the modular polynomial Φm is known to be symmetric in
j1 and j2, i.e. Φm(j1, j2) = Φm(j2, j1). Theorem 1.7 shows that Ψd is not
symmetric.

Leading coefficients. The modular polynomial is known to be monic in
both j1 and j2.

By analyzing the Weierstrass curve near infinity, we describe the leading
coefficients of Ψd in each variable. For instance, we prove

Theorem 1.8. For each d ≥ 3, the leading j2-coefficient of Ψd lies in Z.

In each of the cases we computed, the polynomial Ψd is actually monic
in j2 (cf. Table 2). It would be interesting to determine whether this is true
for all d.

The leading j1-coefficient of Ψd, by contrast, is typically a non-constant
polynomial in Z[j2]. In fact, it is related to a polynomial in j2 defined in
terms of the one-cylinder cusps of Wd2 (cf. Proposition 2.4).

Conjectural factorization. In light of Theorems 1.3 and 1.4, we formulate
several conjectures concerning the factorization of Weierstrass polynomials
in positive characteristic.

Conjecture 1. For primes p < d, the Weierstrass polynomial Ψd has a non-
trivial common factor with a product of modular polynomials over Fp[j1, j2].

Conjecture 2. For primes p dividing d, the Weierstrass polynomial Ψd is
divisible over Fp[j1, j2] by the pth power of a linear polynomial in Fp[j2].
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Conjecture 3. For primes p > d, each irreducible factor of Ψd is irreducible
over Fp[j1, j2].

Our theorems show that Conjectures 1 and 2 hold for d ≤ 9, and Conjec-
ture 3 holds for d ≤ 9 and p < 104 when Fp is replaced with Fp.

Primes of good and bad reduction. The congruence relations of Kro-
necker and Deuring for modular polynomials are related to theorems about
good and bad reduction for the modular curves X0(m). We expect similar
results to hold for Weierstrass curves.

To formulate a precise statement, let W ⊂ Wd2 be an irreducible com-
ponent, ΓW ≤ SL2(Z) the Veech group uniformizing W , and define, for
m ≥ 1,

W [m] = H/ΓW [m] where ΓW [m] = ker(ΓW → SL2(Z/mZ)).

The points in W [m] correspond to branched covers f : Y → E in W together
with a marking of the full m-torsion of E. We similarly define Wd2 [m]. For
m > 1, the group ΓW [m] contains no elliptic elements, and Wd2 [m] is a
smooth hyperbolic manifold and affine algebraic curve.

We set W d2 [m] to be the smooth, projective curve birational to Wd2 [m].
The curve W d2 [m] has a canonical algebraic model defined over the field
Q[ζm] where ζm = e2πi/m coming from the moduli interpretation of its points.

For a prime p ∈ Z, we say that W d2 [m] has good reduction at p if there
exists a projective curve over Z[ζm] which is isomorphic to W d2 [m] over Q[ζm]
and is smooth when reduced modulo every prime ideal in Z[ζm] dividing p.
Otherwise, we say that W d2 [m] has bad reduction at p.

Conjecture 4. Fix m > 1, d ≥ 3, and a prime p not dividing m. If p ≤ d,
then W d2 [m] has bad reduction p. Otherwise, W d2 [m] has good reduction at
p.

An analogous statement is known to hold for modular curves, and lies
at the heart of applications to the study representations of Gal(Q/Q). It
would be interesting to investigate the Galois representations arising from
the cohomology of Weierstrass curves and Teichmüller curves more generally.

Outline. In Section 2 we discuss the relationship between WD ⊂ XD and
W (d) ⊂ M1 ×M1, and prove Theorems 1.1, 1.2, 1.5, 1.7 and 1.8. In Section
3, we explain how we use the equations in [Ku] to compute Ψd for d ≤ 9, we
prove Theorem 1.6, and we deduce Theorems 1.3 and 1.4. In the Appendix,
we discuss the cusps of WD and the behavior of the coordinate functions
j1, j2 on W (d) near infinity. The results in the Appendix are used in Section
2.
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Computer files. The coefficients of the polynomials Ψd are very large,
even for d ≤ 9. It is unreasonable to include these polynomials in their
entirety in this text. They can be accessed at

http://math.rice.edu/~rm51/papers/wpolys.txt.gz.

Acknowledgments. The author is grateful for helpful conversations with
Curt McMullen, Sarah Koch, Alex Wright, Keerthi Madapusi Pera, John
Voight, and Andrew Sutherland. The computations in this paper were
performed in MAGMA [Mag]. The author is partially supported by National
Science Foundation grant DMS-1708705.
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Examples of Weierstrass polynomials

Ψ3(j1, j2) = j32 − 1296j22 + 559872j2 − (729j1j2 + 80621568)

Ψ4(j1, j2) = j92 − 2 · 33(−1840 + 3j1)j
8
2 + 33(154158336− 250048j1 + 243j21)j

7
2

− 25 · 31(−970047097344 + 603165992j1 + 1218645j21)j
6
2

+ 28 · 33(165993941101824 + 27425238848j1 + 120608619j21)j
5
2

− 28 · 32(−2960177618953248768 + 72262513013760j1

+ 1300315270336j21 + 729j31)j
4
2

+ 214 · 31(139656133843075058688− 136049229047669760j1

+ 114016419120484j21 + 533871j31)j
3
2

− 217 · 33(19517832888381723377664− 10277625115341083520j1

+ 1415260745619344j21 + 43441281j31)j
2
2

+ 222 · 32(2229289711787563819204608− 1326624212145450516480j1

+ 43192230438475404j21 + 10604499373j31)j2

− 224(217 · 33 · 73 + 134j1)
3

Ψ5,0(j1, j2) = j182 + 32(293j1 − 198000)j172 − 3(19683j31 − 43690536j21

+ 20557595500j1 − 1041788250000)j162 + · · ·+ 260530(j1 − 16581375)6

Ψ5,1(j1, j2) = j92 + 34(3j1 − 2128)j82 + 24 · 31(40213j1 + 212761620)j72 + . . .

− (20511149j1 + 10512288000)3

Ψ6(j1, j2) = j362 − (1458j21 − 2132208j1 + 207665856)j352 + . . .

Ψ7,0(j1, j2) = j542 − 9(243j31 − 548424j21 + 268959980j1 − 9899198880)j532 + . . .

Ψ7,1(j1, j2) = j362 + 9(243j31 − 540360j21 + 257007956j1 − 8642256192)j352 + . . .

Ψ8(j1, j2) = j1082 − 108(243j31 − 536872j21 + 251851400j1 − 8107623648)j1072 + . . .

Ψ9,0(j1, j2) = j1082 − 9(2187j51 − 8158968j41 + 10022408532j31 − 4495723997525j21

+ 552680124631602j1 − 4495116061000512)j1072 + . . .

Ψ9,1(j1, j2) = j812 +9(19683j51 −73010808j41 +88952462388j31 −39398534643069j21

+ 4738793514127794j1 − 36896666380259328)j802 + . . .

Table 2: The Weierstrass polynomials Ψd for 3 ≤ d ≤ 9. When d > 3 is odd,
Ψd = Ψd,0 · Ψd,1. For a complete list of the coefficients of Ψd, see the the auxiliary
computer files described in §1.
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2 Weierstrass polynomials

In this section, we discuss the Weierstrass curve Wd2 as well as its map to
M1 ×M1. We prove Theorems 1.1, 1.2, 1.5, 1.7 and 1.8.

Setup. Fix a degree d ≥ 3, and set D = d2. As in §1, the discriminant D
determines a Hilbert modular surface XD as well as a curve WD ⊂ XD. We
also fix an irreducible component W ⊂ WD.

Moduli interpretation. The space XD is birational to the moduli space
of primitive degree d maps from genus two to genus one. See [Mc2, §4], [Ka,
§4]. Every map

f : Y → E,

where Y ∈ M2, E ∈ M1, and f is primitive of degree d corresponds to a
point in XD. Two such maps f1 : Y1 → E1 and f2 : Y2 → E2 correspond
to the same point in XD if there are isomorphisms Y1 → Y2 and E1 → E2

intertwining f1 and f2.
A typical point in XD corresponds to a map with two simple critical

points P, P ′ interchanged by the hyperelliptic involution on Y . The curve
WD ⊂ XD consists of points corresponding to maps with a critical Weierstrass
point.

Irreducible components of WD. The irreducible components of WD are
determined in [Mc1]. When d > 3 is even or d = 3, WD is irreducible and we
have W = WD.

When d ≥ 3 is odd, WD is the union of two curves

WD = W 0
D ∪W 1

D.

A point in WD lies in W ϵ
D if it corresponds to a cover f : Y → E where f

has n Weierstrass points in its critical fiber and ϵ = (n− 1)/2. When d > 3
is odd, W 0

D and W 1
D are both non-empty and irreducible, and W = W 0

D or
W 1

D. When d = 3, WD = W 0
D is irreducible.

Maps to M1. There is an obvious map

π1 : W → M1,

which sends the point corresponding to f : Y → E to the genus one curve
E. The map π1 presents W as an orbifold cover of M1

∼= H/SL2(Z). In
particular, the degree of π1 can be computed from the Euler characteristic of
W :

deg(π1) =
χ(W )

χ(M1)
= 6|χ(W )|. (2.1)
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A formula for χ(W ) appears in [Ba] (see also [LR]), allowing us to explicitly
compute deg(π1).

There is a second, more mysterious, map W → M1. The map f induces
a map on Jacobians

fJac : Jac(Y ) → Jac(E) ∼= E. (2.2)

The kernel of fJac is again a curve of genus one, and we define

π2 : W → M1, π2(f : Y → E) = ker(fJac). (2.3)

Let Ω(Y ) be the space of holomorphic 1-forms on Y , and V ⊂ Ω(Y )∗ the
space of linear functions on Ω(Y ) which vanish on f∗(Ω(E)). The genus one
curve π2(f) is uniformized by V and given by the following equation

F = π2(f) = V/ ker(f∗). (2.4)

Here, f∗ is the map f induces on homology. The curve F is orthogonal to the
image of E under the Rosati dual of fJac, and the pair (E,F ) lies in W (d).

The degree of π2 is related to the degree of π1 by the second Lyapunov
exponent λ2 = 1/3 for W :

deg(π2) = λ2 · deg(π1) = 2|χ(W )|. (2.5)

See [Ba, Cor. 12.3].

The j-invariant. The j-invariant gives a bijection j : M1 → C, identifying
M1 with C. The j-invariant is arithmetic in nature in the sense that it
is equivariant with respect to automorphisms of C and compatible with
reduction modulo p. Composing the maps πi with j gives rise to a pair of
rational functions

ji : W → C, ji = j ◦ πi. (2.6)

We regard ji as an element of the field C(W ) of all rational functions on W .
In fact, ji lies in C[W ], the subring of C(W ) consisting functions which are
holomorphic on W .

Combining the functions j1 and j2, we have an algebraic map

ϕ : W → C2
(j1,j2)

.

From our definitions, it is immediate that ϕ(W ) = W (d) when W = WD is
irreducible.

When WD is reducible, we define

ϕ(W ) = W ϵ(d) where W = W ϵ
D.

The curve W ϵ(d) is an irreducible component of W (d), and we have that
W (d) = W 0(d) ∪W 1(d).

11



The Weierstrass polynomial. We now prove the following

Proposition 2.1. There is a square-free polynomial ΨW ∈ Z[j1, j2], unique
up to sign, whose zero locus is equal to ϕ(W ) and whose coefficients are
relatively prime. The polynomial ΨW is irreducible in C[j1, j2].

Proof. By virtue of being a plane curve, ϕ(W ) is defined by a single polyno-
mial equation ΨW = 0 where ΨW ∈ C[j1, j2] is square-free. The polynomial
ΨW is determined by ϕ(W ) up to scale in C.

Since the moduli problem associated to the points on W is defined over
Q, the curve W and its map to M1 ×M1 are defined over Q. It follows that
we can scale ΨW so its coefficient lie in Q. Cf. [BM, Thm. 3.3].

By clearing denominators and dividing by common factors, we arrange
that the coefficients of ΨW lie in Z and are relatively prime.

For the uniqueness statement, note that another square-free polynomial
Ψ′

W whose zero locus is equal to ϕ(W ) must be a scalar multiple of ΨW , i.e.
Ψ′

W = c ·ΨW . If the coefficients of Ψ′
W are also integers, then c is also an

integer. If the coefficients of Ψ′
W are relatively prime, then c = ±1.

Finally, the irreducibility of ΨW in C[j1, j2] follows from the irreducibility
of ϕ(W ), which is implied by the irreducibility of W .

Cusps and poles. Now let W denote the smooth projective curve bira-
tional to W . The curve W is obtained by smoothing the orbifold points of
W and adding in finitely many cusps ∂W = W \W . The cusps of W are
enumerated in [Mc1], and in the Appendix, we determine the polar order of
ji at each cusp x ∈ ∂W , i.e.

vi(x) = ord(x, (ji)∞),

where (ji)∞ is the polar divisor of ji on W .
The poles of j1 coincide with the cusps of W , and v1(x) > 0 for x ∈ ∂W .

Geometrically, this is implied by the fact that π1 is a covering map, hence
topologically proper. Algebraically, this implies that the ring C[W ] is in the
integral closure of C[j1]. To see this, fix u ∈ C(W ) and consider the minimal
polynomial for u over C(j1),

mu(x) = xe + ae−1(j1)x
e−1 + · · ·+ a0(j1) ∈ C(j1)[x].

The value of ak at j1 = t is, up to sign, the kth symmetric function of
{u(x) : x ∈ WD, j1(x) = t}. If u is holomorphic on W , then the poles of u
are contained in the poles of j1, and ak lies in C[j1].

Proposition 2.2. The rational function j2 ∈ C(W ) is integral over C[j1].

12



Proof. The function j2 is holomorphic on W , so the coefficients of the mini-
mal polynomial over C(j1) have finite values whenever j1 is finite, and are
polynomials in C[j1].

Corollary 2.3. The leading j2-coefficient of ΨW lies in Z.

Proof. Let m(j1, j2) ∈ C(j1)[j2] be the minimal polynomial for j2 ∈ C(W )
over C(j1). The polynomial ΨW is obtained from m by clearing denominators.
Since j2 is integral over C[j1], the monic polynomial m has coefficients in
C[j1]. Hence, ΨW has leading j2-coefficient which is a constant polynomial
in Z[j1].

The cusps of W correspond to cylinder decompositions of genus two
surfaces, and are classified according to the number (one or two) of cylinders.
The function j2 is holomorphic at the one-cylinder cusps, and has poles at
the two-cylinder cusps (cf. Propositions A.4 and A.5). We define

cW (t) =
∏
x

(t− j2(x)) ∈ C[t], (2.7)

where the product ranges over the one-cylinder cusps x ∈ ∂W . Arguing as
above, we find that the coefficients of the minimal polynomial for j1 over
C(j2) have poles only at the zeros of cW (t) and we conclude

Proposition 2.4. The function j1 ∈ C(W ) is in the integral over C[j2, cW (j2)
−1].

Birational model. We now show that W is birational onto its image in
M1 ×M1.

Proposition 2.5. The curve ΨW = 0 is birational to W .

Proof. The curve ΨW = 0 defines the image of W in the (j1, j2)-plane under
the map

ϕ : W → C2
(j1,j2)

.

The map ϕ extends to a map W → P1 × P1, and the branches of W passing
through (j1, j2) = (∞,∞) correspond to the two-cylinder cusps of W .

To check that W is birational to ΨW = 0, we show that one of the
branches of W through (∞,∞) is simple. This amounts to exhibiting a
two-cylinder cusp x such that

gcd(v1(x), v2(x)) = 1, and (v1(x
′), v2(x

′)) ̸= (v1(x), v2(x)) for x
′ ̸= x.

The first condition ensures that ϕ is 1-to-1 near x, and the second ensures
the image of ϕ near x is distinct from the other branches of W . For d odd, a
cusp with these properties is furnished by Proposition A.7. For d even, we
use Proposition A.8.
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We record the following corollaries of Theorem 1.5.

Theorem 2.6. The functions j1 and j2 generate C(W ) over C, i.e.

C(W ) = C(j1, j2).

Proof. The subfield C(j1, j2) ⊂ C(W ) corresponds to the function field of
the image of ϕ(W ). By Proposition 2.5, ϕ(W ) (which is defined by ΨW = 0)
is birational to W . Hence C(j1, j2) = C(W ).

Proposition 2.7. The bidegree of ΨW is given by

degj2(ΨW ) = 6|χ(W )|, and degj1(ΨW ) = 2|χ(W )|.

Proof. The degree degj1(ΨW ) is equal to the degree of the field extension
C(j1, j2)/C(j2). By Theorem 2.6, we have C(W ) = C(j1, j2) and [C(j1, j2) :
C(j2)] = deg(π2). The desired formula for degj1(ΨW ) follows from (2.5). A
similar argument using (2.1) gives degj2(ΨW ).

Now define
Ψd,ϵ = ΨW where W = W ϵ

d2 .

Corollary 2.8. For d > 3 odd, the polynomials Ψd,0 and Ψd,1 distinct.

Proof. By the formula for χ(W ϵ
D) in [Ba, Thm. 1.4], we see that

χ(W 0
D)

χ(W 1
D)

=
d− 1

d− 3
. (2.8)

By Theorem 2.7, the polynomials Ψd,0 and Ψd,1 are distinguished by their
degrees.

We are now ready to give proofs of most of the theorems stated in the
introduction.

Proof of Theorem 1.1. First suppose W = WD is irreducible. In this case, we
can take Ψd = ΨW and Proposition 2.1 ensures Ψd has the desired properties.

Now suppose WD is reducible. In this case, we set

Ψd = Ψd,0 ·Ψd,1.

Since Ψd,ϵ is irreducible over C by Proposition 2.1, and Ψd,0 ̸= Ψd,1 by Corol-
lary 2.8, the polynomial Ψd is square free. Also, Ψd has integer coefficients
which are relatively prime, and its zero locus is equal to W (d) by Proposition
2.1.

The uniqueness statement follows from an argument similar to the one
for ΨW in the proof of Proposition 2.1.
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Proof of Theorem 1.2. For d > 3 even or d = 3, we have that Ψd = ΨW

where W = WD. This polynomial is irreducible by Proposition 2.1.
For d > 3 odd, we have that Ψd = Ψd,0 ·Ψd,1 as in the proof of Theorem

1.1. The polynomials Ψd,ϵ have integer coefficients and are irreducible over C
by Proposition 2.1.

Proof of Theorem 1.5. For irreducible WD, the curve W (d) is birational to
Wd2 by Proposition 2.5.

For reducible WD, Proposition 2.5 ensures that W ϵ
D is birational to its

image W ϵ(d) in M1×M1. Proposition 2.8 guarantees that W 0(d) is distinct
from W 1(d), hence WD is also birational to W (d).

Proof of Theorem 1.7. The formula for the bidegree of Ψd follows immedi-
ately from Proposition 2.7 and Corollary 2.8.

Proof of Theorem 1.8. When WD is irreducible, Ψd = ΨW . When WD is
reducible, Ψd is the least common multiple of Ψd,0 and Ψd,1. In either case,
Corollary 2.3 immediately implies that the leading j2-coefficient of Ψd is a
constant polynomial.

3 Computing Weierstrass polynomials

In this section, we explain how to compute Ψd using the equations for Hilbert
modular surfaces in [Ku]. We also prove Theorems 1.6 and deduce Theorems
1.3 and 1.4.

Equations for Hilbert modular surfaces. We start with the equations
for Hilbert modular surfaces for square discriminants computed in [Ku] using
the method in [EK]. The paper [EK] describes a method for computing
explicit, birational algebraic models for Hilbert modular surfaces. This
method is implemented in [Ku] for square discriminants to give algebraic
models for Xd2 along with its universal curve Y → Xd2 for 2 ≤ d ≤ 11. The
result is an explicit equation

Y : y2 = x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0, ai ∈ C(Xd2).

Equations for elliptic curves E → Xd2 and F → Xd2 along with primitive,
algebraic maps Y → E, Y → F of degree d are also computed.

Equations for Weierstrass curves. The equation for Y is normalized
(using the algorithm in [KM]) so that the 1-forms dx/y and xdx/y are pulled
back from the holomorphic 1-forms on F , E. In particular, the critical points
of Y → E are the points with zero x-coordinate. The locus where Y → E
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has a critical Weierstrass point, i.e. Wd2 , is defined by the equation a0 = 0.
This equation gives an algebraic model for Wd2 ⊂ Xd2 .

The field of algebraic functions on an irreducible component W ⊂ Wd2

is presented as an algebraic extension C(t, s) of the field C(t) of rational
functions. In fact, since the equations furnished by [Ku] are defined over Q,
we can work in a finite extension Q(s, t) over Q(t) where exact arithmetic is
possible. The equations for E,F → Xd2 allow us to compute j1 = j(E) and
j2 = j(F ) as explicit elements in Q(t, s).

Computing ΨW . To compute ΨW , we compute polynomials uk,l(s, t) ∈
C[s, t] and v(t) ∈ C[t] which satisfy

jk1 j
l
2 =

uk,l(s, t)

v(t)
,

for each k ≤ degj1(ΨW ) and l ≤ degj2(ΨW ) (cf. Proposition 2.7). We then

determine the linear relation among jk1 j
l
2 by computing the kernel of the

matrix whose entries are the coefficients of uk,l. Scaling appropriately, we
find an explicit formula for ΨW .

Note that the computation of jk1 j
l
2 requires only arithmetic in a finite

extension of the field Q(t), which can be done using exact integer calculations.

Remark. In most of the examples we computed, each component of Wd2 is
of genus 0 and we can work exclusively over Q(t) after parametrizing W .
To compute Ψ8 and Ψ9,0, associated to the curve W64 of genus one and the
curve W81,0 of genus two, we work in a degree two extension of Q(t). To
speed up the computation, where possible we replace ji with the associated
Weber function, i.e. a solution to

ji =
(f24

i − 16)3

f24
i

.

We compute the polynomial relation satisfied by the f1 and f2 as above,
and then use resultants to compute Ψd. This simplification is typical in the
computation of the classical modular polynomials, see e.g. [Su].

Factors of Ψd. When d > 3 is odd, the two irreducible factors can be
distinguished by their degrees (cf. proof of Corollary 2.8). We use this fact
to determine the invariant ϵ attached to each irreducible component of Ψd.

Proof of Theorem 1.6. The polynomials listed in Table 2 were computed
using the method outlined above. This method involves only exact arithmetic
over number fields, and is guaranteed to yield the Weierstrass polynomial.
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Proof of Theorems 1.3 and 1.4. We verified the congruences of Table 1 and
the irreducibility of Ψd in Fp[j1, j2] for d < p < 104 using the polynomials in
Table 2 and direct computation.

Hyperelliptic models for Weierstrass curves. The examples we com-
puted include a complete list of Weierstrass polynomials associated to com-
ponents of Wd2 of genus zero, cf. [Mu]. The components of positive genus
included in our list are W64 and W 0

81 of genus 1 and 2 respectively. Since
algebraic models for these curves have not appeared in the literature, we
record defining equations for these curves here.

Theorem 3.1. The Weierstrass curve W64 is birational to the elliptic curve

y2 = x3 − 63x+ 162.

Theorem 3.2. The Weierstrass curve W 0
81 is birational to the hyperelliptic

curve

y2 = 25x6 − 60x5 + 186x4 − 260x3 + 429x2 − 240x+ 64.

A Cusps

The smooth, projective curve W d2 birational to Wd2 is obtained by smoothing
out the orbifold points of Wd2 and adding finitely many cusps. The cusps
of Wd2 are enumerated and sorted by component in [Mc1]. Since ji is
holomorphic on Wd2 , the polar divisor of ji is supported at the cusps. In this
appendix, we compute the order of pole of j1 and j2 at each cusp x ∈ W d2 ,
i.e.

v1(x) = ord(x, (j1)∞) and v2(x) = ord(x, (j2)∞) (A.1)

where (ji)∞ is the polar divisor of ji.‘

Setup. Fix a cusp x ∈ W d2 and a map

f : Y → E

with critical Weierstrass point corresponding to a point near x in Wd2 . We
also choose a small loop γ about x beginning and ending at the point
corresponding to f . As usual, we set F = ker(fJac).

Monodromy. The loop γ determines mapping classes T Y , TE , and TF on
Y , E, and F = π2(f). From the Veech dichotomy, we know that each of the
transformations T Y and TE is a product of Dehn twists about a collection
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of disjoint simple closed curves. The transformation TF is either trivial,
unipotent, or elliptic.

The induced transformation TE
∗ : H1(E,Z) → H1(E,Z) is unipotent

stabilizing a primitive vector w ∈ H1(E,Z), and we define

m(TE) = [U :
⟨
TE
∗
⟩
]

where U is the entire stabilizer of w in SL(H1(E,Z)). The quantity m(TE)
measures the winding number of (π1)∗(γ) about the cusp of the modular
curve M1, and is equal to the order of pole of j1 at x. We similarly define
m(TF ) and conclude

v1(x) = m(TE) and v2(x) = m(TF ).

When TF is trivial or elliptic, we define m(TF ) = 0 so the formula above
continues to hold.

Homology. Now consider the map f∗ : H1(Y,Z) → H1(E,Z) that f induces
on homology. We now identify H1(E,Z) and H1(F,Z) with explicit subspaces
of H1(Y,Z) so that we can compute m(TE) and m(TF ). We define

K2 = ker(f∗), and K1 = K⊥
2 ,

where the orthogonal complement is taken with respect to the symplectic
intersection form on H1(Y,Z).

Proposition A.1. The homology group H1(F,Z) is equal to K2 = ker(f∗).

Proof. This follows from the formula (2.4) for F = π2(f).

Proposition A.2. There is an integer e so that the map

f∗ : K1 → H1(E,Z)

is an isomorphism onto the e-divisible in H1(E,Z).

In particular, the map

g : K1 → H1(E,Z), g(v) = (1/e)f∗(v)

is a natural isomorphism.

Proof. We use the theory of gluing for lattices, cf. [Mc3, §2]. The intersection
form on H1(Y,Z) restricted to Ki

∼= Z2 is ei times the unimodular form.
The extensionH1(Y,Z) ⊃ K1⊕K2 is primitive in the sense thatH1(Y,Z)/Ki

is torsion free. Hence, H1(Y,Z) corresponds to a gluing isomorphism ϕ : H1 →
H2 where Hi is a subgroup of the glue group G(Ki) = (1/eiKi)/Ki. Since
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H1(Y,Z) is unimodular and K1 ⊕K2 has index (e1e2)
2 in its dual, |H1| =

|H2| = e1e2. From |G(Ki)| = e2i we conclude that e = e1 = e2, and
Hi = G(Ki).

The lattice H1(Y,Z) ⊂ (K1 ⊕K2)⊗Q is generated by K1 ⊕K2 together
with representatives of the graph of ϕ in (1/e)(K1⊕K2). Since f is primitive,
f∗ is onto, and

H1(E,Z) ∼= H1(Y,Z)/K2
∼= (1/e)K1.

So the map f∗ restricted to K1 is a bijection onto the e-divisible vectors in
H1(E,Z).

Proposition A.3. The restriction of the symplectic intersection form to Ki

is d = deg(f) times the unimodular symplectic form.

Proof. We continue with the notation in the proof of Proposition A.2. Our
goal is to prove e = ei = d.

The lattice H1(Y,Z) is generated by K1 and K2 together with vectors
representing the graph of the gluing homomorphism ϕ. The map ϕ negates
the fractional form on G(Ki), so we can choose positive bases ai, bi for Ki

(i.e. ⟨ai, bi⟩ = e) so that

ϕ(a1/e+K1) = a2/e+K2, and ϕ(b1/e+K1) = −b2/e+K2.

A direct computation then shows that

A1 = a1, B1 = 1/e(b1 − b2), A2 = 1/e(a1 + a2), B2 = b2.

forms a standard symplectic basis for H1(Y,Z).
Note that f∗(A1) = ef∗(A2) and f∗(B2) = 0. Since f∗ is onto, H1(E,Z)

is generated by f∗(A2) and f∗(B1), hence ⟨f∗(A2), f∗(B1)⟩E = 1. To see that
d = e, we compute

d = deg(f) = ⟨f∗(A1), f∗(B1)⟩E + ⟨f∗(A2), f∗(B2)⟩E = e.

Square-tiled surfaces. The cusps of Wd2 are enumerated in [Mc1] via
square-tiled surfaces.

A square tiled surface is a surface built out of a finite collection of polygons
P1, . . . , Pn ⊂ C with vertices in Z[i]. The polygons are glued together along
their edges by translations of the form z → z+ c with c ∈ Z[i], and the result
is a compact Riemann surface Y with a map Y → E = C/Z[i]. If we deform
the lattice Z[i] uniformizing E to Λt = Z+ tZ with t ∈ H, and simultaneously
deform the polygons Pi, we obtain a family of covers ft : Yt → Et = C/Λt.
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As t ranges in H, the associated surfaces Yt sweep out a Teichmüller curve
C in Mg. If Y = Yi is genus two, and f = fi is primitive of degree d with a
critical Weierstrass point, we obtain a component of the Weierstrass curve
Wd2 . In the limit as the imaginary part of t tends to ∞, we arrive at a cusp
of C.

In [Mc1] an explicit collection of square-tiled surfaces is given which is in
bijection with the cusps of Wd2 . The cusps are broadly classified according to
the number of horizontal cylinders (one or two) on the associated square-tiled
surface.

One-cylinder cusps. We start with the one-cylinder cusps. These are
in bijection with the one-cylinder prototypes, i.e. cyclically order triples of
integers ⟨a, b, c⟩ satisfying

a, b, c > 0, a+ b+ c = d, and gcd(a, b, c) = 1. (A.2)

In Figure 1, we depict a square-tiled surface obtained from a (d×1)-rectangle
and associated to the prototype ⟨a, b, c⟩. The resulting branched cover
f : Y → E = C/Z[i] is primitive of degree d with a critical Weierstrass point.
In particular, we have f ∈ Wd2 and an associated cusp of Wd2 .

a

ab c

A1
B1

A2

B2

b c

Figure 1: The one-cylinder prototype ⟨a, b, c⟩ determines a square-tiled surface and a
cusp of Wd2 .

Proposition A.4. Suppose d > 3 and x ∈ W d2 is a one-cylinder cusp. The
orders of the poles of ji at x are

v1(x) = d and v2(x) = 0.

In particular, the function j2 is holomorphic at x.

Proof. Let ⟨a, b, c⟩ be the associated one-cylinder prototype for x, fi : Yi →
Ei = C/Z[i] the corresponding square-tiled surface as in Figure 1, and ft for
t ∈ H the associated point in Wd2 obtained by deforming fi. Fixing some
large y > 0, the collection

γ = {ft : t ∈ iy + [0, d]} ⊂ Wd2
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is a small loop about about x. The transformation T Y is a Dehn twist about
A1.

To compute v2 = m(TF ), we identify H1(F,Z) with the kernel of
f∗ : H1(Y,Z) → H1(E,Z), and TF

∗ with the restriction of T Y
∗ to ker(f∗).

The kernel of f∗ is generated (rationally) by the vectors

w = bA2 + aB2 and u = dA2 − aA1,

both of which are fixed by T Y
∗ . Hence, TF

∗ acts by the identity on H1(F,Z),
m(TF ) = 0, and j2 is holomorphic at x.

We compute v1 = m(TE) by identifying H1(E,Z) with the orthogonal
complement of ker(f∗) in H1(Y,Z). This space is generated by

w = A1 and u = dB1 − bA2 − aB2,

and we see that m(TE) = d since TE
∗ (w)− w = du.

Remark. The function j1 has a simple pole, rather than a pole of order 3,
at the unique one-cylinder cusp x ∈ W 9 corresponding to the prototype
⟨1, 1, 1⟩. For this cusp, a small loop about x is represented by ft as t ranges
in the horizontal line yi + [0, 1], rather than in yi + [0, 3], reflecting the
Z/3Z-symmetry of the prototype. The transformation TF is elliptic of order
3.

Two-cylinder cusps. We now turn to the two-cylinder cusps of Wd2 .
These are in bijection with splitting prototypes, i.e. quadruples of non-
negative integers (a, b, c, e) satisfying

d2 = e2 + 4bc, 0 ≤ a < gcd(b, c), e+ c < b,
0 < b, 0 < c, and gcd(a, b, c, e) = 1.

(A.3)

The quantities

λ =
d+ e

2
and λ′ =

d− e

2

will play an important role.
In Figure 2, we depict a square-tiled surface Y built out of a square with

side length λ and a parallelogram with sides of complex length b and a+ ic.
Note that map Y → E = C/Z[i] is not, in general, primitive. It factors
through a unique primitive map of degree d with a critical Weierstrass point,
and determines a cusp of Wd2 as above.

The mapping class T Y is given by the formula

T Y = Db′
1 ◦Dc′

2 where b′ = b/ gcd(b, c), c′ = c/ gcd(b, c), (A.4)

and Di is a Dehn twist about the curve Ai.
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b

a+ic

0

A1

A2

B1

B2

-iλ

Figure 2: The two-cylinder prototype (a, b, c, e) determines a cusp of Wd2 .

Proposition A.5. The cusp x ∈ W d2 corresponding to the two-cylinder
splitting prototype (a, b, c, e) has

v1(x) =
gcd(b, λ′) gcd(c, λ)

gcd(b, c)
, v2(x) =

gcd(b, λ) gcd(c, λ′)

gcd(b, c)
, (A.5)

where λ = (d+ e)/2 and λ′ = (d− e)/2.

Proof. We proceed as in the proof of Proposition A.4. For f : Y → E and
F = π2(f) = ker(fJac) near x, the monodromy around a small loop about x
determines mapping classes T Y , TE , and TF on Y , E, and F respectively.

We start by computing v2 = m(TF ). The transformation TF
∗ onH1(F,Z) =

ker(f∗) stabilizes the primitive vector

w = (bA1 − λA2)/ gcd(b, λ).

By Proposition A.3, the polarization on ker(f∗) is d times the principal
polarization. The group H1(F,Z) is generated by w and a vector u where
⟨w, u⟩ = d and f∗(u) = 0. These conditions determine u up to adding a
rational multiple of w, we have

u = (a gcd(b, λ)/b)A2 − gcd(b, λ)B2 + (c gcd(b, λ)/λ)B1 + tw

for some t ∈ Q. Using (A.4), we compute that (TF
∗ (u)− u) = v2w where v2

is given by the formula (A.5).
A similar analysis on H1(E,Z), which we identify with the orthogonal

complement of ker(f∗), yields the formula above for v1.
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Proposition A.6. For x ∈ W d2 the cusp corresponding to the two cylinder
prototype (a, b, c, e), we have that

v1(x)v2(x) ≤
d2 − e2

4
.

Equality holds if and only if gcd(b, c) divides gcd(λ, λ′).

Note that the right hand side of the inequality above satisfies

bc =
d2 − e2

4
= λλ′. (A.6)

Proof. We will show that m = v1(x)v2(x) divides bc = (d2 − e2)/4. For a
prime p and integer n, let vp(n) denote the largest exponent e such that pe

divides n. From (A.5) we have

vp(m) = min(vp(b), vp(λ)) + min(vp(c), vp(λ
′))+

min(vp(c), vp(λ)) + min(vp(b), vp(λ
′))− 2min(vp(b), vp(c)). (A.7)

Note that this equation is symmetric in (b, c) and in (λ, λ′), so we may assume
vp(b) ≤ vp(c) and vp(λ) ≤ vp(λ

′). The equality bc = λλ′ implies

vp(b) + vp(c) = vp(λ) + vp(λ
′).

If vp(b) ≤ vp(λ), we have vp(λ
′) ≤ vp(c) and

vp(m) = vp(λ
′) + vp(λ) = vp(bc).

If vp(b) > vp(λ), we have vp(λ
′) > vp(c) and

vp(m) = 2vp(λ) + vp(c)− vp(b) < vp(λ) + vp(λ
′) = vp(bc).

We conclude that vp(m) ≤ vp(bc) for each prime p, and m divides bc =
(d2 − e2)/4.

We have equality m = bc if and only if vp(m) = vp(bc) for all primes p.
In the argument above, this occurs exactly when all the primes are of the
first type. The condition that m = bc is

min(vp(b), vp(c)) ≤ min(vp(λ), vp(λ
′)) for all p,

i.e. gcd(b, c) divides gcd(λ, λ′).

Proposition A.7. Suppose d ≥ 3 is odd. There is a unique two-cylinder

cusp x ∈ W
0
d2 with

v1(x) = (d+ 1)/2, v2(x) = (d− 1)/2.

If d > 3, there is a unique two-cylinder cusp x ∈ W
1
d2 with

v1(x) = (d− 1)/2, v2(x) = (d+ 1)/2.

23



Proof. Suppose (a, b, c, e) corresponds to a cusp with v1 = (d + 1)/2 and
v2 = (d− 1)/2. Since v1v2 = (d2 − 1)/4 ≤ (d2 − e2)/4, we must have e = 1 or
−1. From λ− λ′ = e, we have that gcd(λ, λ′) = 1 and, by Proposition A.6,
the equality v1v2 = (d2 − e2)/4 implies that gcd(b, c) = 1.

Assume e = 1. From (A.5) and v1 = λ, we have gcd(b, λ′) = 1. From
v2 = λ′, we have gcd(b, λ) = 1. Since b divides bc = λλ′, b = 1, c = (d2−1)/4,
which is impossible since e + c < b. If e = −1, we similarly conclude that
c = 1, b = (d2− 1)/4. The conditions on v1, v2 determine a unique prototype
(0, (d2 − 1)/4, 1,−1). This is a valid prototype with invariant ϵ = 0 (cf. [Mc1,
Thm. 5.3]).

A similar argument shows that, if v1 = (d − 1)/2, v2 = (d + 1)/2, the
prototype is (0, (d2 − 1)/4, 1, 1), which is a valid prototype provided d > 3.
This prototype has invariant ϵ = 1.

Proposition A.8. If d ≡ 0 mod 4, there is a unique two-cylinder cusp
x ∈ W d2 with

v1(x) = (d2 − 4)/4, v2(x) = 1.

If d ≡ 2 mod 4, there is a unique two-cylinder cusp x ∈ W d2 with

v1(x) = (d2 − 16)/4, v2(x) = 1.

Proof. Suppose d ≡ 0 mod 4. First note that the prototype (a, b, c, e) =
(0, (d+ 2)/2, (d− 2)/2,−2) is a valid prototype, and corresponds to a cusp
with v1 = (d2 − 4)/4 and v2 = 1. Conversely, suppose v1 = (d2 − 4)/4 and
v2 = 1 for a cusp with prototype (a, b, c, e). Since v1v2 = (d2 − 4)/4 divides
(d2 − e2)/4 (proof of Proposition A.6), we have that e = 2 or −2. Also,
gcd(b, c) = gcd(λ, λ′) = 1 since λ is odd and λ − λ′ = e = ±2. From the
formula for v1, we see that

bc = gcd(b, λ′) gcd(c, λ) = λλ′

which holds only if b = λ′ and c = λ. We conclude that the prototype is
(0, (d+2)/2, (d− 2)/2,−2) or (0, (d− 2)/2, (d+2)/2, 2), but the latter is not
a valid prototype since it violates e+ c < b.

Now suppose d ≡ 2 mod 4, where a similar argument yields the desired
result. The prototype (a, b, c, e) = (0, (d+ 4)/2, (d− 4)/2,−4) is a valid pro-
totype, and corresponds to a cusp with v1 = (d2 − 16)/4, v2 = 1. Conversely,
suppose v1 = (d2 − 16)/4 and v2 = 1 for a cusp with prototype (a, b, c, e).
Since v1v2 = (d2 − 16)/4 divides (d2 − e2)/4, we have that e = 4 or −4.
Also, gcd(b, c) = gcd(λ, λ′) = 1 since λ is odd and λ − λ′ = e = ±4. From
the formula for v1, we see that gcd(b, λ′) = λ′ and gcd(c, λ) = λ. From
bc = λλ′, we have b = λ′ and c = λ. We conclude that the prototype is
either (0, (d+4)/4, (d− 4)/4,−4) or (0, (d− 4)/4, (d+4)/4, 4), and the latter
violates e+ c < b.
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