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without sacrificing accuracy has remained an open problem.

In this paper, we provide a solution based on the tridi-

agonalization algorithm of Lanczos (1950). Our method

takes inspiration from KISS-GP’s mean computations: we

express the predictive covariance between x∗
i and x∗

j as

w(x∗
i )

⊤C w(x∗
j ), where C is an m × m matrix depen-

dent only on training data. However, we take advantage

of the fact that C affords fast matrix-vector multiplications

(MVMs) and avoid explicitly computing the matrix. Using

the Lanczos algorithm, we can efficiently decompose C as

two rank-k matrices C≈RTR′ in nearly linear time. After

this one-time upfront computation, and due to the special

structure of R,R′, all variances can be computed in con-

stant time – O(k) – per (co)variance entry. We extend this

method to sample from the predictive distribution at t points

in O(t+m) time – independent of training dataset size.

We refer to this method as LanczOs Variance Estimates, or

LOVE for short.1 LOVE has the lowest asymptotic com-

plexity for computing predictive (co)variances and drawing

samples with GPs. We empirically validate LOVE on seven

datasets and find that it consistently provides substantial

speedups over existing methods without sacrificing accu-

racy. Variances and samples are accurate to within four

decimals, and can be computed up to 18,000 times faster.

2. Background

A Gaussian process is a prior over functions, p(f(x)),
specified by a prior mean function µ(x) and prior covari-

ance function k(x,x′). Given a dataset of observations

D = (X,y) = {(xi, yi)}
n
i=1 and a Gaussian noise model,

the posterior p(f(x) |D) is again a Gaussian process with

mean µf |D(x
∗) and covariance kf |D(x

∗,x∗′):

µf |D(x
∗) = µ(x∗) + k⊤

Xx
∗K̂−1

XX(y − µ(X)), (1)

kf |D(x
∗,x∗′) = kx∗

x
∗′ − k⊤

Xx
∗K̂−1

XXkXx
∗′ , (2)

where KAB denotes the kernel matrix between A and B,

K̂XX = KXX + σ2I (for observed noise σ) and y =
[y(x1), . . . , y(xn)]

⊤. Given a set of t test points X∗, the

equations above give rise to a t dimensional multivariate

Gaussian joint distribution p([f(x∗
1), ..., f(x

∗
t ))] | D) over

the function values of the t test points. This last property

allows for sampling functions from a posterior Gaussian

process by sampling from this joint predictive distribution.

For a full overview, see (Rasmussen & Williams, 2006).

2.1. Inference with matrix-vector multiplies

Computing predictive means and variances with (1) and

(2) requires computing solves with the kernel matrix K̂XX

1 LOVE is implemented in the GPyTorch library. Examples
are available at http://bit.ly/gpytorch-examples.

(e.g. K̂−1
XXy). These solves are often computed using the

Cholesky decomposition of K̂XX = LL⊤, which requires

O(n3) time to compute. Linear conjugate gradients (CG)

provides an alternative approach, computing solves through

matrix-vector multiplies (MVMs). CG exploits the fact that

the solution A−1b is the unique minimizer of the quadratic

function f(x) = 1
2x

⊤Ax−x⊤b for positive definite matri-

ces (Golub & Van Loan, 2012). This function is minimized

with a simple three-term recurrence, where each iteration

involves a single MVM with the matrix A.

After n iterations CG is guaranteed to converge to the exact

solution A−1b, although in practice numerical convergence

may require substantially fewer than n iterations. Extremely

accurate solutions typically require only k ≪ n iterations

(depending on the conditioning of A) and k ≤ 100 suffices

in most cases (Golub & Van Loan, 2012). For the kernel

matrix K̂XX , the standard running time of k CG iterations is

O(kn2) (the time for k MVMs). This runtime, which is al-

ready faster than the Cholesky decomposition, can be greatly

improved if the kernel matrix KXX affords fast MVMs. Fast

MVMs are possible if the data are structured (Cunningham

et al., 2008; Saatçi, 2012), or by using a structured inducing

point method (Wilson & Nickisch, 2015).

2.2. The Lanczos algorithm

The Lanczos algorithm factorizes a symmetric matrix A ∈
R

n×n as QTQ⊤, where T ∈Rn×n is symmetric tridiagonal

and Q∈Rn×n is orthonormal. For a full discussion of the

Lanczos algorithm see Golub & Van Loan (2012). Briefly,

the Lanczos algorithm uses a probe vector b and computes

an orthogonal basis of the Krylov subspace K(A,b):

K(A,b) = span
{
b, Ab, A2b, . . . , An−1b

}
.

Applying Gram-Schmidt orthogonalization to these vectors

produces the columns of Q, [b/‖b‖,q2,q3, . . . ,qn] (here

‖b‖ is the Euclidean norm of b). The orthogonalization

coefficients are collected into T . Because A is symmetric,

each vector needs only be orthogonalized against the two

preceding vectors, which results in the tridiagonal structure

of T (Golub & Van Loan, 2012). The orthogonalized vectors

and coefficients are computed in an iterative manner. k
iterations produces the first k orthogonal vectors of Qk =
[q1, . . . ,qk]∈R

n×k) and their corresponding coefficients

Tk∈R
k×k. Similarly to CG, these k iterations require only

O(k) matrix vector multiplies with the original matrix A,

which again is ideal for matrices that afford fast MVMs.

The Lanczos algorithm can be used in the context of GPs

for computing log determinants (Dong et al., 2017), and

can be used to speed up inference when there is product

structure (Gardner et al., 2018). Another application of the

Lanczos algorithm is performing matrix solves (Lanczos,

1950; Parlett, 1980; Saad, 1987). Given a symmetric matrix
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Table 1. Asymptotic complexities of predictive (co)variances (n training points, m inducing points, k Lanczos/CG iterations) and

sampling from the predictive distribution (s samples, t test points).

Method
Pre-computation Computing variances Drawing s samples

(time) (storage) (time) (time)

Standard GP O(n3) O(n2) O(n2) O(tn2 + t2(n+ s) + t3)
SGPR O(nm2) O(m2) O(m2) O(tm2 + t2(m+ s) + t3)

KISS-GP – – O(k(n+m logm)) O(kt(n+m logm)+t2(m+ s)+t3)
KISS-GP (w/ LOVE) O(k(n+m logm)) O(km) O(k) O(ks(t+m))

A and a single vector b, the matrix solve A−1b is computed

by starting the Lanczos algorithm of A with probe vector b.

After k iterations, the solution A−1b can be approximated

using the computed Lanczos factors Qk and Tk as

A−1b ≈ ‖b‖QkT
−1
k e1, (3)

where e1 is the unit vector [1, 0, 0, . . . , 0]. These solves tend

to be very accurate after k ≪ n iterations, since the eigen-

values of the T matrix converge rapidly to the largest and

smallest eigenvalues of A (Demmel, 1997). The exact rate

of convergence depends on the conditioning of A (Golub &

Van Loan, 2012), although in practice we find that k ≤ 100
produces extremely accurate solves for most matrices (see

Section 4). In practice, CG tends to be preferred for matrix

solves since Lanczos solves require storing the Qk∈R
n×k

matrix. However, one advantage of Lanczos is that the Qk

and Tk matrices can be used to jump-start subsequent solves

A−1b′. Parlett (1980), Saad (1987), Schneider & Willsky

(2001), and Nickisch et al. (2009) argue that solves can be

approximated as

A−1b′ ≈ QkT
−1
k Q⊤

k b
′, (4)

where Qk and Tk come from a previous solve A−1b.

2.3. Kernel Interpolation for Scalable Structured GPs

Structured kernel interpolation (SKI) (Wilson & Nickisch,

2015) is an inducing point method explicitly designed for

the MVM-based inference described above. Given a set of

m inducing points, U = [u1, . . . ,um], SKI assumes that a

data point x is well-approximated as a local interpolation of

U . Using cubic interpolation (Keys, 1981), x is expressed in

terms of its 4 closest inducing points, and the interpolation

weights are captured in a sparse vector wx. The wx vectors

are used to approximate the kernel matrix KXX ≈ K̃XX :

K̃XX = W⊤
XKUUWX . (5)

Here, WX = [wx1
, . . . ,wxn

] contains the interpolation

vectors for all xi, and KUU is the covariance matrix between

inducing points. MVMs with K̃XX (i.e. W⊤
XKUUWXv)

require at most O(n +m2) time due to the O(n) sparsity

of WX . Wilson & Nickisch (2015) reduce this runtime even

further with Kernel Interpolation for Scalable Structured

GPs (KISS-GP), in which all inducing points U lie on a

regularly spaced grid. This gives KUU Toeplitz structure

(or Kronecker and Toeplitz structure), resulting in the ability

to perform MVMs in at most O(n+m logm) time.

Computing predictive means. One advantage of KISS-

GP’s fast MVMs is the ability to perform constant time pre-

dictive mean calculations (Wilson et al., 2015). Substituting

the KISS-GP approximate kernel into (1) and assuming a

prior mean of 0 for notational brevity, the predictive mean

is given by

µf |D(x
∗) = w⊤

x
∗KUUWX(W⊤

XKUUWX+σ2I)−1y︸ ︷︷ ︸
a

. (6)

Because wx
∗ is the only term in (6) that depends on x∗,

the remainder of the equation (denoted as a) can be pre-

computed: µf |D(x
∗) = w⊤

x
∗a. (Throughout this paper blue

highlights computations that don’t depend on test data.)

This pre-computation takesO(n+m logm) time using CG.

After computing a, the multiplication w⊤
x
∗a requires O(1)

time, as wx
∗ has only four nonzero elements.

3. Lanczos Variance Estimates (LOVE)

In this section we introduce LOVE, an approach to effi-

ciently approximate the predictive covariance

kf |D(x
∗
i ,x

∗
j ) = kx∗

i
x
∗

j
− k⊤

Xx
∗

i
(KXX + σ2I)−1kXx

∗

j
,

where X∗ = [x∗
1, . . .x

∗
t ] denotes a set of t test points, and

X = [x1, . . .xn] a set of n training points. Solving (KXX+
σ2I)−1 naı̈vely takesO(n3) time, but is typically performed

as a one-type pre-computation during training since KXX

does not depend on the test data. At test time, all covariance

calculations will then costO(n2). In what follows, we build

a significantly faster method for (co-)variance computations,

mirroring this pre-compute phase and test phase structure.

3.1. A first O(m2) approach with KISS-GP

It is possible to obtain some computational savings when

using inducing point methods. For example, we can re-

place kXx
∗

i
and KXX with their corresponding KISS-GP

approximations, k̃Xx
∗

i
and K̃XX , which we restate here:

k̃Xx
∗

i
= W⊤

XKUUwx
∗

i
, K̃XX = W⊤

XKUUWX .
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WX is the sparse interpolation matrix for training points

X . wx
∗

i
and wx

∗

j
are the sparse interpolations for x∗

i and

x∗
j respectively. Substituting these into (2) results in the

following approximation to the predictive covariance:

kf |D(x
∗
i ,x

∗
j ) ≈ kx∗

i
x
∗

j
− k̃⊤

Xx
∗

i
(K̃XX + σ2I)−1k̃Xx

∗

j
. (7)

By fully expanding the second term in (7), we obtain

w⊤
x
∗

i
KUUWX(K̃XX + σ2I)−1W⊤

XKUU︸ ︷︷ ︸
C

wx
∗

j
(8)

Precomputation phase. C, the braced portion of (8), does

not depend on the test points x∗
i , x∗

j and therefore can be

pre-computed during training. The covariance becomes:

kf |D(x
∗
i ,x

∗
j ) ≈ kx∗

i
x
∗

j
−w⊤

x
∗

i
C wx

∗

j
(9)

In (8), we see that primary cost of computing C is the m
solves with K̃XX + σ2I: one for each column vector in

W⊤
XKUU . Since K̃XX is a KISS-GP approximation, each

solve isO(n+m logm) time with CG (Wilson & Nickisch,

2015). The total time for m solves is O(mn+m2 logm).

Test phase. As w∗
i contains only four nonzero elements, the

inner product of w∗
i with a vector takes O(1) time, and the

multiplication w∗⊤
i C requires O(m) time during testing.

Limitations. Although this technique offers computational

savings over non-inducing point methods, the quadratic

dependence on m in the pre-computation phase is a com-

putational bottleneck. In contrast, all other operations with

KISS-GP require at most linear storage and near-linear time.

Indeed, one of the hallmarks of KISS-GP is the ability to use

a very large number of inducing points m = Θ(n) so that

kernel computations are nearly exact. Therefore, in prac-

tice a quadratic dependence on m is infeasible and so no

terms are pre-computed.2 Variances are instead computed

using (7), computing each term in the equation from scratch.

Using CG, this has a cost of O(kn + km logm) for each

(co-)variance computation, where k is the number of CG it-

erations. This dependence on n and m may be cumbersome

when performing many variance computations.

3.2. Fast predictive (co-)variances with LOVE

We propose to overcome these limitations through an altered

pre-computation step. In particular, we approximate C in (9)

as a low rank matrix. Letting R and R′ be k ×m matrices

such that R⊤R′ ≈ C, we rewrite (9) as:

kf |D(x
∗
i ,x

∗
j ) ≈ kx∗

i
x
∗

j
− (Rw∗

i )
⊤R′ w∗

j . (10)

2 Wilson et al. (2015) (Section 5.1.2) describe an alternative
procedure that approximates C as a diagonal matrix for fast vari-
ances, but typically incurs much greater (e.g., more than 20%)
error, which is dominated by the number of terms in a stochastic
expansion, compared to the number of inducing points.

Variance computations with (10) take O(k) time due to the

sparsity of wx
∗

i
and wx

∗

j
. Recalling the Lanczos approxima-

tion (K̃XX + σ2I)−1b ≈ QkT
−1
k Q⊤

k b from Section 2.2,

we can efficiently derive forms for R and R′:

C = KUUWX (K̃XX + σ2I)−1

︸ ︷︷ ︸
Apply Lanczos

W⊤
XKUU

≈ KUUWX(QkT
−1
k Q⊤

k )W
⊤
XKUU

= KUUWXQk︸ ︷︷ ︸
R⊤

T−1
k Q⊤

k W
⊤
XKUU︸ ︷︷ ︸

R′

To compute R and R′, we perform k iterations of Lanc-

zos to achieve (K̃XX + σ2I) ≈ QkTkQ
⊤
k using the av-

erage column vector b = 1
m
W⊤

XKUU1 as a probe vector.

This partial Lanczos decomposition requires k MVMs with

(K̃XX + σ2I) for a total of O(kn + km logm) time (be-

cause of the KISS-GP approximation). R and R′ are m× k
matrices, and thus require O(mk) storage.

To compute R, we first multiply WXQk, which takes

O(kn) time due sparsity of WX . The result is a m × k
matrix. Since KUU has Toeplitz structure, the multiplica-

tion KUU (WXQk) takes O(km logm) time (Saatçi, 2012).

Therefore, computing R takesO(kn+km logm) total time.

To compute R′, note that R′ = T−1
k R⊤. Since K̃XX is

positive definite, T is as well (by properties of the Lanczos

algorithm). We thus compute T−1
k R⊤ using the Cholesky

decomposition of T . Computing/using this decomposition

takes O(km) time since T is tridiagonal (Loan, 1999).

In total, the entire pre-computation phase takes onlyO(kn+
km logm) time. This is the same amount of time of a

single marginal likelihood computation. We perform the

pre-computation as part of the training procedure since none

of the terms depend on test data. Therefore, during test time

all predictive variances can be computed inO(k) time using

(10). As stated in Section 2.2, k depends on the conditioning

of the matrix and not its size (Golub & Van Loan, 2012).

k ≤ 100 is sufficient for most matrices in practice (Golub

& Van Loan, 2012), and therefore k can be considered to be

constant. Running times are summarized in Table 1.

3.3. Predictive distribution sampling with LOVE

LOVE can also be used to compute predictive covari-

ances and operations involving the predictive covariance

matrix. Let X∗ = [x∗
1, . . . ,x

∗
t ] be a test set of t points.

To draw samples from f∗ | D — the predictive function

evaluated on x∗
1, . . . ,x

∗
t , the cross-covariance terms (i.e.

kf |D(x
∗
i ,x

∗
j )) are necessary in addition to the variance

terms (kf |D(x
∗
i ,x

∗
i )). Sampling GP posterior functions is a

common operation. In Bayesian optimization for example,

several popular acquisition functions – such as predictive

entropy search (Hernández-Lobato et al., 2014), max-value

entropy search (Wang & Jegelka, 2017), and knowledge
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gradient (Frazier et al., 2009) – require posterior sampling.

However, posterior sampling is an expensive operation when

querying at many test points. The predictive distribution

f∗ |D is multivariate normal with mean µf |D(X
∗) ∈ R

t and

covariance kf |D(X
∗, X∗) ∈ R

t×t. We sample f∗ | D by

reparametrizing Gaussian noise samples v ∼ N (0, It×t):

µf |D(X
∗) + Sv, (11)

where S is a matrix such that SS⊤ = kf |D(X
∗, X∗). Typ-

ically SS⊤ is taken to be the Cholesky decomposition of

kf |D(X
∗, X∗). Computing this decomposition incurs a

O(t3) cost on top of the O(t2) covariance evaluations. This

may be costly, even with constant-time covariance computa-

tions. Parametric approximations are often used instead of

exact sampling (Deisenroth & Rasmussen, 2011).

A Fast Low-Rank Sampling Matrix. We use LOVE and

KISS-GP to rewrite (10) as

kf |D(X
∗, X∗) ≈W⊤

X∗KUUWX∗ − (RWX∗)⊤(R′WX∗)

= W⊤
X∗

(
KUU −R⊤R′

)
WX∗ . (12)

where WX∗ = [wx∗

1
, . . . ,wx∗

n
] is the interpolation matrix

for test points. We have reduced the full covariance matrix

to a test-independent term (KUU −R⊤R′) that can be pre-

computed. We apply the Lanczos algorithm on this term

during pre-computation to obtain a rank-k approximation:

KUU −R⊤R′ ≈ Q′
kT

′
kQ

′⊤
k . (13)

This Lanczos decomposition requires k matrix vector

multiplies with KUU −R⊤R′, each of which requires

O(m logm) time. Substituting (13) into (12), we get:

kf |D(X
∗, X∗) = W⊤

X∗Q′
kT

′
kQ

′⊤
k WX∗ . (14)

If we take the Cholesky decomposition of T ′
k = LL⊤ (a

O(k) operation since T ′
k is tridiagonal), we rewrite (14) as

kf |D(X
∗, X∗) ≈W⊤

X∗Q′
kL︸︷︷︸
S

L⊤Q′⊤
k︸ ︷︷ ︸

S⊤

WX∗ . (15)

Setting S = Q′
kLTk

, we see that kf |D(X
∗, X∗) =

(W⊤
XS)(W⊤

XS)⊤. S ∈ R
m×k can be precomputed and

cached since it does not depend on test data. In total, this

pre-computation takes O(km logm + mk2) time in addi-

tion to what is required for fast variances. To sample from

the predictive distribution, we need to evaluate (11), which

involves multiplying W⊤
X∗Sv. Multiplying v by S requires

O(mk) time, and finally multiplying by W⊤
X∗ takes O(tk)

time. Therefore, drawing s samples (corresponding to s
different values of v) takes O(sk(t+m)) time total during

the testing phase (see Table 1) – a linear dependence on t.

Algorithm 1: LOVE for fast predictive variances.

Input :wx∗

i
, wx∗

j
– interpolation vectors for x∗

i , x∗
j

kx∗

i
,x∗

j
– prior covariance between x∗

i , x∗
j

b = 1
m
W⊤

XKUU1 – average col. of W⊤
XKUU

mvm KXX(): func. that performs MVMs with

(W⊤
XKUUWX + σ2I) ≈ K̂XX

mvm KUX(): func. that performs MVMs with

(KUUWX) ≈ KUX

Output :Approximate predictive variance kf |D(x
∗
i ,x

∗
j ).

if R,R′ have not previously been computed then
Qk, Tk ← lanczosk( mvm KXX, b)

// k iter. of Lanczos w/

// matrix K̂XX and probe vec. b

LTk
← cholesky factor( Tk)

R← ( mvm KUX( Qk) )⊤ ; // R = Q⊤

k W
⊤

XKUU

R′ ← cholesky solve(R, LTk
)

// R′
= T−1

k
Q⊤

k W
⊤

XKUU

end

u← sparse mm( R, wx∗

i
)

v← sparse mm( R′, wx∗

j
)

return kx∗

i
,x∗

j
− uTv

3.4. Extension to additive kernel compositions

LOVE is applicable even when the KISS-GP approximation

is used with an additive composition of kernels,

k̃(xi,xj) = w(1)⊤
xi

K
(1)
UUw

(1)
xj

+ . . .+w(d)⊤
xi

K
(d)
UUw

(d)
xj

.

Additive structure has recently been a focus in several

Bayesian optimization settings, since the cumulative regret

of additive models depends linearly on the number of dimen-

sions (Kandasamy et al., 2015; Wang et al., 2017; Gardner

et al., 2017; Wang & Jegelka, 2017). Additionally, deep

kernel learning GPs (Wilson et al., 2016b;a) typically uses

sums of one-dimensional kernel functions. To apply LOVE,

we note that additive composition can be re-written as

k̃(xi,xj) =




w
(1)
xi

...

w
(d)
xi




⊤


K
(1)
UU . . . 0
...

. . .
...

0 . . . K
(d)
UU







w
(1)
xj

...

w
(d)
xj


 . (16)

The block matrices in (16) are analogs of their 1-

dimensional counterparts in (5). Therefore, we can directly

apply Algorithm 1, replacing WX , wx
∗

i
, wx

∗

j
, and KUU

with their block forms. The block w vectors are O(d)-
sparse, and therefore interpolation takes O(d) time. MVMs

with the block KUU matrix take O(dm logm) time by ex-

ploiting the block-diagonal structure. With d additive com-

ponents, predictive variance computations cost only a factor

O(d) more than their 1-dimensional counterparts.
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4. Results

In this section we demonstrate the effectiveness and speed

of LOVE, both at computing predictive variances and also at

posterior sampling. All LOVE variances are computed with

k = 50 Lanczos iterations, and KISS-GP models use m=
10,000 inducing points unless otherwise stated. We perform

experiments using the GPyTorch library.3 We optimize

models with ADAM (Kingma & Ba, 2015) and a learning

rate of 0.1. All timing experiments utilize GPU acceleration,

performed on a NVIDIA GTX 1070.

4.1. Predictive Variances

We measure the accuracy and speed of KISS-GP/LOVE

at computing predictive variances. We compare variances

computed with a KISS-GP/LOVE model against variances

computed with an Exact GP (Exact). On datasets that are

too large to run exact GP inference, we instead compare

the KISS-GP/LOVE variances against KISS-GP variances

computed in the standard way (KISS-GP w/o LOVE). Wil-

son et al. (2015) show that KISS-GP variances recover the

exact variance up to 4 decimal places. Therefore, we will

know that KISS-GP/LOVE produces accurate variances if it

matches standard KISS-GP w/o LOVE. We report the scaled

mean absolute error (SMAE)4 (Rasmussen & Williams,

2006) of LOVE variances compared against these base-

lines. For each dataset, we optimize the hyperparameters of

a KISS-GP model. We then use the same hyperparameters

for each baseline model when computing variances.

One-dimensional example. We first demonstrate LOVE

on a complex one-dimensional regression task. The airline

passenger dataset (Airline) measures the average monthly

number of passengers from 1949 to 1961 (Hyndman, 2005).

We aim to extrapolate the numbers for the final 4 years

(48 measurements) given data for the first 8 years (96 mea-

surements). Accurate extrapolation on this dataset requires

a kernel function capable of expressing various patterns,

such as the spectral mixture (SM) kernel (Wilson & Adams,

2013). Our goal is to evaluate if LOVE produces reliable

predictive variances, even with complex kernel functions.

We compute the variances for Exact GP, KISS-GP w/o

LOVE, and KISS-GP with LOVE models with a 10-mixture

SM kernel. In Figure 1, we see that the KISS-GP/LOVE con-

fidence intervals match the Exact GP’s intervals extremely

well. The SMAE of LOVE’s predicted variances (compared

against Exact GP variances) is 1.29× 10−4. Although not

shown in the plot, we confirm the reliability of these pre-

dictions by computing the log-likelihood of the test data.

We compare the KISS-GP/LOVE model to an Exact GP, a

KISS-GP model without LOVE, and a sparse variational GP

3 github.com/cornellius-gp/gpytorch
4 Mean absolute error divided by the variance of y.

(SGPR) model with m = 1000 inducing points.5 (Titsias,

2009; Hensman et al., 2013). All methods achieve nearly

identical log-likelihoods, ranging from −221 to −222.

Large datasets. We measure the accuracy of LOVE vari-

ances on several large-scale regression benchmarks from the

UCI repository (Asuncion & Newman, 2007). We compute

the variance for all test set data points. Each of the models

use deep RBF kernels (DKL) on these datasets with the

architectures described in (Wilson et al., 2016a). Deep RBF

kernels are extremely flexible (with up to 105 hyperparame-

ters) and are well suited to model many types of functions.

In Table 2, we report the SMAE of the KISS-GP/LOVE vari-

ances compared against the two baselines. On all datasets,

we find that LOVE matches KISS-GP w/o LOVE variances

to at least 5 decimal points. Furthermore, KISS-GP/LOVE

is able to approximate Exact variances with no more than

than 0.1% average error. For any given test point, the max-

imum variance error is similarly small (e.g. ≤ 2.6% on

Skillcraft and≤2.0% on PoleTele). Therefore, using LOVE

to compute variances results in almost no loss in accuracy.

Speedup. In Table 2 we compare the variance computation

speed of a KISS-GP model with and without LOVE on the

UCI datasets. In addition, we compare against the speed

of SGPR with a standard RBF kernel, a competitive scal-

able GP approach. On all datasets, we measure the time to

compute variances from scratch, which includes the cost

of pre-computation (though, as stated in Section 3, this typ-

ically occurs during training). In addition, we report the

speed after pre-computing any terms that aren’t specific to

test points (which corresponds to the test time speed). We

see in Table 2 that KISS-GP with LOVE yields a substan-

tial speedup over KISS-GP without LOVE. The speedup is

between 4× and 44×, even when accounting for LOVE’s

precomputation. At test time after pre-computation, LOVE

is up to 2,000× faster. Additionally, KISS-GP/LOVE is sig-

nificantly faster than SGPR models. For SGPR models with

m = 100 inducing points, the KISS-GP/LOVE model (with

m = 10,000 inducing points) is up to 10× faster before

pre-computation and 100× faster after. With m = 1000
SGPR models, KISS-GP/LOVE is up to 20×/500× faster

before/after precomputation. The biggest improvements are

obtained on the largest datasets since LOVE, unlike other

methods, is independent of dataset size at test time.

Accuracy vs. Lanczos iterations. In Figure 2, we mea-

sure the accuracy of LOVE as a function of the number of

Lanczos iterations (k). We train a KISS-GP model with a

deep RBF kernel on the four largest datasets from Table 2,

using the setup described above. We measure the SMAE

of KISS-GP/LOVE’s predictive variances compared against

the standard KISS-GP variances (KISS-GP w/o LOVE). As

seen in Figure 2, error decreases exponentially with the

5 Implemented in GPFlow (Matthews et al., 2017)
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