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Мы изучаем свойство принадлежности оператора Ганкеля (и его производ-
ных по параметру) с сильно осциллирующим символом классу ядерных опе-
раторов. Наш подход базируется на критерии Пеллера о ядерности операто-
ров Ханкеля и точном анализе, возникающего при этом тройного интеграла
с помощью метода перевала. Полученные результаты представляются опти-
мальными. Мы применяем их к изучению проблемы Коши для уравнения
Кортевега–де Фриза. Именно, устанавливается связь гладкости решения со
скоростью убывания начальных данных на плюс-бесконечности.
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1. Введение. В настоящей статье мы продолжаем изучать и применять опера-
торы Ганкеля, возникающие в методе обратной задачи рассеяния для интегрируе-
мых систем. Статья [1] является первой работой в нашем цикле, где явно просле-
живается связь между теорией операторов Ганкеля и методом обратной задачи для
уравнения Кортвега–де Фриза (КдФ). Это важное уравнение приведено и обсуж-
дено в п. 7. Отметим, что в интегральной форме операторы Ганкеля естествен-
но возникали уже в классических работах Л. Фадеева и В. Марченко по решению
одномерной обратной задачи квантовой теории рассеяния (смотри, например, хоро-
шо известную книгу Марченко [2]). Однако, хорошо разработанная теория этого
класса операторов (и даже само название) тогда не использовалась. Формулировка
теории рассеяния Фадеева–Марченко в терминах операторов Ганкеля и примене-
ния арсенала средств этой теории возникла уже в нашем веке в глубокой работе
А. Вольберга и П. Юдицкого [3] и продолжилась в цикле работ Юдицкого с раз-
личными соавторами (см. [4] как наиболее относящуюся к нашей). На самом деле,
в этих работах обратная задача рассеяния изучалась только для операторов Якоби,
а не для Шрёдингера и не в контексте интегрируемых систем. Постановка обратной
задачи для оператора Шредингера в терминах операторов Ганкеля и ее приложений
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к задаче Коши для КдФ было впервые дано в завершенной форме в нашей рабо-
те [5], где глубокие утверждении из теории ганкелевых операторов были использо-
ваны для ответа на многие открытые проблемы, связанные с КдФ. Недавняя рабо-
та [6] улучшает результаты [5] и мотивирована важными вопросами В. Е. Захарова,
сформулированными в [7], [8]. В настоящей работе мы концентрируемся на вопросе
о ядерности оператора Ганкеля, возникающего в методе обратной задачи рассеяния
для КдФ и его производных по параметрам, существенно улучшая при этом резуль-
таты работы [6]. Проблема в существенном сводится к ядерности оператора Ганкеля
(и его производных по 𝑥, 𝑡) вида

H(𝜙𝑥) := 𝐽𝑃−𝜙𝑥𝑃+ : 𝐻2(Π) → 𝐻2(Π), (1.1) {eq1.1}

где 𝐻2(Π) представляет собой пространство Харди в верхней полуплоскости

Π := {𝜆 ∈ C | Im 𝜆 > 0};

𝐽 – оператор отражения:

(𝐽𝑓)(𝜆) = 𝑓(−𝜆), 𝜆 ∈ R;

𝑃± есть аналитические проекторы, задаваемые согласно формулам

(𝑃+𝑓)(𝜉) =
1

2𝜋𝑖

∫︁ ∞

−∞

𝑓(𝜏)
𝜏 − 𝜉

𝑑𝜏, 𝜉 ∈ Π,

(𝑃−𝜙)(𝜉) = (𝐽𝑃+𝐽𝜙)(𝜉),

действующие в пространстве 𝐿2(R).
Отметим, что если 𝜉 принадлежит вещественной оси R, то написанный интеграл

понимается как предельное значение почти всюду по некасательным направлениям
из верхней полуплоскости Π.

Функция 𝜙𝑥 называется символом оператора Ганкеля. В настоящей работе мы
предполагаем, что 𝜙𝑥 есть ограниченная функция класса 𝐿∞(R), представленная
в виде

𝜙𝑥(𝜆) = 𝑇 (𝜆)𝐺−(𝜆)𝑒𝑖Φ(𝜆,𝑥). (1.2) {eq1.2}

Здесь
Φ(𝜆, 𝑥) = 8𝑡𝜆3 + 2𝑥𝜆, 𝑡 > 0, 𝑥 ∈ R. (1.3) {eq1.3}

Функция 𝐺−(𝜆) допускает представление в виде интеграла Фурье по полуоси

𝐺−(𝜆) =
∫︁ ∞

0

𝑒−2𝑖𝜆𝑠𝑔(𝑠) 𝑑𝑠, (1.4) {eq1.4}

где неотрицательнозначная почти всюду функция 𝑔(𝑠) ∈ 𝐿1(R+, (1 + 𝑠)𝛼), т.е.∫︁ ∞

0

𝑔(𝑠)(1 + 𝑠)𝛼𝑑𝑠 < ∞, 𝛼 > 0. (1.5) {eq1.5}

Отметим, что функция 𝐺−(𝜆) аналитична и ограничена в нижней полуплоскости,
что подчеркивает знак “−” в ее обозначении.
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Наконец, 𝑇 (𝜆) принадлежит 𝐻∞(Π) – пространству Харди аналитических, огра-
ниченных в верхней полуплоскости функций.

Основное своеобразие рассматриваемого оператора – в присутствии быстро осцил-
лирующей экспоненты в его символе (1.2). Обсуждение нетривиальности этого
вопроса возникло еще в нашей работе [1]. Но в предыдущих статьях мы вынуж-
дены были решать его путем либо (см. [5], [9]) наложения значительно более быст-
рого чем (1.5) убывания функции 𝑔(𝑠), либо (см. [6]) путем довольно сложного
и неестественного обхода этого вопроса, основанного на использовании результа-
тов [10] (полученных совершенно другой и довольно трудоемкой техникой).

Основным результатом работы является теорема 2.1, где мы доказываем не толь-
ко ядерность оператора Ганкеля с символом (1.2) при предположении, что в (1.5)
степень 𝛼 = 0, но и связь его дифференцируемости по 𝑥 с показателем 𝛼. Это позво-
ляет нам немедленно получить в теореме 7.1 важное заключение о связи убывания
начальных данных для уравнения КдФ на плюс бесконечности с гладкостью его
решений и, более того, представить решение в детерминантной форме (7.16). Основ-
ная сложность в доказательстве теоремы 2.1 состоит в учете сильной осцилляции
символа (1.2), (1.3), которая весьма существенным образом влияет на свойства ком-
пактности рассматриваемого оператора Ганкеля. С этой целью мы используем кри-
терий ядерности, содержащийся в ставшей уже классической работе [11] (см. также
монографию [12]). Для реализации этого критерия и оценки содержащихся в нем
кратных интегралов нам потребовалось использование метода перевала в случае,
когда точка перевала близка или совпадает с полюсом подынтегральной функции.
На этом пути получены точные асимптотические выражения, что позволяет нам
предполагать неулучшаемость результата, содержащегося в теореме 2.1.

В п. 2 мы формулируем основной результат настоящей работы. В п. 3 даются
некоторые вспомогательные утверждения и замечания, упрощающие дальнейшие
рассмотрения. Основными, в техническом плане, являются пп. 4 и 5, где с помо-
щью метода перевала оцениваются интегралы, содержащиеся в критерии Пеллера.
В п. 6 мы доказываем теорему 2.1. Наконец, п. 7 посвящен краткому обзору и исто-
рии метода обратной задачи рассеяния для уравнения КдФ, применению основного
результата работы к получению новой информации о разрешимости этого уравне-
ния, о свойствах решения и явной формуле для него.

2. Основной результат. Через S1 обозначим множество всех ядерных опера-
торов, действующих в пространстве 𝐻2(Π). Напомним, что компактный оператор
𝐴 ∈ S1, если последовательность его сингулярных чисел {𝑠𝑗(𝐴)}∞𝑗=1 суммируема.
При этом норма оператора 𝐴 в S1 определяется следующим образом:

‖𝐴‖S1 :=
∞∑︁

𝑗=1

|𝑠𝑗(𝐴)|.

Наряду с оператором (1.1) мы рассмотрим его производные по параметру 𝑥. Лег-
ко видеть, что

𝜕𝑗

𝜕𝑥𝑗
H(𝜙𝑥) = H(𝜙𝑗,𝑥), (2.1) {eq2.1}

где
𝜙𝑗,𝑥(𝜆) = (2𝑖)𝑗𝜆𝑗𝜙𝑥(𝜆), 𝑗 = 0, 1, 2, . . . . (2.2) {eq2.2}
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Здесь 𝜙0,𝑥(𝜆) := 𝜙𝑥(𝜆). Очевидно, что формула (2.1) корректна в случае, когда
𝜙𝑗,𝑥(𝜆) ∈ 𝐿∞(R).

Сформулируем главный результат настоящей работы.

Теорема 2.1. Пусть функция 𝜙𝑥(𝜆) имеет вид (1.2)–(1.4) с функцией 𝑔(𝑠) ∈
𝐿1(R+(1 + 𝑠)𝑗/2), 𝑗 = 0, 1, 2, . . . . Тогда оператор

𝜕𝑗

𝜕𝑥𝑗
H(𝜙𝑥) ∈ S1, 𝑗 = 0, 1, 2, . . . ,

при этом ⃦⃦⃦⃦
𝜕𝑗

𝜕𝑥𝑗
H(𝜙𝑥)

⃦⃦⃦⃦
S1

6

{︃
𝐿1, 𝑥 > 0,

𝐿2(1 + |𝑥|)𝑗/2, 𝑥 < 0,

где константы 𝐿1 , 𝐿2 не зависят от 𝑥 ∈ R.

3. Теорема Пеллера, основные интегралы и некоторые упрощения. До-
казательство теоремы 2.1 основывается на известном результате В. В. Пеллера. Мы
говорим, что аналитическая в области Π функция 𝑓(𝜉) принадлежит пространству
𝐴1

1(Π) тогда и только тогда, когда

‖𝑓‖𝐴1
1(Π) :=

∫︁ ∞

0

∫︁ ∞

−∞
|𝑓 ′′(𝜉1 + 𝑖𝜉2)| 𝑑𝜉1 𝑑𝜉2 + sup{𝑓(𝜉) | 𝜉2 > 1} < ∞, (3.1) {eq3.1}

где 𝜉 = 𝜉1+𝑖𝜉2 комплексная переменная, принадлежащая комплексной плоскости C.
Введем модификацию аналитического проектора

( ̃︀𝑃+𝑓)(𝜉) =
1

2𝜋𝑖

∫︁ ∞

−∞

(︂
1

𝜏 − 𝜉
− 𝜏

1 + 𝜏2

)︂
𝑓(𝜏) 𝑑𝜏.

Теорема 3.1 [11; с. 576]. Пусть 𝜙 ∈ 𝐿∞(R). Тогда H(𝜙) ∈ S1 в том и только
том случае, когда

( ̃︀𝑃+𝜙)(𝜉) ∈ 𝐴1
1(Π). (3.2) {eq3.2}

Для упрощения доказательства основной теоремы нам потребуется следующий
хорошо известный факт.

Лемма 3.2. Пусть 𝜙 = ℎ𝜙1 , где ℎ ∈ 𝐻∞(Π) и 𝜙1 ∈ 𝐿∞(R). Если оператор
H(𝜙1) ∈ S1 , то и оператор H(𝜙) ∈ S1 , причем

‖H(𝜙)‖S1 6 ‖ℎ‖𝐿∞‖H(𝜙1)‖S1 .

Доказательство. В самом деле,

H(𝜙) = 𝐽𝑃−(ℎ)𝑃−𝜙1𝑃
+ = (𝐽𝑃−ℎ𝐽)(𝐽𝑃−𝜙1𝑃

+) = (𝐽𝑃−ℎ𝐽)H(𝜙1).

То есть, H(𝜙) ∈ S1 и

‖H(𝜙)‖S1 6 ‖𝐽𝑃−ℎ𝐽‖𝐿2‖H(𝜙1)‖S1 6 ‖ℎ‖𝐿∞‖H(𝜙1)‖S1 .

Замечание 1. Символ 𝜙𝑗,𝑥(𝜆) содержит множитель 𝑇 (𝜆) ∈ 𝐻∞(Π). Поэтому
в дальнейшем мы будем рассматривать вместо него символ

𝜙0
𝑗,𝑥(𝜆) = 𝜆𝑗𝐺−(𝜆)𝑒𝑖Φ(𝜆,𝑥). (3.3) {eq3.3}
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Замечание 2. Лемма 3.2 также дает нам возможность рассматривать вместо
символа (3.3) случай символа

𝑒−𝑖2𝑎𝜆𝜙0
𝑗,𝑥(𝜆) = 𝜆𝑗𝐺−(𝜆)𝑒𝑖Φ(𝜆,𝑥−𝑎),

где 𝑎 > 0, поскольку 𝑒𝑖2𝑎𝜆 ∈ 𝐻∞(Π). Таким образом, в формуле (3.3) будем предпо-
лагать, что 𝑥 6 −𝑑, где 𝑑 > 0, некоторое число, определенное ниже (см. (4.9)).

Применяя теорему 3.1 к оператору Ганкеля с символом вида (3.3), мы должны
прежде всего оценить интегралы

𝐼𝑗(𝜉, 𝑥) :=
1

2𝜋𝑖

∫︁ ∞

−∞

(︂
1

𝜏 − 𝜉
− 𝜏

1 + 𝜏2

)︂
𝜏 𝑗 𝐺−(𝜏)𝑒−𝑖Φ(𝜏,𝑥) 𝑑𝜏, 𝜉 ∈ Π, 𝑗 = 0, 1, . . . ,

(3.4) {eq3.4}

𝐼
(2)
𝑗 (𝜉, 𝑥) :=

1
𝜋𝑖

∫︁ ∞

−∞

𝜏 𝑗 𝐺−(𝜏)𝑒−𝑖Φ(𝜏,𝑥)

(𝜏 − 𝜉)3
𝑑𝜏, 𝜉 ∈ Π, 𝑗 = 0, 1, . . . , (3.5) {eq3.5}

где (3.4) соответствует второму слагаемому в (3.1), а (3.5) – первому слагаемому
в этой формуле. Отметим, что (3.5) получается из интеграла (3.4) двукратным диф-
ференцированием по переменной 𝜉. Конечность осцилляторных интегралов (3.4)
и (3.5) доказывается в пп. 4 и 5 соответственно.

4. Оценка интеграла (3.4). Метод Перевала. Согласно (1.4) получаем

𝐺−(𝜏) =
∫︁ ∞

0

𝑒𝑖2𝜏𝑠𝑔(𝑠) 𝑑𝑠. (4.1) {eq4.1}

Предположим в этой секции и всюду в дальнейшем, что 𝑔(𝑠) > 0 почти всюду
и 𝑔(𝑠) ∈ 𝐿1(R+, (1 + 𝑠)𝑗/2). Таким образом, интеграл (3.4) может быть записан
следующим образом:

𝐼𝑗(𝜉, 𝑥) =
1

2𝜋𝑖

∫︁ ∞

−∞

(︂
1

𝜏 − 𝜉
− 𝜏

1 + 𝜏2

)︂
𝜏 𝑗𝑒−𝑖Φ(𝜏,𝑥)

(︂∫︁ ∞

0

𝑔(𝑠)𝑒𝑖2𝜏𝑠 𝑑𝑠

)︂
𝑑𝜏. (4.2) {eq4.2}

Меняя порядок интегрирования, получим

𝐼𝑗(𝜉, 𝑥) =
1
2

∫︁ ∞

0

𝑔(𝑠)𝐽𝑗(𝑠, 𝜉, 𝑥) 𝑑𝑠, (4.3) {eq4.3}

где

𝐽𝑗(𝑠, 𝜉, 𝑥) :=
1
𝜋𝑖

∫︁ ∞

−∞

(︂
1

𝜏 − 𝜉
− 𝜏

1 + 𝜏2

)︂
𝜏 𝑗𝑒−𝑖Φ(𝜏,𝑥−𝑠) 𝑑𝜏. (4.4) {eq4.4}

Ниже мы покажем, что (см. замечание 3)∫︁ ∞

0

𝑔(𝑠)|𝐽𝑗(𝑠, 𝜉, 𝑥)| 𝑑𝑠 < ∞.

Отсюда следует, что интеграл (3.4) конечен. Мы также покажем, что согласно
теоремы Фубини повторный интеграл (4.2) существует, а (4.2) и (4.3) равны между
собой.
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Сделаем замену переменных в (4.4):

𝜏 = 𝛽(𝑠)𝑢, 𝜉 = 𝛽(𝑠)𝜉′, где 𝛽(𝑠) =
(︂

(𝑠− 𝑥)
12𝑡

)︂1/2

. (4.5) {eq4.5}

Полагая

𝑆(𝑢) =
𝑢3

3
− 𝑢, Λ(𝑠, 𝑥) := Λ(𝑠) :=

(𝑠− 𝑥)3/2

(3𝑡)1/2
,

имеем
𝐽𝑗(𝑠, 𝜉, 𝑥) := ̃︀𝐽𝑗(𝑠, 𝜉′, 𝑥) = 𝛽𝑗(𝑠)̃︀𝐼𝑗(𝑠, 𝜉′, 𝑥)− 𝛽𝑗+2(𝑠)̂︀𝐼𝑗(𝑠, 𝑥), (4.6) {eq4.6}

где

̃︀𝐼𝑗(𝑠, 𝜉′, 𝑥) =
1
𝜋𝑖

∫︁ ∞

−∞

𝑢𝑗𝑒−𝑖Λ(𝑠)𝑆(𝑢)

𝑢− 𝜉′
𝑑𝑢, (4.7) {eq4.7}

̂︀𝐼(𝑠, 𝑥) =
1
𝜋𝑖

∫︁ ∞

−∞

𝑢𝑗+1𝑒−𝑖Λ(𝑠)𝑆(𝑢)

1 + 𝛽2(𝑠)𝑢2
𝑑𝑢. (4.8) {eq4.8}

Легко заметить, что положительный параметр Λ := Λ(𝑠) удовлетворяет условию

Λ(𝑠) > Λ(0) =
(−𝑥)3/2

(3𝑡)1/2
.

Согласно замечанию 2 можно считать −𝑥 > 𝑑 и, полагая

𝑑 = (3𝑡)1/3, (4.9) {eq4.9}

получим, что
Λ(𝑠) > 1. (4.10) {eq4.10}

Таким образом, Λ представляет собой большой положительный параметр и инте-
гралы (4.7), (4.8) могут быть оценены с помощью метода перевала.

Лемма 4.1. Интеграл (4.8) допускает следующую оценку:

|̂︀𝐼𝑗(𝑠, 𝑥)| 6 const
𝛽2(𝑠)Λ1/2(𝑠)

, (4.11) {eq4.11}

где ”const” не зависит от 𝑠 и 𝑥.

Доказательство. Найдем контур перевала для интеграла (4.8). Критические
точки 𝑢± находятся при этом из следующего уравнения:

𝑆′(𝑢) = 𝑢2 − 1 = 0, 𝑢± = ±1.

Легко подсчитать, что

𝑆(𝑢±) = ∓2
3

, 𝑆′′(𝑢±) = ±2, 𝑆′′′(𝑢±) = 2.

Таким образом, перевальные контуры определяются посредством следующих урав-
нений:

𝑆(𝑢) +
2
3

= (𝑢− 1)2 +
1
3
(𝑢− 1)3 = −𝑖𝑣2, 𝑣 ∈ R,

𝑆(𝑢)− 2
3

= −(𝑢 + 1)2 +
1
3
(𝑢− 1)3 = −𝑖𝑣2, 𝑣 ∈ R.

(4.12) {eq4.12}
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Нетрудно показать, что уравнения (4.12) однозначно разрешимы при любом 𝑣 ∈ R.
Обозначим эти решения через 𝑢±(𝑣) и введем перевальные контуры

Γ± := {𝑧 = 𝑢±(𝑣) | 𝑣 ∈ R}. (4.13) {eq4.13}

Легко видеть, что в окрестности критических точек (𝑢±(0) = ±1) имеют место
следующие асимптотические соотношения:

𝑢 := 𝑢+(𝑣) = 1 + 𝑒−𝑖𝜋/4𝑣 + 𝑂(𝑣2), 𝑣 ∈ [−𝜀, 𝜀], (4.14) {eq4.14}

𝑢 := 𝑢−(𝑣) = −1 + 𝑒𝑖𝜋/4𝑣 + 𝑂(𝑣2), 𝑣 ∈ [−𝜀, 𝜀]. (4.15) {eq4.15}

Если же 𝑣 достаточно велико, то нетрудно убедиться, что

𝑢+(𝑣) ∼ 3
√

3𝑒𝑖𝜋/2|𝑣|2/3, 𝑣 → −∞,

𝑢+(𝑣) ∼ 3
√

3𝑒−𝑖𝜋/6𝑣2/3, 𝑣 → +∞,

𝑢−(𝑣) ∼ 3
√

3𝑒𝑖𝜋/2𝑣2/3, 𝑣 → +∞,

𝑢−(𝑣) ∼ 3
√

3𝑒𝑖7𝜋/6|𝑣|2/3, 𝑣 → −∞.

(4.16) {eq4.16}

Трансформируем контур R интеграла (4.8) в перевальный контур Γ := Γ+ ∪ Γ−:

̂︀𝐼𝑗(𝑠, 𝑥) =
1
𝜋𝑖

∫︁
Γ

𝑢𝑗+1𝑒−𝑖Λ(𝑠)𝑆(𝑢)

1 + 𝛽2(𝑠)𝑢2
𝑑𝑢.

Делая замену переменных 𝑢 = 𝑢+(𝑣) и 𝑢 = 𝑢−(𝑣), соответственно получим

̂︀𝐼𝑗(𝑠, 𝑥) =
𝑒𝑖(2/3)Λ(𝑠)

𝜋𝑖

∫︁ ∞

−∞

𝑢𝑗+1
+ (𝑣)𝑒−Λ(𝑠)𝑣2

𝑢′+(𝑣)
1 + 𝛽2(𝑠)𝑢2

+(𝑣)
𝑑𝑣

+
𝑒−𝑖(2/3)Λ(𝑠)

𝜋𝑖

∫︁ ∞

−∞

𝑢𝑗+1
− (𝑣)𝑒−Λ(𝑠)𝑣2

𝑢′−(𝑣)
1 + 𝛽2(𝑠)𝑢2

−(𝑣)
𝑑𝑣.

Таким образом, согласно метода перевала (см. например Федорюк [13]) получим,
что

̂︀𝐼𝑗(𝑠, 𝑥) =
𝑒𝑖(2/3)Λ(𝑠)

√
𝜋𝑖

𝑒−𝑖𝜋/4

1 + 𝛽2(𝑠)
1

Λ1/2(𝑠)

+ (−1)𝑗+1 𝑒−𝑖(2/3)Λ(𝑠)

√
𝜋𝑖

𝑒𝑖𝜋/4

1 + 𝛽2(𝑠)
1

Λ1/2(𝑠)
+ 𝑂

(︂
1

𝛽2(𝑠)Λ(𝑠)

)︂
.

Откуда и вытекает соотношение (4.11).

Лемма 4.2. Интеграл (4.7) допускает следующее представление:̃︀𝐼𝑗(𝑠, 𝜉′, 𝑥) = ̃︀𝐼+
𝑗 (𝑠, 𝜉′, 𝑥) + ̃︀𝐼−𝑗 (𝑠, 𝜉′, 𝑥) + ̃︀𝐼𝑗,Res(𝑠, 𝜉′, 𝑥)

где

|̃︀𝐼 ±𝑗 (𝑠, 𝜉′, 𝑥)| 6 const

⎧⎪⎨⎪⎩
1

|𝜉′ ∓ 1|Λ1/2(𝑠)
, |𝜉′ ∓ 1|Λ1/2(𝑠) > 1,

1, |𝜉′ ∓ 1|Λ1/2(𝑠) 6 1,

(4.17) {eq4.17}

|̃︀𝐼 0
𝑗,Res(𝑠, 𝜉

′, 𝑥)| 6 const, (4.18) {eq4.18}

где “const”, не зависит от 𝑠, 𝜉′ и 𝑥.
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Доказательство. Перейдем в (4.7) к перевальному контуру Γ (= Γ+ ∪Γ−). По
пути трансформации R в Γ может быть пересечен полюс 𝑢 = 𝜉′. Таким образом, мы
получили следующее представление:

̃︀𝐼𝑗(𝑠, 𝜉′, 𝑥) = ̃︀𝐼+
𝑗 (𝑠, 𝜉′, 𝑥) + ̃︀𝐼−𝑗 (𝑠, 𝜉′, 𝑥) + ̃︀𝐼𝑗,Res(𝑠, 𝜉′, 𝑥), (4.19) {eq4.19}

где

̃︀𝐼 ±𝑗 (𝑠, 𝜉′, 𝑥) =
1
𝜋𝑖

∫︁
Γ±

𝑢𝑗𝑒−𝑖Λ(𝑠)𝑆(𝑢)

𝑢− 𝜉′
𝑑𝑢, (4.20) {eq4.20}

̃︀𝐼𝑗,Res(𝑠, 𝜉′, 𝑥) = 2(𝜉′)𝑗𝑒−𝑖Λ(𝑠)𝑆(𝜉′)𝑋𝐷Γ(𝜉′). (4.21) {eq4.21}

Здесь (4.21) представляет собой вычет в точке 𝑢 = 𝜉′, а 𝐷Γ – область, лежащая
в верхней полуплоскости Π, между кривыми Γ+ и Γ−.

Рассмотрим интегралы (4.20). Сделаем замену переменных 𝑢 = 𝑢±(𝑣) соответ-
ственно и рассмотрим сначала случай, когда

𝜉′ ∈ Π ∖𝐷1, 𝜉′ ∈ Π ∖𝐷−1,

где 𝐷±1 представляют полудиски вида

𝐷±1 = {|𝜉′± − 1| 6 1, Im 𝜉′ > 0}.

В этой ситуации мы можем считать, что

inf
𝑣∈R

|𝑢±(𝑣)− 𝜉′| > 𝛿, (4.22) {eq4.22}

где 𝛿 > 0 некоторое фиксированное число (в самом деле, если 𝜉′ ∈ Γ+ (Γ−) или 𝜉′

расположена достаточно близко к Γ+ (Γ−), мы можем трансформировать Γ+ (Γ−)
подходящим образом в окрестности точки 𝜉′).

Таким образом, согласно методу перевала получим, что (см. (4.14), (4.15))

̃︀𝐼𝑗(𝑠, 𝜉′, 𝑥) =
𝑒±𝑖(2/3)Λ(𝑠)

𝜋𝑖

∫︁
Γ±

𝑢𝑗
±(𝑣)𝑒−𝑖Λ(𝑠)𝑠2

𝑢±(𝑣)− 𝜉′
𝑢′±(𝑣) 𝑑𝑣

=
𝑒±𝑖(2/3)Λ(𝑠)∓𝑖𝜋/4

√
𝜋𝑖(±1− 𝜉′)

1
Λ1/2(𝑠)

+ 𝑂

(︂
1

Λ(𝑠)

)︂
.

В рассматриваемом случае величина |𝜉′ ∓ 1|Λ(𝑠) > 1 и мы получаем, что верхняя
оценка (4.17) выполняется.

Рассмотрим теперь случай 𝜉′ ∈ 𝐷1(𝐷−1). Обозначим через 𝑣±(𝜉) корень уравне-
ния

𝑢±(𝑣)− 𝜉′ = 0.

Очевидно, что (см. (4.12))

𝑣±(𝜉′) = 𝑒∓𝑖𝜋/4(𝜉′ ∓ 1)
(︂

1± 1
3
(𝜉′ − 1)

)︂1/2

. (4.23) {eq4.23}
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Воспользуемся следующим представлением:

̃︀𝐼 ±𝑗 (𝑠, 𝜉′, 𝑥) = 𝑒±𝑖(2/3)𝑖Λ(𝑠)(̃︀𝐼 ±𝑗,0(𝑠, 𝜉′, 𝑥) + ̃︀𝐼 ±𝑗,1(𝑠, 𝜉′, 𝑥))

:= 𝑒±𝑖(2/3)Λ(𝑠)

(︂
1
𝜋𝑖

∫︁ ∞

−∞

𝑒−Λ(𝑠)𝑣2

𝑣 − 𝑣±(𝜉′)
𝑑𝑣 +

1
𝜋𝑖

∫︁ ∞

−∞
𝐾±

𝑗 (𝑣, 𝜉′)𝑒−Λ(𝑠)𝑣2
𝑑𝑣

)︂
,

(4.24) {eq4.24}

где

𝐾±
𝑗 (𝑣, 𝜉′) =:

(︂
𝑢𝑗
±(𝑣)𝑢′+(𝑣)
𝑢±(𝑣)− 𝜉′

− 1
𝑣 − 𝑣±(𝜉′)

)︂
.

Легко видеть, что функция 𝐾±
𝑗 (𝑣, 𝜉′) ограничена в окрестности точки 𝑣 = 𝑣±(𝜉′)

равномерно по 𝜉′ ∈ 𝐷±1. Кроме того, 𝐾±
𝑗 (𝑣, 𝜉′) степенным образом растет на беско-

нечности относительно 𝑣 также равномерно по 𝜉′ ∈ 𝐷±1. Таким образом, согласно
методу перевала имеем, что

|̃︀𝐼 ±𝑗,1(𝑠, 𝜉′, 𝑥) 6 constΛ−1/2(𝑠), Λ(𝑠) > 1, |𝜉′ ± 1| < 1. (4.25) {eq4.25}

Полученная оценка показывает, что интегралы ̃︀𝐼 ±𝑗,1(𝑠, 𝜉′, 𝑥) удовлетворяют (4.17).
В самом деле, если |𝜉′ ± 1|Λ1/2(𝑠) > 1, то выполняется первое неравенство (4.17).
Если же |𝜉′ ± 1|Λ1/2(𝑠) 6 1, то второе.

Рассмотрим теперь интегралы ̃︀𝐼 ±𝑗,0(𝑠, 𝜉′, 𝑥). Они могут быть записаны в следую-
щей форме (см. например Федорюк [13; с. 356])

̃︀𝐼 ±𝑗,0(𝑠, 𝜉′, 𝑥) = 𝑒−𝑣2
±(𝜉′)Λ(𝑠)(1− Φ(−𝑖𝑣±(𝜉′)Λ1/2(𝑠))), Im 𝑣±(𝜉′) > 0, (4.26) {eq4.26}

где Φ(𝑝) := (2/
√

𝜋 )
∫︀ 𝑝

0
𝑒−𝑡2 𝑑𝑡 представляет собой интеграл ошибок. Подчеркнем еще

раз, что формула (4.26) верна в предположении, что Im 𝑣±(𝜉′) > 0. Если 𝑣±(𝜉′) ∈ R,
эта формула может пониматься, как предельное значение из верхней полуплоскости.
Кроме того отметим, что можно использовать (4.26) и в случае, когда Im 𝑣±(𝜉′) < 0.
Тогда следует учесть, что правая часть (4.26) равна интегралу Коши в (4.24) плюс
вычет в точке 𝑣 = 𝑣±(𝜉′). Этот вычет равен вычету (4.21) и в данном случае нет
необходимости оценивать (4.21) отдельно.

Используя асимптотику функции Φ(𝑝) для больших значений 𝑝, получим, что

|̃︀𝐼 ±𝑗,0(𝑠, 𝜉′, 𝑥)| 6 const
|𝑣±(𝜉′)|Λ−1/2(𝑠)

, если |𝑣±(𝜉′)|Λ−1/2(𝑠) > 1.

Учитывая явный вид функций (4.23), получаем, что ̃︀𝐼𝑗,0(𝑠, 𝜉′, 𝑥) удовлетворяет верх-
ней оценке (4.17). Для малых 𝑝 известно следующее асимптотическое соотношение:

Φ(𝑝) =
2√
𝜋

𝑝 + 𝑜(𝑝2), 𝑝 → 0.

Таким образом имеем, что

|̃︀𝐼 ±𝑗,0(𝑠, 𝜉′, 𝑥)| 6 const, если |𝑣±(𝜉′)|Λ−1/2(𝑠) 6 1,

т.е. этот интеграл удовлетворяет оценке, стоящей в нижней части (4.17).
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Нам осталось оценить выражение (4.21). Напомним, что 𝑆(𝜉′) = 𝜉′3/3− 𝜉′. Легко
видеть,что если 𝜉′ ∈ 𝐷+

Γ , то

Re(−Λ(𝑠)𝑆(𝜉′)) 6 0.

Кроме того, если |𝜉′ ∓ 1| > 1, то имеет место оценка

|𝑒Λ(𝑠)𝑆(𝜉′) 6 𝑒−𝑐|𝑠−𝑥|3/2|𝜉′|3 ,

где 𝑐 (> 0) не зависит от 𝑠, 𝑥 и 𝜉′ ∈ 𝐷+
Γ ∖𝐷1 (𝜉′ ∈ 𝐷+

Γ ∖𝐷−1). Таким образом,

|̃︀𝐼𝑗,Res(𝑠, 𝜉′, 𝑥)| 6 2|𝜉′|𝑗𝑒−𝑐|𝑠−𝑥|3/2|𝜉′|3 .

Поскольку (𝑠− 𝑥) > ∆ > 0, где ∆ – некоторое фиксированное число, то

|̃︀𝐼𝑗,Res(𝑠, 𝜉′, 𝑥)| 6 const,

где “const” не зависит от 𝑠, 𝑥 и 𝜉′. Таким образом, (4.18) доказана.

Теорема 4.3. Пусть выражение 𝐼𝑗(𝜉, 𝑥) задано формулой (4.2) и функция 𝑔(𝑠) ∈
𝐿1(R+, (1 + 𝑠)𝑗/2). Тогда для 𝑗 = 0, 1, . . . имеем

|𝐼𝑗(𝜉, 𝑥)| 6

{︃
𝑐1, 𝑥 > 0,

𝑐1 + 𝑐2|𝑥|𝑗/2, 𝑥 < 0,

где 𝑐1 , 𝑐2 не зависят от 𝜉 и 𝑥.

Доказательство. Используя представления (4.3), (4.4) и (4.7), (4.8), получим,
что

𝐼𝑗(𝜉, 𝑥) =
1
2

∫︁ ∞

0

𝑔(𝑠)𝐽𝑗(𝑠, 𝜉, 𝑥) 𝑑𝑠 =
1
2

∫︁ ∞

0

𝑔(𝑠)(𝛽𝑗(𝑠)̃︀𝐼𝑗(𝑠, 𝜉′, 𝑥)− 𝛽𝑗+2 ̂︀𝐼𝑗(𝑠, 𝑥)) 𝑑𝑠.

(4.27) {eq4.27}
Разобьем 𝐼𝑗(𝜉, 𝑥) согласно (4.27) на две части:

2𝐼𝑗(𝜉, 𝑥) = 𝐼𝑗,1(𝜉, 𝑥)− 𝐼𝑗,2(𝜉, 𝑥). (4.28) {eq4.28}

Оценим первую из них:

𝐼𝑗,1(𝜉, 𝑠) :=
∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠)̃︀𝐼𝑗(𝑠, 𝜉′, 𝑥) 𝑑𝑠

=
∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠)(̃︀𝐼+
𝑗 (𝑠, 𝜉′, 𝑥) + ̃︀𝐼−𝑗 (𝑠, 𝜉′, 𝑥)) 𝑑𝑠 +

∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠)̃︀𝐼𝑗,Res(𝑠, 𝜉′, 𝑥) 𝑑𝑠

:= 𝐼𝑗,1,1(𝜉′, 𝑥) + 𝐼𝑗,1,0(𝜉′, 𝑥). (4.29) {eq4.29}

Оценим первое слагаемое в (4.29):

𝐼𝑗,1,1(𝜉′, 𝑥) 6
∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠)(|̃︀𝐼+
𝑗,0(𝑠, 𝜉

′, 𝑥)|+ |̃︀𝐼−𝑗,0(𝑠, 𝜉′, 𝑥)|) 𝑑𝑠.

Тогда (4.17) позволяют провести следующие оценки. Обозначая

𝑤±(𝑠) := |𝑣±(𝜉′)|Λ1/2(𝑠),



384 С.М. ГРУДСКИЙ, А.В. РЫБКИН

имеем

|𝐼𝑗,1,1(𝜉′, 𝑥)| 6 const
(︂∫︁

𝑤+(𝑠)<1

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠 +
1

|𝑣+(𝜉′)|

∫︁
𝑤+(𝑠)>1

𝑔(𝑠)
𝛽𝑗(𝑠)

Λ1/2(𝑠)
𝑑𝑠

+
∫︁

𝑤−(𝑠)<1

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠 +
1

|𝑣−(𝜉′)|

∫︁
𝑤−(𝑠)>1

𝑔(𝑠)
𝛽𝑗(𝑠)

Λ1/2(𝑠)
𝑑𝑠

)︂
6 const

(︂∫︁
𝑤+(𝑠)<1

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠 +
∫︁

𝑤+(𝑠)>1

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠

+
∫︁

𝑤−(𝑠)<1

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠 +
∫︁

𝑤−(𝑠)>1

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠

)︂
6 const

∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠 6 const
∫︁ ∞

0

𝑔(𝑠)|𝑠− 𝑥|𝑗/2 𝑑𝑠.

Напомним, что мы рассматриваем случай 𝑥 < −𝑑 (см. (4.9)). Таким образом, при
𝑥 < 0 имеем, что

|𝐼𝑗,1,1(𝜉′, 𝑥)| 6 const
(︂∫︁ ∞

0

𝑔(𝑠)(1 + 𝑠)𝑗/2 𝑑𝑠 + |𝑥|𝑗/2

∫︁ ∞

0

𝑔(𝑠) 𝑑𝑥

)︂
. (4.30) {eq4.30}

Оценим второе слагаемое в (4.29), используя оценку (4.18):

|𝐼𝑗,1,0(𝜉′, 𝑥)| 6
∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠)| ̃︀𝐼0
𝑗 (𝑠, 𝜉′, 𝑥)| 𝑑𝑠 6 const

∫︁ ∞

0

𝑔(𝑠)|𝑠− 𝑥|𝑗/2 𝑑𝑠

6 const
∫︁ ∞

0

𝑔(𝑠)(1 + 𝑠)𝑗/2 𝑑𝑠 + |𝑥|𝑗/2

∫︁ ∞

0

𝑔(𝑠) 𝑑𝑠. (4.31) {eq4.31}

Перейдем теперь ко второму слагаемому в (4.28):

|𝐼𝑗,2(𝜉, 𝑥)| 6 1
2

∫︁ ∞

0

𝑔(𝑠)𝛽𝑗+2(𝑠)̂︀𝐼𝑗(𝑠, 𝑥) 𝑑𝑠.

Согласно лемме 4.1 имеем, что

𝐼𝑗,2(𝜉, 𝑥) 6 const
∫︁ ∞

0

𝑔(𝑠)𝛽𝑗+2(𝑠)
𝛽2(𝑠)Λ1/2(𝑠)

𝑑𝑠 6 const
∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠

6 const
(︂∫︁ ∞

0

𝑔(𝑠)(1 + 𝑠)𝑗/2 𝑑𝑠 + |𝑥|𝑗/2

∫︁ ∞

0

𝑔(𝑠) 𝑑𝑠

)︂
. (4.32) {eq4.32}

Поскольку 𝑔(𝑠) ∈ 𝐿1(R+, (1+𝑠)𝑗/2), 𝑗 = 0, 1, . . . , интегралы, фигурирующие в (4.30)–
(4.32), конечны. Таким образом, утверждение теоремы 4.3 для 𝑥 < 0 доказано.
Утверждение для 𝑥 > 0 следует из замечания 2.

Из данной теоремы вытекает следующий результат, который обеспечивает выпол-
нение части условий теоремы 3.1

Следствие 4.4. Пусть выражение 𝐼𝑗(𝜉, 𝑥) задается формулой (4.2) и функция
𝑔(𝑠) ∈ 𝐿1(R+, (1 + 𝑠)𝑗/2). Тогда для 𝑗 = 0, 1, . . . , имеем

i) 𝐼𝑗( · , 𝑥) (= ( ̃︀𝑃+𝜙𝑗,𝑥)) ∈ 𝐿∞(R),

ii) supIm 𝜉>1 |𝐼𝑗(𝜉, 𝑥)| 6

{︃
𝑐1, 𝑥 > 0
𝑐1 + 𝑐2|𝑥|𝑗/2, 𝑥 < 0.
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Замечание 3. Согласно теореме 4.3 повторный интеграл вида∫︁ ∞

0

𝑔(𝑠)|𝐽𝑗(𝑠, 𝜉, 𝑥)| 𝑑𝑠

конечен. Следовательно, интеграл (4.3) также конечен, и согласно теореме Фуби-
ни 4.3 равен исходному интегралу (4.2).

5. Оценка интеграла (3.5). Подставляя представление (4.1) в (3.5), получим,
что

𝐼
(2)
𝑗 (𝜉, 𝑥) =

1
𝜋𝑖

∫︁ ∞

−∞

𝜏 𝑗𝑒−𝑖Φ(𝜏,𝑥)

(𝜏 − 𝜉)3

(︂∫︁ ∞

0

𝑔(𝑠)𝑒𝑖2𝜏𝑠 𝑑𝑠

)︂
𝑑𝜏.

Меняя порядок интегрирования, придем к представлению вида

𝐼
(2)
𝑗 (𝜉, 𝑥) = 2

∫︁ ∞

−∞
𝑔(𝑠)𝐽 (2)

𝑗 (𝑠, 𝜉, 𝑥) 𝑑𝑠, (5.1) {eq5.1}

где

𝐽
(2)
𝑗 (𝑠, 𝜉, 𝑥) :=

1
2𝜋𝑖

∫︁ ∞

−∞

𝜏 𝑗𝑒−𝑖Φ(𝜏,𝑥−𝑠)

(𝜏 − 𝜉)3
𝑑𝜏. (5.2) {eq5.2}

Делая замену переменных (4.5) в интеграле (5.2), получим, что

𝐽
(2)
𝑗 (𝑠, 𝜉, 𝑥) = 𝛽(𝑠)𝑗−2̃︀𝐼 (2)

𝑗 (𝑠, 𝜉′, 𝑥), (5.3) {eq5.3}

с ̃︀𝐼 (2)
𝑗 (𝑠, 𝜉′, 𝑥) =

1
2𝜋𝑖

∫︁ ∞

−∞

𝑢𝑗𝑒−𝑖Λ(𝑠)𝑆(𝑢)

(𝑢− 𝜉′)3
𝑑𝑢. (5.4) {eq5.4}

Рассмотрим вопрос об асимптотике интеграла (5.4) относительно большого пара-
метра Λ(𝑠).

Лемма 5.1. Интеграл (5.4) допускает представление вида

̃︀𝐼 (2)
𝑗 (𝑠, 𝜉′, 𝑥) = ̃︀𝐼 (2)

𝑗,+(𝑠, 𝜉′, 𝑥) + ̃︀𝐼 (2)
𝑗,−(𝑠, 𝜉′, 𝑥) + ̃︀𝐼 (2)

𝑗,Res(𝑠, 𝜉
′, 𝑥),

где

|̃︀𝐼 (2)
𝑗,±(𝑠, 𝜉′, 𝑥)| 6 const

⎧⎨⎩
1

|𝜉′ ∓ 1|3Λ1/2(𝑠)
, |𝜉′ ∓ 1|Λ1/2(𝑠) > 1,

Λ(𝑠), |𝜉′ ∓ 1|Λ1/2(𝑠) 6 1,
(5.5) {eq5.5}

|̃︀𝐼 (2)
𝑗,Res(𝑠, 𝜉

′, 𝑥)| 6 const{Λ(𝑠)−(𝑗−2)/3|𝜉′′|𝑗−2(|𝜉′′|6 + |𝜉′′|3 + 1)𝑒−𝑐|𝜉′′|3}, (5.6) {eq5.6}

где 𝜉′′ = 𝜉′Λ1/3(𝑠), 𝑐 > 0 и “const” не зависят от 𝑠, 𝑥 и 𝜉′ ∈ Π ∖ (𝐷1 ∪𝐷−1).

Доказательство. Трансформируя контур R = (−∞,∞) в контур перевала Γ =
Γ+∪Γ− (см. (4.13)) и делая замену переменных соответственно 𝑢 = 𝑢+(𝑆) и 𝑢 = 𝑢−(𝑠)
(см. (4.12)), получим следующее представление:

̃︀𝐼 (2)
𝑗 (𝑠, 𝜉′, 𝑥) = ̃︀𝐼 (2)

𝑗,+(𝑠, 𝜉′, 𝑥) + ̃︀𝐼 (2)
𝑗,−(𝑠, 𝜉′, 𝑥) + ̃︀𝐼 (2)

𝑗,Res(𝑠, 𝜉
′, 𝑥), (5.7) {eq5.7}
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где

̃︀𝐼 (2)
𝑗± (𝑠, 𝜉′, 𝑥) =

𝑒±(2𝑖/3)Λ(𝑠)

𝜋𝑖

∫︁ ∞

−∞

𝑢𝑗
±(𝑣)𝑒−Λ(𝑠)𝑣2

𝑢′±(𝑣)
(𝑢±(𝑣)− 𝜉′)3

𝑑𝑣, (5.8) {eq5.8}

а ̃︀𝐼 (2)
𝑗,Res(𝑠, 𝜉

′, 𝑥) = Res
(︂

𝑢𝑗𝑒−𝑖Λ(𝑠)𝑆(𝑢)

(𝑢− 𝜉′)3

)︂⃒⃒⃒⃒
𝑢=𝜉′

𝑋𝐷Γ(𝜉′). (5.9) {eq5.9}

Предположим, что |𝜉′ ± 1| > 1, т.е. 𝜉 ∈ Π ∖ 𝐷1 (𝜉′ ∈ Π ∖ 𝐷−1). В этом случае мы
можем использовать неравенство (4.22).

Согласно методу перевала (Λ(𝑠) > 1) асимптотика интегралов 𝐼
(2)
𝑗,±(𝑠, 𝜉′, 𝑥) опре-

деляется поведением подынтегральных функций в окрестности 𝑣 = 0. Поэтому

|̃︀𝐼 (2)
𝑗± (𝑠, 𝜉′, 𝑥)| 6 const

|1± 𝜉′|3
Λ−1/2(𝑠), |𝜉′ ∓ 1| > 1. (5.10) {eq5.10}

Отметим, что (5.10) является частным случаем верхней оценки (5.5), поскольку
Λ(𝑠) > 1.

Рассмотрим случай 𝜉 ∈ 𝐷1(𝜉′ ∈ 𝐷−1). Используя представление (4.24), получим,
что

̃︀𝐼 (2)
𝑗± (𝑠, 𝜉′, 𝑥) =

𝜕2

𝜕𝜉′2
(̃︀𝐼𝑗(𝑠, 𝜉′, 𝑥)) =

𝜕2

𝜕𝜉′2
(̃︀𝐼 ±𝑗,0(𝑠, 𝜉′, 𝑥)) +

𝜕2

𝜕𝜉′2
(̃︀𝐼 ±𝑗,1(𝑠, 𝜉′, 𝑥)). (5.11) {eq5.11}

Легко видеть, что второе слагаемое в (5.11) имеет вид

𝜕2

𝜕𝜉′2
̃︀𝐼 ±𝑗,1(𝑠, 𝜉′, 𝑥) =

1
2𝜋𝑖

∫︁ ∞

−∞

𝜕2

𝜕𝜉′2
𝐾±

𝑗 (𝑣, 𝜉′)𝑒−Λ(𝑠)𝑣2
𝑑𝑣,

где функция 𝐾±
𝑗 (𝑣, 𝜉′) записана в (4.24). Отметим, что (𝜕2/𝜕𝜉′2) 𝐾±

𝑗 (𝑣, 𝜉′) пред-
ставляет собой непрерывную по 𝑣 (∈ R) функцию, имеющую степенной рост по 𝑣
на бесконечности. Эти непрерывность и рост равномерны по 𝜉′. Таким образом,
согласно методу перевала имеем⃒⃒⃒⃒

𝜕2

𝜕𝜉′2
̃︀𝐼 ±𝑗,1(𝑠, 𝜉′, 𝑥)

⃒⃒⃒⃒
6 constΛ−1/2(𝑠), 𝜉′ ∈ 𝐷±1. (5.12) {eq5.12}

Отметим, что (5.12) удовлетворяет первой оценке (5.5), если |𝜉′ ±1|Λ1/2(𝑠) > 1, либо
второй (5.5), если |𝜉′ ∓1|Λ1/2(𝑠) 6 1.

Оценим теперь первое слагаемое в (5.11), используя формулы (4.26). Введем
функцию

𝐹 (𝑝) = 𝑒−𝑝2
(1− Φ(𝑝)) (5.13) {eq5.13}

и положим
𝑝±(𝜉′) := −𝑖𝑣∓(𝜉′)Λ−1/2(𝑠). (5.14) {eq5.14}

Тогда
𝜕2

𝜕𝜉′2
(̃︀𝐼 ±𝑗 (𝑠, 𝜉′, 𝑥)) = 4

(︀
(𝑝′(𝜉′))2𝐹 ′′(𝑝(𝜉′)) + 𝑝′′(𝜉′)𝐹 ′(𝑝(𝜉′))

)︀
. (5.15) {eq5.15}
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Легко видеть, что

𝑝′(𝜉′) = −𝑖𝑣′±(𝜉′)Λ1/2(𝑠), 𝑣′±(1) ̸= 0, 𝑝′′(𝜉′) = −𝑖𝑣′′±(𝜉′)Λ1/2(𝑠), 𝑣′′±(1) ̸= 0,

𝐹 ′(0) = −1, 𝐹 ′′(0) = −2,

𝐹 (𝑝) ∼
√

𝜋𝑖

𝑝
, 𝑝 →∞, 𝐹 ′(𝑝) ∼ −

√
𝜋𝑖

𝑝2
, 𝑝 →∞, 𝐹 ′′(𝑝) ∼ 2

√
𝜋𝑖

𝑝3
, 𝑝 →∞.

Если |𝑝(𝜉′)| < 1, то учитывая, что Λ(𝑠) > 1, получаем согласно (5.15), что⃒⃒⃒⃒
𝜕2

𝜕𝜉′2
(̃︀𝐼 ±𝑗,0(𝑠, 𝜉′, 𝑥))

⃒⃒⃒⃒
6 const(Λ(𝑠)), |𝑣±(𝜉′)|Λ1/2(𝑠)| 6 1, |𝜉′ ∓ 1| < 1.

Если же |𝑝(𝜉′)| > 1, то (5.15) и асимптотические представления для 𝐹 ′ и 𝐹 ′′ дают,
что⃒⃒⃒⃒

𝜕2

𝜕𝜉′2
̃︀𝐼 ±𝑗,0(𝑠, 𝜉′, 𝑥)

⃒⃒⃒⃒
6 const

1
|𝑣±(𝜉′)|3Λ1/2(𝑠)

, |𝑣±(𝜉′)|Λ1/2(𝑠)| > 1, |𝜉′ ∓ 1| < 1.

Перейдем к доказательству неравенства (5.6). Если 𝜉′ ∈ 𝐷+
Γ , то

̃︀𝐼𝑗,Res(𝑠, 𝜉′, 𝑥) = Res
(︂

𝑢𝑖𝑒−𝑖Λ(𝑠)𝑆(𝑢)

(𝑢− 𝜉′)3

)︂⃒⃒⃒⃒
𝑢=𝜉′

1
2
(𝜉′𝑗(−𝑖(𝜉′2 − 1))2Λ2(𝑠)

+ 2(𝜉′)𝑗−1
(𝑗−1)(−𝑖(𝜉′2 − 1))Λ(𝑠) + 𝑗(𝑗 − 1)(𝜉′)𝑗−2)𝑒−𝑖Λ(𝜉′)𝑆(𝜉′).

Очевидно, что при 𝑗 = 0 второе и третье слагаемые равны нулю, а при 𝑗 = 1 равно
нулю только третье слагаемое. Отметим, что если 𝜉′ ∈ 𝐷Γ ∖ (𝐷1 ∪ 𝐷−1) (согласно
замечанию, сделанному после (4.26), мы имеем право рассматривать только этот
случай), то имеет место неравенство

|𝑒−𝑖Λ(𝑠)𝑆(𝜉′)| 6 𝑒−𝑐Λ(𝑠)|𝜉′|3 ,

где 𝑐 не зависит от 𝜉′ и Λ(𝑠). Таким образом, получаем следующую оценку:

̃︀𝐼 (2)
𝑗,Res(𝑠, 𝜉

′, 𝑥) 6 const(|𝜉′|𝑗+4Λ2(𝑠) + |𝜉′|𝑗+1Λ(𝑠) + |𝜉′|𝑗−2)𝑒−𝑐Λ(𝑠)|𝜉′|3

6 constΛ−(𝑗−2)/3((|𝜉′|Λ1/3)𝑗+4 + (|𝜉′|Λ1/3(𝑠))𝑗+1

+ (|𝜉′|Λ1/3(𝑠))𝑗−2)𝑒−𝑐(|𝜉′|Λ1/3(𝑠))3

и неравенство (5.6) доказано.

Теорема 5.2. Пусть функция 𝐼
(2)
𝑗 (𝜉′, 𝑥) дана формулой (3.5) и 𝑔(𝑠) ∈ 𝐿1(R+, (1+

|𝑠|)𝑗/2). Тогда

𝐴(𝑥) :=
∫︁

Π

|𝐼(2)
𝑗 (𝜉, 𝑥)| 𝑑𝜉 6

{︃
𝑐3, 𝑥 > 0,

𝑐3 + 𝑐4|𝑥|𝑗/2, 𝑥 < 0,

где 𝑐3 и 𝑐4 не зависят от 𝑥.
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Доказательство. Используя представления (5.1), (5.2) для 𝐼
(2)
𝑗 (𝜉′, 𝑥) и меняя

порядок интегрирования в 𝐴(𝑥), получим, что

𝐴(𝑥) 6
∫︁ ∞

0

𝑔(𝑠)
[︂∫︁

Π

|𝐽 (2)
𝑗 (𝑠, 𝜉, 𝑥)| 𝑑𝜉

]︂
𝑑𝑠 =

∫︁ ∞

0

𝑔(𝑠)
[︂
𝛽𝑗(𝑠)

∫︁
Π

|̃︀𝐼 (2)
𝑗 (𝑠, 𝜉′, 𝑥)| 𝑑𝜉′

]︂
𝑑𝑠.

(5.16) {eq5.16}
Обозначая внутренний интеграл через 𝐴(2)(𝑠, 𝑥), согласно представления (5.7) разо-
бьем его на три части:

𝐴(2)(𝑠, 𝑥) := 𝐴+(2)(𝑠, 𝑥) + 𝐴−(2)(𝑠, 𝑥) + 𝐴
(2)
Res(𝑠, 𝑥). (5.17) {eq5.17}

Оценим первое слагаемое (для этого используем оценки (5.5)):

𝐴+(2)(𝑠, 𝑥) :=
∫︁

Π

|̃︀𝐼 (2)
𝑗,+(𝑠, 𝜉′, 𝑥)| 𝑑𝜉′

6 const
(︂∫︁

|𝜉′−1|6Λ−1/2(𝑠)

Λ(𝑠) 𝑑𝜉′ +
∫︁
|𝜉′−1|>Λ−1/2(𝑠)

𝑑𝜉′

|𝜉′ − 1|3Λ1/2(𝑠)

)︂
6 const(1 + 1) 6 const. (5.18) {eq5.18}

Аналогично доказывается, что

𝐴−(2)(𝑠, 𝑥) 6 const. (5.19) {eq5.19}

Для оценки третьего слагаемого воспользуемся неравенством (5.6):

𝐴
(2)
Res(𝑠, 𝑥) 6 constΛ−(𝑗−2)/3

∫︁
Π

|𝜉′′|𝑗−2(|𝜉′′|6 + |𝜉′′|3 + 1)𝑒−𝑐|𝜉′′|3 𝑑𝜉′.

Сделаем замену переменных
𝜉′′ = 𝜉′Λ1/3(𝑠).

Получим, что

𝐴
(2)
Res(𝑠, 𝑥) 6 constΛ−𝑗/3

∫︁
Π

|𝜉′′|𝑗−2(|𝜉′′|6 + |𝜉′′|3 + 1)𝑒−𝑐|𝜉′′|3 𝑑𝜉′′.

Таким образом,
𝐴

(2)
Res(𝑠, 𝑥) 6 constΛ−𝑗/3(𝑠). (5.20) {eq5.20}

Возвращаясь к (5.17) и учитывая (5.18)–(5.20), получим

𝐴(𝑥) 6 const
∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠)[1 + 1 + Λ−1/3(𝑠)] 𝑑𝑠.

Учитывая, что
Λ(𝑠) = const𝛽(𝑠)3,

получим, что

𝐴(𝑥) 6 const
[︂∫︁ ∞

0

𝑔(𝑠)𝛽𝑗(𝑠) 𝑑𝑠 +
∫︁ ∞

0

𝑔(𝑠) 𝑑𝑠

]︂
6 const

[︂∫︁ ∞

0

𝑔(𝑠)(𝑠− 𝑥)𝑗/2 𝑑𝑠 +
∫︁ ∞

0

𝑔(𝑠) 𝑑𝑠

]︂
. (5.21) {eq5.21}

Проводя рассуждения, аналогичные (4.30)–(4.32), завершаем доказательство теоре-
мы 5.2.
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6. Доказательство теоремы 2.1. Покажем, что функция ( ̃︀𝑃+𝜙𝑗,𝑥)(𝜉) удовле-
творяет условиям теоремы 3.1. В самом деле, согласно следствию 4.4 i) и ii) мы
имеем, что

( ̃︀𝑃+𝜙𝑗,𝑥)(𝜉) ∈ 𝐿∞(R), sup
Im 𝜉>1

|( ̃︀𝑃+𝜙𝑗,𝑥)(𝜉)| < ∞.

Согласно же теореме 5.2 получим, что∫︁
Π

|( ̃︀𝑃+𝜙𝑗,𝑥)(𝜉)| 𝑑𝜉 < ∞, т.е. ( ̃︀𝑃+𝜙𝑗,𝑥)(𝜉) ∈ 𝐴1
1(Π).

Легко видеть, что оператор H(𝜙𝑗,𝑥) совпадает с оператором Ханкеля H(( ̃︀𝑃−𝜙𝑗,𝑥)),
где проектор ̃︀𝑃− := 𝐽 ̃︀𝑃+𝐽 . Поскольку

( ̃︀𝑃−𝜙𝑗,𝑥)(𝜉) = ( ̃︀𝑃+𝜙𝑗,𝑥)(𝜉),

то теорема 2.1 доказана.

7. Приложения к уравнению Кортевега-де Фриза. В этом пункте мы при-
меняем результаты, полученные выше, к теории солитонов (см., например, книгу [14]
Новикова, Манакова, Питаевского и Захарова). Мы не предполагаем, что читатель
знаком с этой теорией и приводим здесь краткое введение. Рассмотрим начальную
задачу (Коши) для уравнения Кортевега-де Фриза (КдФ)

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

− 6𝑢(𝑥, 𝑡)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+

𝜕3𝑢(𝑥, 𝑡)
𝜕𝑥3

= 0, 𝑡 > 0, 𝑥 ∈ R, (7.1) {eq7.1}

𝑢(𝑥, 0) = 𝑞(𝑥), (7.2) {eq7.2}

где 𝑞(𝑥) является вещественнозначной функцией класса, который мы укажем ниже.
Это уравнение, возможно, является самым знаменитым нелинейным дифференци-
альным уравнением в частных производных. Оно был получено Кортевегом-де Фри-
зом в 1895 в качестве модели описания мелкой воды, но по существу не использо-
валось до 50-х годов 20-века, когда было обнаружено, что это уравнение особенно
важно в теории физической плазмы. В 1955 г. Ферми, Паста и Улам рассмотрели
цепь гармонических осцилляторов с учетом квадратичной нелинейности и исследо-
вали, как энергия одной моды будет переходить на остальные. (Один из первых
расчетов, проведенных в динамической теории на компьютере). Они обнаружили,
что их система (описываемая КдФ) генерировала периодические циклы с неубываю-
щей амплитудой. Это было поразительное явление, которое тогда не было объясне-
но. Хотя Ферми, Паста и Улам никогда не публиковали свои наблюдения, уравнение
привлекло внимание математиков и физиков-теоретиков. Прорыв произошел в сере-
дине 60-х годов, когда Гарднер, Грин, Крускаль и Миура (ГГКМ) нашли поистине
гениальный способ линеаризации. Их метод, называемый теперь методом обратной
задачи рассеяния (ГГКМ), является важным достижением математики 20-го века
и с его помощью мы получили невероятное количество информации об уравнении
КдФ и, описываемых, ими физических системах. Здесь приведена лишь небольшая
часть увлекательной истории, лежащей в основе изучения уравнения КдФ. Заинте-
ресованный читатель может узнать больше об этом в [14] или любой другой книге
по теории солитонов.
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Концептуально метод обратной задачи похож на преобразование Фурье и состоит,
как и стандартный метод преобразования Фурье, из следующих трех шагов.

1) Прямое преобразование, отображающее (вещественные) начальные данные 𝑞(𝑥)
в новый набор переменных 𝑆0, в которых (7.1), (7.2) превращается в очень про-
стое обыкновенное линейное дифференциальное уравнение первого порядка для 𝑆(𝑡)
с начальными данными 𝑆0.

2) Решение этого обыкновенного дифференциального уравнения относительно
𝑆(𝑡).

3) Применение обратного преобразования для нахождения 𝑢(𝑥, 𝑡) по 𝑆(𝑡).
Аналогичные методы были разработаны и для многих других эволюционных

нелинейных дифференциальных уравнений в частных производных, которые назы-
ваются полностью интегрируемыми. Каждый из шагов 1–3 включает в себя реше-
ние линейного дифференциального уравнения, которое позволяет анализировать
интегрируемые системы на уровне, недоступном ни прямым численным методам,
ни стандартным методам изучения уравнений в частных производных. Исследова-
ние разнообразных реализаций этих шагов для различных интегрируемых систем
и начальных условий (включая анализ информации, которую метод обратной зада-
чи дает об этих системах) составляет ядро теории солитонов.

В классическом методе обратной задачи для (7.1), (7.2), когда 𝑞 быстро убывает
при |𝑥| → ∞ (клас Шварца), 𝑆0 представляет собой множество данных распростра-
нения, ассоциированных с оператором Шрёдингера L𝑞 = −𝜕2

𝑥 + 𝑞 на 𝐿2(R). Решая
уравнение Шрёдингера L𝑞𝑢 = 𝑘2𝑢, находим 𝑆0 = {𝑅(𝑘), (𝜅𝑛, 𝑐𝑛)}, где 𝑅(𝑘), 𝑘 ∈ R,
есть коэффициент отражения и (𝜅𝑛, 𝑐𝑛), 𝑛 = 1, 2, . . . , 𝑁 , представляют собой так на-
зываемые данные о связных состояниях, ассоциированные с собственными значени-
ями −𝜅2

𝑛. Точные определения могут быть найдены в [15]. Шаг 2 приводит к

𝑆(𝑡) = {𝑅(𝑘) exp(8𝑖𝑘3𝑡), 𝜅𝑛, 𝑐𝑛 exp(8𝜅3
𝑛𝑡)}. (7.3) {eq7.3}

Шаг 3 сводится к решению обратной задачи рассеяния по восстановлению потен-
циала 𝑢(𝑥, 𝑡) (которые сейчас зависят от 𝑡 > 0) по 𝑆(𝑡). Эта процедура приводит
к явной формуле, которую обычно называют детерминантом Дайсона:

𝑢(𝑥, 𝑡) = −2𝜕2
𝑥 log det(𝐼 + H(𝑥, 𝑡)), (7.4) {eq7.4}

где H(𝑥, 𝑡) есть оператор Ханкеля H(𝜙𝑥,𝑡) с символом

𝜙𝑥,𝑡(𝑘) = 𝑅(𝑘)𝜉𝑥,𝑡(𝑘) +
𝑁∑︁

𝑛=1

𝑐𝑛𝜉𝑥,𝑡(𝑖𝜅𝑛)
𝜅𝑛 + 𝑖𝑘

. (7.5) {eq7.5}

Здесь 𝜉𝑥,𝑡(𝑘) = exp{𝑖(8𝑘3𝑡 + 2𝑘𝑥)} зависит только от (𝑥, 𝑡). Это обстоятельство при-
водит нас в контекст теории операторов Ханкеля и шаги 1–3 теперь могут быть
объединены для краткого прочтения следующим образом:

𝑞(𝑥) → H(𝜙𝑥,𝑡) → 𝑢(𝑥, 𝑡). (7.6) {eq7.6}

Другим, не менее важным, является случай периодического потенциала 𝑞. Хотя
было довольно ясно с самого начала, что подход ГГКМ должен работать и здесь,
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но только в 1974 г. метод обратной задачи был строго разработан в периодическом
контексте посредством значительных усилий таких ведущих экспертов, как Дубро-
вин, Флашка, Итс, Марченко, Матвеев, Мак-Кин, Новиков, Трубовиц и др. Мы
ссылаемся на исторически самый первый обзор [16] Дубровина–Матвеева–Новикова
и книгу 2003 г. Гестези–Холдена [17], где приведена достаточно полная история.
Периодический метод обратной задачи сильно отличается от случая ГГКМ. Здесь
обратное спектральное преобразование (ГГКМ) опирается на теорию Флоке для L𝑞,
анализ римановых поверхностей, следовательно, намного сложнее, чем случай быст-
ро убывающего потенциала. Временная эволюция спектральных данных здесь, тем
не менее, проста (но не просто выводится), а решение 𝑢(𝑥, 𝑡)) часто называется
формулой Итца–Матвеева [18]. Форма этой формулы аналогична (7.4), но множи-
тель det(𝐼 + H(𝑥, 𝑡)) необходимо заменить многомерной (вообще говоря бесконечно-
мерной) тета-функцией вещественных гиперэллиптических алгебраических кривых,
явно вычисленна в терминах спектральных данных ассоциированной задачи Дири-
хле для L𝑞. Главной особенностью периодического решения является его квазипе-
риодичность во времени 𝑡.

Мы отметили выше два основных класса исходных данных 𝑞 в (7.1), (7.2), подхо-
дящая форма метода обратной задачи которой была найдена во время первоначаль-
ного бума [19]. Она дает простой закон временной эволюции спектральных данных
рассеяния который делает работу IST в этих двух случаях эффективной. Видимо
поэтому Кричевер и Новиков заявляют в [20], что (7.1) вполне интегрируема по
существу только в этих двух случаях. Фактически вопрос о том, что (7.1), (7.2)1

можно было бы решить с помощью подходящего метод обратной задачи за пре-
делами этих двух классов, был поднят в той или иной форме (в хронологическом
порядке) Маклауд–Олвер [21], Абловиц–Кларксон [22], Марченко [22], Кричевер–Но-
виков [20], Дайфт [24], Матвеев [23], и Захаров [7] и др. Эти авторы также указыва-
ют на многие здесь возникающие препятствия и некоторые считают данную задачу
главной нерешенной проблемой.

Эта проблема частично решена в работах [5] и [6], где мы расширили результа-
ты (7.4) до начальных профилей, которые имеют по существу произвольное поведе-
ние на −∞. Более конкретно, предполагая пока все еще быстрое убывание на +∞,
нам потребовалось только, чтобы спектр L𝑞 был ограничен снизу, что значительно
обобщает предыдущие результаты, в которых 𝑞(𝑥) предполагается быстро стремя-
щемся либо к константе (Гуревич и Питаевский [26], Хруслов [27]) либо к периоди-
ческой функции (Хруслов и Котляров [28]). Для таких начальных данных 𝑞 символ
оператора Ханкеля H(𝑥, 𝑡) = H(𝜙𝑥,𝑡) в (7.4) можно записать в виде

𝜙𝑥,𝑡(𝑘) = 𝑅(𝑘)𝜉𝑥,𝑡(𝑘) +
∫︁ 𝑎

0

𝜉𝑥,𝑡(𝑖𝑠) 𝑑𝜌(𝑠)
𝑠 + 𝑖𝑘

, (7.7) {eq7.7}

где −𝑎2 есть нижняя граница спектра L𝑞 и 𝜌(𝑠) представляет собой меру со следую-
щими свойствами:

Supp 𝜌 ⊆ [0, 𝑎], 𝑑𝜌 > 0,

∫︁ 𝑎

0

𝑑𝜌 < ∞. (7.8) {eq7.8}

1Или любой другой интегрируемой системы.
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Мера 𝜌 соответствует отрицательному спектру L𝑞, но ее явное выражение несуще-
ственно для нашего рассмотрения. В [5] мы также показываем, что

H(𝑥, 𝑡) = H(Φ𝑥,𝑡) + H(𝜉𝑥,𝑡𝑅0), (7.9) {eq7.9}

где Φ𝑥,𝑡 мероморфная в верхней полуплоскости функция, конкретный вид которой,
несущественен и 𝑅0 представляет собой коэффициент отражения 𝑞, ограниченный
на (0,∞). Для 𝑅0 мы имеем представление вида

𝑅0(𝜆) = 𝑇 (𝜆)
∫︁ ∞

0

𝑒−2𝑖𝜆𝑠𝑔(𝑠) 𝑑𝑠, (7.10) {eq7.10}

где 𝑇 ∈ 𝐻∞(Π), так что 𝑇 (𝜆) = 𝑂(1/𝜆), |𝜆| → ∞, 𝑔 есть некоторая функция, для
которой нам необходима только следующая оценка:

|𝑔(𝑠)| 6 |𝑞(𝑠)|+ const
∫︁ ∞

𝑠

|𝑞|. (7.11) {eq7.11}

В нашей работе [29] доказано, что H(Φ𝑥,𝑡) представляет собой бесконечногладкую
оператор-функцию переменных (𝑥, 𝑡) и для любых 𝑛, 𝑚:

𝜕𝑛+𝑚

𝜕𝑥𝑛 𝜕𝑡𝑚
H(Φ𝑥,𝑡) ∈ S1. (7.12) {eq7.12}

Для оператора H(𝜉𝑥,𝑡𝑅0) мы доказали, что если
∫︁ ∞

(1 + |𝑠|)𝑁 |𝑞(𝑠)| 𝑑𝑠 < ∞, то

𝜕𝑛+𝑚

𝜕𝑥𝑛 𝜕𝑡𝑚
H(𝜉𝑥,𝑡𝑅0) ∈ S1

для любых 𝑛, 𝑚, удовлетворяющих условию

𝑛 + 3𝑚 6 2𝑁 − 1. (7.13) {eq7.13}

Торема 2.1 позволяет улучшить (7.13) до

𝑛 + 3𝑚 6 2(𝑁 − 1).

Отсюда непосредственно следуют два очевидных факта:
(1) согласно (7.11)

если
∫︁ ∞

(1 + |𝑥|)𝑁 |𝑞(𝑥)| 𝑑𝑥 < ∞, то
∫︁ ∞

(1 + |𝑥|)𝑁−1|𝑔(𝑥)| 𝑑𝑥 < ∞;

(2) выполнено
𝜕

𝜕𝑡
H(𝜉𝑥,𝑡𝑅0) = − 𝜕3

𝜕𝑥3
H(𝜉𝑥,𝑡𝑅0).
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Главная теорема из [29] может быть так же улучшена.

Теорема 7.1. Предположим, что (вещественный) начальный профиль 𝑞 в (7.2)
удовлетворяет условию

inf Spec(L𝑞) = −𝑎2 > −∞ (ограничен снизу), (7.14) {eq7.14}∫︁ ∞
(1 + |𝑥|)𝑁 |𝑞(𝑥)| 𝑑𝑥 < ∞, 𝑁 > 1 (убывает на +∞). (7.15) {eq7.15}

Тогда функция 𝜏(𝑥, 𝑡) := det(1 + H(𝑥, 𝑡)) корректно определена на R×R+ и ее клас-
сические производные 𝜕𝑛+𝑚𝜏(𝑥, 𝑡)/𝜕𝑥𝑛 𝜕𝑡𝑚 существуют, если 𝑛 + 3𝑚 6 2𝑁 − 1.
Далее для 𝑁 > 3 проблема Коши (7.1), (7.2) имеет глобальное по времени класси-
ческое решение2 , которое дается формулой

𝑢(𝑥, 𝑡) = −2
𝜕2

𝜕𝑥2
log 𝜏(𝑥, 𝑡), 𝑡 > 0, (7.16) {eq7.16}

так что, если 𝑢𝑏(𝑥, 𝑡) есть (единственное) классическое решение с данными 𝑞𝑏 =
𝑞|(𝑏,∞) , то 𝑢𝑏(𝑥, 𝑡) сходится к 𝑢(𝑥, 𝑡) равномерно на компактах в R×R+ по 𝑏 → −∞.
Кроме того, решение 𝑢(𝑥, 𝑡) 𝑛 раз дифференцируемо по 𝑥 и 𝑚 раз по 𝑡, если 0 6
𝑛 + 3𝑚 6 2𝑁 − 4.

Функция 𝜏(𝑥, 𝑡) в теореме 7.1 называется тау-функцией Хироты и ее приро-
да варьируется в зависимости от того, где она появляется. Эта функция впервые
была отмечена в [30] в качестве замены, которая преобразует уравнение КдФ в так
называемое билинейное уравнение КдФ. Литература по 𝜏(𝑥, 𝑡) чрезвычайно обшир-
на, но мы не могли найти строгое доказательство3 того факта, что определитель
det(1 + H(𝑥, 𝑡)) корректно определено в классическом Фредгольмовом смысле. Вот
почему один из авторов поставил вопрос в [1], принадлежит ли оператор H(𝑥, 𝑡)
классу ядерных операторов. Теорема 7.1 дает утвердительный ответ на этот вопрос.
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