
General Initial Value Problem for the Nonlinear Shallow Water Equations: Runup of1

Long Waves on Sloping Beaches and Bays2

Dmitry Nicolsky,1 Efim Pelinovsky,2, 3, 4 Amir Raz,1, 5 and Alexei Rybkin53

1Geophysical Institute, University of Alaska Fairbanks, USA4

2Nizhny Novgorod State Technical University n.a. R. Alekseev, Russia5

3Special Research Bureau for Automation of Marine Researches, Yuzhno-Sakhalinsk, Russia.6

4Institute of Applied Physics, Nizhny Novgorod, Russia7

5Department of Mathematics and Statistics, University of Alaska Fairbanks, USA8

(Dated: July 8, 2018; Authors are arranged in the alphabetical order)9
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J. Fluid Mech. 01, 97 (1957)]. We use a Taylor series approximation to deal with the difficulty12

associated with the initial conditions given on a curve in the transformed space. This extends13
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complex U-shaped bathymetries; and allows verification of tsunami wave inundation models in a15

more realistic 2-D setting.16
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INTRODUCTION18

Tsunami modeling and forecast is an important scientific problem impacting coastal communities worldwide. Many19

models for tsunami wave propagation use the 2+1 shallow water equations (SWE), an approximation of the Navier-20

Stokes equation [1]. These numerical models must be continuously verified and validated to ensure the safety of coastal21

communities and infrastructure [2]. Apart from verification against data from actual tsunami events, numerical models22

are also extensively verified against analytical solutions of the 2+1 SWE which exist for idealized bathymetries [3].23

These analytical solutions also give important qualitative insight to tsunami run-up and amplification.24

Typically, the process of tsunami generation is considered as an instant vertical motion of the sea bottom ignoring25

the water velocities in the source. However, incorporation of the water velocities into the initial conditions is important26

from physical point of view, see for instance [4]. For a more complete analysis of tsunami hydrodynamics, modeling27

and forecast, we refer the reader to [1–3, 5, 6].28

A classical example of an analytical solution for the 2+1 SWE is computing the run-up of long-waves on a sloping29

beach [7]. Because of the symmetric bathymetry, the 2+1 SWE reduce to the 1+1 SWE, which could be solved30

directly in the physical space [8] or in the new coordinates using the Carrier-Greenspan transformation [9]. The SWE31

in the transformed coordinates has been extensively studied as an initial value problem (IVP) [4, 10–13] and as a32

boundary value problem [7, 14]. The IVP for waves with non-zero initial velocity have been previously derived using33

a Green’s function in [4, 10], though both solutions imply assumptions regarding the initial velocity as discussed later.34

Thus, the complete and exact solution to the IVP for waves with nonzero initial velocities remains a long standing35

open problem [4, 14, 15].36

The 1+1 SWE for the sloping beach have recently been generalized to model waves in sloping narrow channels using37

the cross-sectionally averaged 1+1 SWE [16]. Furthermore, the hodograph transform given by [9] can be generalized to38

sloping bays with arbitrary cross sections, allowing a much richer problem to study [17]. Though the cross-sectionally39

averaged 1+1 SWE have no analytical solution for bays with arbitrary cross sections, an analytical solution exists for40

symmetric U-shaped bays, i.e bays with a cross section z ∝ ym [16–18]. The known solution for sloping beaches is an41

asymptotic solution of such bays when m→ ∞.42

In this letter we propose a new approach to solve the IVP for the cross-sectionally averaged 1+1 SWE in U-43

shaped bays for waves with arbitrary initial velocities exactly. Our solution uses a Taylor expansion to deal with44

the initial data given on a curve (under the Carrier-Greenspan transformation the line t = 0 is mapped to a curve45

in the transformed plane), a problem that was not sufficiently treated in the previous solutions. This allows run-up46

computation of near shore long waves, unlike the previous IVP solutions that require the initial wave to be far from47

shore [4]. Additionally, we present some qualitative geophysical implications using this new solution.48

SOLUTION OF THE IVP49

The cross-sectionally averaged 1+1 SWE for U-shaped bays describe the evolution of long waves in a sloping narrow50

bay with an unperturbed water height h(x) = x along the main axis of the bay in dimensionless form. The wave is51

assumed to propagate uniformly through the bay in the x direction, a valid assumption as shown in [18, 19]. The52
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FIG. 1. Definition sketch: (a) x− z cross section with perturbed and unperturbed water heights, not to scale. (b) y − z cross

section of a plane beach where m = ∞, a parabolic bay where m = 2, and a V-shaped bay where m = 1. (c) The curve Γ on

which the initial conditions are prescribed in the transformed space for the wave shown in (a), not to scale.

cross-sectionally averaged SWE for such bays in dimensionless form are given by [16, 18] to be53

ηt + u(1+ηx ) + β2(x+ η)ux = 0, (1a)

ut + uux + ηx = 0, (1b)

where u(x, t) and η(x, t) are the horizontal depth-averaged velocity and free-surface elevation along the main axis54

of the bay, respectively, and β2 = m/(m + 1) is the wave propagation speed along a constant depth channel. An55

arbitrary scaling parameter l is used to introduce the dimensionless variables x = x̃/l, η = η̃/(lα), u = ũ/
√
gαl and56

t = t̃
√
gα/l. Here x̃, t̃, η̃ and ũ are the dimensional variables, g is the gravitational acceleration, and α is the slope of57

the incline.58

We use the form of the Carrier-Greenspan transformation presented in [15],59

ϕ = u, ψ = η +
u2

2
(2a)

s = x+η, λ = t− u, (2b)
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to reduces (1) to the linear system60

Φλ +A(s)Φs +BΦ = 0, (3)

where Φ(s, λ) =

⎛
⎝ϕ(s, λ)
ψ(s, λ)

⎞
⎠, A(s) =

⎛
⎝ 0 1

β2s 0

⎞
⎠, and B =

⎛
⎝0 0

1 0

⎞
⎠. This form of the Carrier-Greenspan transformation61

has two useful properties, the moving shoreline is fixed at s = 0 and the resulting linear system, (3), is the linear62

SWE. For comparison to other texts, specifically [4, 7, 9, 17], the transform variable σ = 2
√
s/β is typically used,63

along with the introduction of a potential function to form a single linear second order partial differential equation.64

We consider (3) with the general initial conditions in physical space η(x, 0) = η0(x) and u(x, 0) = u0(x). Under65

transformation (2b), η0(x) and u0(x) transform into initial conditions on a parameterized curve Γ in the (s, λ) plane,66

depicted in Fig. 1c, which leads to a non-trivial IVP. It is natural to parameterize this curve using the coordinate x,67

Γ = {Γ(x) : x > x0}, where68

Γ(x) =
(
s(x), λ(x)

)
=

(
x+ η0(x),−u0(x)

)
, (4)

and x0 is the x position of the shoreline at time t = 0. The initial condition is then given by69

Φ|Γ(x) = Φ0(x) =

⎛
⎝ u0(x)

η0(x) + u20(x)/2

⎞
⎠ . (5)

A general solution to (3) can be found using the Hankel transform to be [16, 18]70

ψ(s, λ) = s−
1

2m

∫ ∞

0

{a(k) cos(βkλ) + b(k) sin(βkλ)}
×J1/m

(
2k

√
s
)
dk, (6a)

ϕ(s, λ) =
1

β
s−

1
2m− 1

2

∫ ∞

0

{a(k) sin(βkλ) − b(k) cos(βkλ)}
×J1/m+1

(
2k

√
s
)
dk, (6b)

where Jν(α) is the Bessel function of the first kind of order ν, and a(k) and b(k) are arbitrary functions determined71

by the initial conditions. We note that the apparent singularities at s = 0 are removed using the asymptotic of the72

Bessel function of the first kind around zero.73

In the piston model of generation, i.e. with zero initial velocity, the curve Γ coincides with the line λ = 0. For74

arbitrary initial conditions on the line λ = 0, using the inverse Hankel transform, we have that75

a(k) = 2k

∫ ∞

0

ψ(s∗, 0)s
1

2m∗ J 1
m
(2k

√
s∗) ds∗, (7a)

b(k) = −2βk

∫ ∞

0

ϕ(s∗, 0)s
1

2m+ 1
2∗ J 1

m+1 (2k
√
s∗) ds∗. (7b)

For waves with zero initial velocity, using (5) and a simple change of variables, (7) simplifies to b(k) = 0, and76

a(k) = 2k

∫ ∞

x0

η0(x∗)
(
x∗ + η0(x∗)

) 1
2m J 1

m

(
2k

√
x∗ + η0(x∗)

)

× (1 + η′0(x∗))dx∗, (8)

where primes denote derivatives in x. Using (6), ϕ(s, λ) and ψ(s, λ) can be computed . The solution is then transformed77

to physical space using (2). The solution over a large number of grid points can be found by interpolation using78
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Delaunay triangulation, as in [18]. Alternatively, Newton-Raphson iterations can be used to find the solution for a79

particular location x or time t, as in [7, 11].80

If the initial wave has an initial velocity, the curve Γ may be complicated so that an exact solution does not exist.81

Reference [4] used the approximation s ≈ x to find an approximate solution for wave run-up on plane beaches using82

a Green’s function. This solution is similar to (6) and (7) under the appropriate change of variables and order of83

integration, with m = ∞. Although [4] defined the initial condition along a curve in the transform space, the obtained84

results are expressed as trigonometric functions of λ− λ0(s), where λ0(s) = −u0(s). Therefore, the resulting function85

solves the governing partial differential equation approximately as long as ∂u0/∂x ≈ 0. An interested reader could find86

further details in the Appendix. Even though approximation in [4, 10] are applicable to many geophysical conditions,87

i.e. when ∂u0/∂x ≈ 0 or u0 ≈ 0, but for near shore waves with large initial velocities those solutions might break88

down.89

To overcome this difficulty, we propose to project the initial conditions onto the line λ = 0 using Taylor’s theorem.90

For such a projection to exist, the transformation s = x + η0(x) must be bijective, and therefore η′0(x) > −1 for all91

x. We will call the projection of the initial condition to nth order92

Φn(x) = Φn(s(x)) =

n∑
k=0

[
(−λ)k
k!

∂kΦ

∂λk

]
Γ(x)

. (9)

Once the desired Φn(x) is obtained, a(k) and b(k) can be computed using (7). Furthermore, a simple change of93

variables s∗ = x∗ + η0(x∗) in the integration of a(k) and b(k), similar to the change of variables in (8) for waves with94

zero initial velocity, nullifies the need for the approximation s ≈ x required in the previous IVP solutions in [4, 10].95

The complete solution can then be found using (2) as described above. This method allows computing the solution96

to any desired accuracy without assumptions on the initial velocity profile.97

The partial derivatives in (9) are not explicitly computable from our initial conditions. To put (9) in explicit form98

we use the chain rule99

Φ′
0 =

dΦ0

dx
= (1 + η′0)

∂Φ

∂s

∣∣∣
Γ
− u′0

∂Φ

∂λ

∣∣∣
Γ

= (1 + η′0)
∂Φ

∂s

∣∣∣
Γ
+ u′0

[
A
∂Φ

∂s
+BΦ

]
Γ

= D
∂Φ

∂s

∣∣∣
Γ
+ u′0BΦ

∣∣∣
Γ
, (10)

where D = (1 + η′0)I + u′0A, and I is the 2-by-2 unit matrix. Noting that100

Φ1 =

[
Φ− λ

∂Φ

∂λ

]
Γ

= Φ|Γ + u0
∂Φ

∂λ

∣∣∣
Γ
= Φ|Γ − u0

[
A
∂Φ

∂s
+BΦ

]
Γ

and after substituting Φs from (10), while recalling that Φ0 = Φ|Γ, we obtain101

Φ1 = Φ0 + u0
{
u′0AD

−1BΦ0 −BΦ0 −AD−1Φ′
0

}
.

Similarly, higher order terms can be found using the recursive relationship102

Φn = Φn−1 +
(u0)

n

n!

[
u′0AD

−1B −B −AD−1 d

dx

]n
Φ0

= Φn−1 +
1

n

[
u0u

′
0AD

−1B − u0B + (n− 1)u′0AD
−1

]
×(Φn−1 − Φn−2)− u0

n
AD−1(Φ′

n−1 − Φ′
n−2). (11)
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It is important to understand the limitations of this approach. Based on the given formulas, the projection of the

initial conditions remains one-to-one so long as D remains nonsingular, which corresponds to (1 + η′0)
2 − (u′0)

2β2(x+

η0) > 0 for all x. To simplify this condition, we define the breaking parameter to be

Br = max
x∈[x0,∞)

{
β|u′0(x)|

√
x+ η0(x) − η′0(x)

}
.

So long as Br < 1 the projection is one-to-one. We emphasize that our solution method is only valid for initial profiles103

and velocities that satisfy the conditions Br < 1 and η′0 > −1. From (2b) and (1), it follows that the condition Br < 1104

is equivalent to the Jacobian of the Carrier-Greenspan transform not vanishing at t = 0. For application purposes,105

typical tsunami waves have a much larger wavelength than wave height [4], and thus satisfy |u′0|, |η′0| � 1. Therefore106

these conditions pose little restrictions for the modeling of geophysical long waves (i.e. “localized” water disturbance107

such as Gaussian, solitary or N-waves having the water level η0(x) and velocity u0(x) infinitesimal for x→ ∞).108

QUALITATIVE ANALYSIS109

Although use of solitary waves as proxies for geophysical tsunamis is subject to the discussion [20], we seek to110

validate our proposed solution to the IVP by checking the convergence of the solution and comparing it to the111

previous solution in [4]. Reference [4] analyzed a Gaussian initial wave profile defined by112

η0(x) = ae−b(x−x0)
2

, (12)

with the linear approximation of initial velocity u0(x) = −η0(x)/
√
x. At the same time, the developed method (9)113

also allows computations for the nonlinear approximation to the initial velocity u0(x) = −2(
√
x+ η0 −

√
x).114

In Fig. 2a,b we present several orders of approximations for the transformation of the initial profile of such wave.115

We note that the iterations converge very rapidly, with the higher order approximations overlapping with the zeroth116

order approximation. The maximum change in the initial profile between iterations is presented in Fig. 2c. The117

convergence appears linear, with the difference after just six iterations approaching the machine limit. In Fig. 2d118

we present the shoreline run-up for several different orders of approximation. Notice that the zeroth order profile119

coincides almost completely with the higher order approximations. Because of this, both previous solutions [4, 10]120

with assumptions ∂u0(x)/∂x ≈ 0 or u0(x) ≈ 0, give valid results for such initial conditions. Figure 2d allows direct121

comparison to figure 3d in [4].122

To validate the presented approach, we consider a Gaussian-shaped initial wave (a = 0.017 and b = 4.0) centered123

at the distance of x0 = 1.69 from the shore of a plane beach (m = ∞). We additionally assume that the initial water124

velocity u0 is zero. For this case, we can easily compute water level η̂ and velocity û until the moment of maximum125

runup at tr ≈ 2.475. The obtained profiles η̂(x, tr) and û(x, tr) are later used to validate the proposed methodology to126

compute water dynamics from the initial conditions with a non-zero velocity as follows. In particular, while computing127

η̂(x, tr) and û(x, tr), we save the water level and velocity at some transient time, t = 2/3tr, when the wave is about128

to runup on the shore. Fig. 3 displays wave profile and velocity at the time of maximum runup and at the transient129

point.130
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FIG. 2. The transformation of an incident Gaussian wave given by (12) with a = 0.017, b = 4.0 and x0 = 1.69. (a) ψ(s, λ = 0)

to zeroth, first, and fifth order. (b) ϕ(s, λ = 0) to zeroth, first, and fifth order. (c) The maximum difference between

approximations of the initial profile: ◦ and + represent the maximum difference in ϕ(s, λ = 0)and ψ(s, λ = 0), respectively.

(d) Comparison of the shoreline displacement for the three orders of approximation (n = 0, 1, 5) of projection of the initial

conditions in (a) and (b), the line code is the same as in plot (b).

At the transient point, we use η̂(x, 2/3tr) and û(x, 2/3tr) to setup initial conditions for the general initial value131

problem. Since the water velocity û(x, 2/3tr) �= 0, we project η̂(x, 2/3tr) and û(x, 2/3tr) onto the line λ = 0 via132

(9) and then apply formulae (6) to model propagation of the wave further onshore. Furthermore, we investigate an133

accuracy of the obtained solution ηn(x, t) and un(x, t) by considering different orders of approximation, n.134

Comparison of the water level profiles η̂(x, tr), ηn=0(x, tr), and ηn=1(x, tr) at the moment of maximum runup is135

shown in the top plot in Fig. 4. One may note that even for the zeroth approximation, n = 0, the match between136

the water elevation profiles is rather good. Comparison between the water velocities û(x, tr) and un=0(x, tr) shows a137
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FIG. 3. Profiles of the water level η̂ (top) and water velocity û (bottom) for the initial condition: a zero-velocity Gaussian

waves given by (12) with a = 0.017, b = 4.0 and x0 = 1.69 running up a plane beach (m = ∞).
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û(x, tr) un=0(x, tr) un=1(x, tr)

FIG. 4. Comparison of the water level η (top) and water velocity u (bottom) at the time t = tr of maximum runup. Quantities

ηn and un are computed for different approximations of {Φn}1n=0 from the transfer point t = 2/3tr , while taking a non-zero

velocity û(x, 2/3tr).

discrepancy near the shore. However, the first order approximation for the velocity un=1(x, tr) provides a satisfactory138

match with the analytical solution û(x, tr) computed for the zero-initial velocity. This comparison implies that the139

proposed methodology can be satisfactory applied to model wave propagation with a non-zero initial velocity.140

With converges of our solution verified, we highlight some geophysical implications that our solution has. In141
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FIG. 5. Comparison of the shoreline displacement for identical incident Gaussian waves given by (12) with a = 0.0025, b = 4.0

and x0 = 1.69, in a plane beach (m = ∞), parabolic bay (m = 2), and V-shaped bay (m = 1).

particular, our solution allows analysis of long wave waves in 2-D U-shaped bathymetries, rather than only on plane142

beaches. In light of this, and because local bathymetry can significantly affect run-up height [5, 21], we analyze the143

effect of the bay shape on the height of maximum run-up. We look at the run-up of the same Gaussian wave with144

the linear approximation of initial velocity in three different bays: a plane beach (m = ∞), a parabolic bay (m = 2)145

and a V-shaped bay (m = 1). The shoreline displacement of these three run-up scenarios is presented in Fig. 5. We146

see that the maximum run-up is almost twice as large in parabolic bays, and almost three times as large in V-shaped147

bays, than over a regular plane beach. This result shows that long waves can be greatly amplified in heads of narrow148

bays, and can help explain amplification of long waves in narrow channels and bays.149

These findings have profound implications not only for coastal engineering in narrow bays or channels, but also for150

hydraulic engineering. For example, the Vajont dam in Italy is located at the head of narrow V-shaped valley. In151

1963, a landslide caused a ∼ 200 meter high wave that overcame the dam and caused massive destruction to towns152

downstream. Such events can be modeled using shallow water theory [22], and our results can help explain why the153

wave was highly amplified in the narrow channel. Understanding the effects of narrow channel bathymetry on wave154

amplification is crucial for ensuring the safety of communities near bays and dams.155

DISCUSSION AND CONCLUSIONS156

The current models used for tsunami forecast have primarily been verified against the analytical solutions for157

sloping bays [1, 3]. With local bathymetry significantly effecting the run-up of tsunami waves, the proposed analytical158

solution, along with other existing analytical solutions [16–18], allow verification of tsunami models in a more realistic159
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settings of a 2-D bathymetry. Furthermore, 1-D shallow water theory has been shown to have similar inundation160

predictions to the full 2-D models in the realistic setting of Alaskan fjords, with significantly less computation time161

[23]. Incorporating 1-D shallow water theory into large scale tsunami inundation models may significantly reduce162

computation and forecasting time [18, 23], potentially saving lives and resources.163

When modeling tsunamis generated by near shore earthquakes and submarine landslides, initial conditions must164

be prescribed directly on the sloping beach. The previous IVP solutions had some limitations to modeling such165

phenomena because of the linearization of the initial conditions [10] or certain implicit assumptions [4]. The presented166

solution is a further step towards modeling such near-field events, which are the Achilles heel of current tsunami models167

[1, 5, 6]. The initial conditions associated with submarine landslides are still debated and we refer the interested reader168

to [24].169

On the other hand, earthquakes in the open ocean generate waves that propagate from far off-shore, and then170

deform over a sloping beach. This problem is modeled as a boundary value problem [4, 7], though specifying the171

boundary condition is nontrivial [14]. Analysis of our solution infers that the zeroth order projection of the initial172

conditions (i.e. Φ0) is likely adequate for modeling runup of geophysical tsunamis. As the ocean side of the sloping173

beach is usually far from shore, the wave should behave linearly at this boundary, and zeroth order approximation174

of the boundary condition could be sufficient. To model water velocities is likely necessary to use the first order175

projection (i.e. Φ1), however further investigations are necessary. We also would like to emphasize the computational176

expenses to compute various projections Φn, n = 0, . . . , 10 according to (11) are negligibly small in comparison to177

evaluating of integral in (6).178

To conclude, in this letter we formulate a new complete solution to the IVP of the cross-sectionally averaged SWE for179

initial conditions with and without initial velocity. This proposed solution deals with the difficulty associated with the180

initial conditions given on a curve in the transformed space, an important subtlety not previously acknowledged, and181

also avoids linearizion of the spatial coordinate in the transformation of the initial conditions. This allows modeling182

problems with near shore initial conditions, and extends earlier solutions beyond waves with small initial velocities.183

It also extends the solution from only plane beaches to more complex U-shaped bathymetries. Our proposed solution184

can be used for analytical verification of tsunami models in realistic 2-D settings, and may potentially allow fast185

tsunami forecasting in narrow bays and fjords.186

Appendix: Analysis of solution in [4]187

We would like to examine that a solution to the non-linear shallow water equation provided in [4]. In particular,188

we would like to analyze formula (4) in [4], namely:189

ψ(σ, λ) = 2

∫ ∞

0

[
ψ(ξ, λ0)Gλ + ψλ(ξ, λ0)G

]
dξ.

Here, the quantity G stands for the Green’s function190

G(ξ, σ, λ̄) = ξ

∫ ∞

0

J0(ωξ)J0(ωσ) sin
(1
2
ωλ̄

)
dω,
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where λ̄ = λ− λ0. Note that λ0 = λ0(σ) = −u0(x(σ)). It is stated in [4] that the integral191

I(σ, λ) ≡ 2

∫ ∞

0

[
ψ(ξ, λ0)Gλ + ψλ(ξ, λ0)G

]
dξ

solves the SWEs after its transformation by Carrier-Greenspan (CG) transform to192

4σψλλ − (σψσ)σ = 0 (A.13)

for arbitrary initial conditions ψ(σ, λ0) and ψλ(σ, λ0).193

After substituting and expanding expressions for G and Gλ in the expression for I, we obtain194

I =

∫ ∞

0

ψ(ξ, λ0)
[
ξ

∫ ∞

0

ωJ0(ωξ)J0(ωσ) cos
(1
2
ωλ̄

)
dω

]
dξ + 2

∫ ∞

0

ψλ(ξ, λ0)
[
ξ

∫ ∞

0

J0(ωξ)J0(ωσ) sin
(1
2
ωλ̄

)
dω

]
dξ.

Exchanging an order of integration yields195

I =

∫ ∞

0

ωJ0(ωσ) cos
(1
2
ωλ̄

) ∫ ∞

0

ξJ0(ωξ)ψ(ξ, λ0)dξdω + 2

∫ ∞

0

J0(ωσ) sin
(1
2
ωλ̄

) ∫ ∞

0

ξJ0(ωξ)ψλ(ξ, λ0)dωdξ

or196

I =

∫ ∞

0

ωJ0(ωσ) cos
[1
2
ωλ̄

]
P (ω)dω + 2

∫ ∞

0

J0(ωσ) sin
[1
2
ωλ̄

]
F (ω)dω.

Here,197

P (ω) =

∫ ∞

0

σJ0(ωσ)ψ(σ, λ0)dσ, F (ω) =

∫ ∞

0

σJ0(ωσ)ψλ(σ, λ0)dσ

stand for the image of initial conditions ψ(σ, λ0) and ψλ(σ, λ0) under the Fourier-Hankel transform. After expanding198

λ̄ = λ− λ0(σ), we have199

I =

∫ ∞

0

ωJ0(ωσ) cos
[ω
2

(
λ− λ0(σ)

)]
P (ω)dω + 2

∫ ∞

0

J0(ωξ) sin
[ω
2

(
λ− λ0(σ)

)]
F (ω)dω,

or equivalently200

I =

∫ ∞

0

ωJ0(ωσ) cos(λ0(σ)
ω

2
) cos(λ

ω

2
)P (ω)dω +

∫ ∞

0

ωJ0(ωσ) sin(λ0(σ)
ω

2
) sin(λ

ω

2
)P (ω)dω (A.14)

+ 2

∫ ∞

0

J0(ωσ) cos(λ0(σ)
ω

2
) sin(λ

ω

2
)F (ω)dω − 2

∫ ∞

0

J0(ωσ) sin(λ0(σ)
ω

2
) cos(λ

ω

2
)F (ω)dω. (A.15)

We now to check whether I satisfies equation (A.13). For the sake of brevity, let us consider the first term in the201

above expression for I, namely202

I1(σ, λ) =

∫ ∞

0

ωJ0(ωσ) cos(λ0(σ)
ω

2
) cos(λ

ω

2
)P (ω)dω.

After evaluating partial derivatives in (A.13), we obtain that203

4σ
∂2

∂λ2
I1 − ∂

∂σ

(
σ
∂

∂σ
I1

)
=

∫ ∞

0

ωΔ(σ, ω) cos(λ
ω

2
)P (ω)dω,
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where204

Δ(σ, ω) = σ(−ω2)J0(ωσ) cos(λ0
ω

2
)− ∂

∂σ

(
σ
∂

∂σ

(
J0(ωσ) cos(λ0

ω

2
)
))

(A.16)

=
ω2

2

(
2σ
∂J0
∂σ

(ωσ) + J0(ωσ)
)
sin(λ0

ω

2
)
∂λ0
∂σ

(A.17)

+ σJ0(ωσ)
(ω2

4
cos(λ0

ω

2
)
(∂λ0
∂σ

)2
+
ω

2
cos(λ0

ω

2
)
∂2λ0
∂σ2

)
. (A.18)

Consequently, one may notice that205

4σ
∂2

∂λ2
I1 − ∂

∂σ

(
σ
∂

∂σ
I1

)
= O(

∂λ0
∂σ

).

Similar expressions could be obtained for other terms in I. This implies that formula (4) in [4] does not solves the206

wave equation (A.13), but provide an approximation to the solution, which holds when ∂λ0/∂σ ≈ 0, or equivalently207

∂u0/∂σ ≈ 0. Therefore, the solution in [4] is subject to implicit assumptions, i.e. it does not exactly solve the partial208

differential equation, but rather provides an approximation to the solution.209
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