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ABSTRACT 
Network alignment is becoming an active topic in network data 
analysis. Despite extensive research, we realize that efficient use of 
topological and attribute information for large attributed network 
alignment has not been sufficiently addressed in previous studies. 
In this paper, based on Stochastic Block Model (SBM) and 
Dirichlet-multinomial, we propose “divide-and-conquer” models 
CAlign that jointly consider network alignment, community 
discovery and community alignment in one framework for large 
networks with node attributes, in an effort to reduce both the 
computation time and memory usage while achieving better or 
competitive performance. It is provable that the algorithms derived 
from our model have sub-quadratic time complexity and linear 
space complexity on a network with small densification power, 
which is true for most real-world networks. Experiments show 
CAlign is superior to two recent state-of-art models in terms of 
accuracy, time and memory on large networks, and CAlign is 
capable of handling millions of nodes on a modern desktop 
machine. 

CCS Concepts: General and reference~Reference works; 
Information systems~Data mining; Information systems~Social 
networks; Networks~Online social networks; Human-centered 
computing~Social network analysis 

Keywords: Attributed Network Alignment, Community 
Discovery, Large Network, Stochastic Block Model, Dirichilet-
Mutinomial 

1. INTRODUCTION 
Network alignment can be roughly described as matching the 

same or similar nodes in different networks. It recently draws a lot 
of attention for a variety of purposes and applications: [1] [2] for 
social networks, [3] for academic co-authorship networks, [4-6] for 
protein networks, [7] for aligning knowledge bases, and [8] for 
chemical compound networks, etc. Previously, node attributes are 

typically first reduced to node similarities [9, 10]. A recent trend in 
methodology of network alignment is to directly include network 
attributes, and they demonstrate better performance. For example, 
[11] aligns vertices through constructing and then aligning 
bipartite node-feature networks. [12] computes node similarities 
by using Kronecker product to propagate attribute information. 
All these papers share the same fundamental assumptions, 
 Topological consistency: if two nodes are topologically close 

in one network, their matched nodes in other networks should 
be near. For example, two people are friends and have frequent 
interactions in Facebook, and they also appear in Twitter, then 
even if they have few direct interactions on Twitter, it is likely 
that they stay in the same neighborhood. 

 Attribute consistency: a node in one network and its matches 
in other networks should exhibit similar features. For example, 
the same author usually studies similar topics and uses similar 
terminology for both journal and conference publications. 
Despite extensive research on network alignment, a crucial 

issue we recognize in previous models are the balance between 
computation complexity and performance. For example, FINAL-N 
in [12] makes use of both topology and node attributes, however, 
it scales at 𝑂(|𝑉|ଶ) for both time and space for every iteration 
where |𝑉| is the number of nodes, and runs out of 32GB memory 
on a network of about 50,000 nodes and 10 attributes. 
Consequently, its design is not able to handle high-dimensional 
attributes like text. For another example, UniAlign in [11] 
completes in one iteration, and supports high-dimensional 
attributes, however, the topological adjacency information is lost 
in the conversion of the original network to a node-feature 
bipartite network which results in low accuracy, especially on a 
large network. The algorithm also has 𝑂(|𝑉|ଶ) time complexity 
even though it is non-iterative. To our best knowledge, efficient 
use of full topology and attribute information for large attributed 
network alignment is challenging and has not been sufficiently 
addressed in the past. 

Is it necessary and a good practice to consider entire network 
to determine node correspondence when matching two large 
networks consisting of millions of nodes? We believe the answer is 
no for real-world networks, and we take the considerations of the 
divide-and-conquer strategy and network communities. From 
complexity perspective, real-world networks is organized into 
densely connected communities [13]: no matter a person in social 
network, an author in a co-authorship network, a protein in a PPI 
network, or a concept in a knowledge base, they mainly interact 
with part of the network. As a result, information outside that 
“part” has little impact on what happens inside, and intuitively 
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need not be considered when performing alignment. From 
performance perspective, many current network alignment 
models are formulated as non-convex optimization that is only 
able to find local optimum, therefore it is very important to guide 
the optimization search in the right places, especially for large 
networks that come with much similar local topology and 
immense solution universe. An example in Figure 1 illustrates 
similar local topology which can confuse the state-of-art models. 

 
Figure 1 Example sub-networks from two Amazon co-purchase networks (see 3.1) 
that confuse global-alignment models [9, 11, 12] due to similar local topology. All 
three models have less than 60% accuracy on this example. Nodes from aligned 
communities computed by our model are pained the same color. Red arrows 
indicate communities with more than 50% error and the major source of error. Our 
model achieves 79% accuracy on this example. 

Thus, it is appealing to us that if we can first discover 
communities and match those communities, then it is possible to 
perform local node alignments in some way with much less cost 
and potentially better performance. 

Network community discovery problem is a classic and yet still 
popular research topic in network analysis, aiming to cluster 
nodes into “communities” [14]. A basic requirement behind most 
community discovery models is that topologically close nodes and 
more similar nodes should have higher probability to be grouped 
together, highly analogous to the above-mentioned alignment 
consistency assumptions, strengthening our motivation to handle 
the two types of problems together. 

In particular, we propose a community-based network 
alignment model named CAlign that adopts stochastic block model 
(SBM) [15] as the start point. SBM is a widely-used probabilistic 
generative model for network community discovery with strong 
mathematical and statistical background [16] [17]. Probabilistic 
methods have an elegant theory in exploiting information of entire 
network [18, 19] and is  easily extendable. 

Meanwhile, we realize it is necessary to overcome a community 
number dilemma. In SBM, the number of communities in the 
network is pre-defined and denoted by letter 𝑘. As discussed in 
equation (10) in Section 2.3 that the standard solution depends 
quadratically on 𝑘 . In contrast, the complexity of network 
alignment roughly decreases proportionally with 𝑘. For simplicity, 
if we only allow nodes being aligned within each pair of matched 
communities, then it is easy to see the alignment complexity is 

𝑂 ቀ
|௏|మ

௞
ቁ; the situation is the same for more advanced designs. Thus, 

we want a small 𝑘 for community discovery, a large 𝑘 for network 
alignment, and hence the dilemma. We will have to carefully 
modify the standard SBM so that it depends as less on 𝑘 as 
possible. The complexity analysis and reduction relies on a fact 
that most real-world networks have low densification power 
log|௏||𝐸|  [20], where |𝐸|  denotes the number of edges in a 

network. The main contribution of this paper can be summarized 
as the following: 
 Novelty: to our best knowledge, we are the first to jointly 

consider community discovery, community alignment and 
node alignment in one framework. 

 Efficiency: time and space complexity is considered as a major 
concern in development of our approach, and we propose 
algorithms with provable sub-quadratic time complexity and 
linear space complexity; in addition, we experiment on a 
simple parallelization strategy that enables us to finish 
processing 1 million nodes in 1hr on an 8-core desktop 
machine. 

 Performance: extensive experiments are conducted on large 
networks against two state-of-art models [11] and [12] that 
directly involve node attributes in computation, validating that 
our approach is superior in terms of both time and accuracy on 
large networks. 
In the rest of this paper, section 2 will first define the problem, 

then formulate our model and develop the parameter inference. 
Section 3 presents experiment results on network alignment, 
model scalability, parallelization and communities. Related work 
and conclusion are given in section 4 and section 5 respectively. 

2. MOEL & INFERENCE 
Notation in this paper is summarized in Table 1. By convention, 

small bold letters represent vectors and big bold letters represent 
matrices. The operator |⋅| denotes the size of a set, and operator 
‖⋅‖ denotes a norm. Other notation will be explained when they 
are first encountered through our discourse. 

3.1 Problem Definition 
We consider 𝑁  directed network graphs 𝐺𝒾 = (𝑉𝒾 , 𝐸𝒾), 𝒾 =

1, … , 𝑁, where 𝑉𝒾 = ቄ𝑣ଵ
(𝒾)

, … , 𝑣|௏𝒾|
(𝒾)

ቅ is the vertex set or node set of 

the 𝒾 th network of size |𝑉𝒾| , and 𝐸𝒾 ⊆ 𝑉𝒾
ଶ  is the edge set. 

Throughout this paper, script letters 𝒾, 𝒿  are used to index 
networks. We develop the model theory for the general case of 
arbitrary finite 𝑁, but focus on the case of 𝑁 = 2 for experiments 
and some special discussion in this paper. We also focus on 
directed networks for mathematical convenience (e.g. no need for 
special treatment of diagonal elements of the block matrix in SBM 
model), but it is readily applicable to undirected graphs. 

Each network node inherently comes with some topological 
attributes, such as degree, centrality, h-index, adjacent triangles, 
average neighborhood degree, etc. For real-world networks, a node 
is usually also associated with certain non-topological network-
specific attributes, like location, gender, user tags, and user 
vocabulary in social networks. We predefine a set of discrete node 
attributes used in the model, denoted by 𝒜 = {𝒶ଵ, … , 𝒶|𝒜|} where 
|𝒜| is the number of pre-defined attributes. In future discussion, 
we overload the symbol “𝒶” to also represent the set of all possible 
values of 𝒶, or we say the range of 𝒶, and the size of 𝒶 is denoted 
by |𝒶|. The observed attribute values in network 𝑉𝒾 of an attribute 

𝒶 ∈ 𝒜 on some node 𝑣 are denoted as 𝑋𝒶,௩
(𝒾), and 𝑋𝒾 is used to 

denote the collection of all observed attribute values in network 

𝐺𝒾. 𝑋𝒶,௩
(𝒾) is a singleton for most topological attributes, e.g. degree, 

while it might be non-singleton for some non-topological 
attributes, e.g. user vocabulary and user tags. 
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Network Data 

𝒜, 𝒶, |𝒶|, 𝑥 ∈ 𝒶 

𝒜 is a set of predefined observable attributes in the 
network data, where each attribute in 𝒜 is denoted by 
𝒶. All possible values of 𝒶  is named its range. We 
denote a value in 𝒶’s range by 𝑥 ∈ 𝒶 and the range 
size is denoted by |𝒶|. 

𝐺𝒾 = (𝑉𝒾, 𝐸𝒾) 
The 𝒾th network graph with its vertex set 𝑉𝒾 and edge 
set 𝐸𝒾 . Script letters 𝒾, 𝒿  are used to index networks 
throughout the paper. 

𝑋𝒾, 𝑋𝒶,௩
(𝒾)

, 𝐧𝒶,௩
(𝒾)

(𝑥) 

𝑋𝒾 is the collection of all observed attributes values in 

the 𝒾th network;  𝑋𝒶,௩
(𝒾)  denotes the observed attribute 

value of attribute 𝒶 ∈ 𝒜  and vertex 𝑣 ∈ 𝑉𝒾. 𝐧𝒶,௩
(𝒾)  is a 

counting vector of length |𝑎| s.t. 𝐧𝒶,௩
(𝒾)

(𝑥) is the number 

of occurrences of 𝑥 in 𝑋𝒶,௩
(𝒾). 

Model 

𝒞 = {𝐶ଵ, … , 𝐶௞} The set of 𝑘 global latent communities. 

𝒞𝒾 = ൛𝐶ଵ
(𝒾)

, … , 𝐶௞𝒾

(𝒾)
ൟ The set of 𝑘(𝒾) latent communities of the 𝒾th network. 

𝐳𝒾(𝑣) 
𝐳𝒾 is the membership vector of vertices 𝑉𝒾 of the 𝒾th 
network, with 𝐳𝒾(𝑣) denoting the membership of some 
vertex 𝑣 ∈ 𝑉𝒾. 

𝐏𝒾, 𝑒௜,௝
(𝒾)

, 𝑛௜,௝
(𝒾) 

In the 𝒾 th network, 𝐏𝒾  is the block matrix for 

communities, 𝑒௜,௝
(𝒾)

, 𝑛௜,௝
(𝒾) are respectively the number of 

actual and maximum possible edges between 

community 𝐶௜
(𝒾) and 𝐶௝

(𝒾). 

𝚽𝒶 = ൫𝛟𝒶,௜ , … , 𝛟𝒶,௞൯ 
𝛟𝒶,௜ is the Dirichlet parameter of attribute 𝒶 for the 𝑖th 
meta community 𝐶௜; 𝚽𝒶 is a matrix of them. 

𝚯𝒾 = ൫𝛉ଵ
(𝒾)

, … , 𝛉௞𝒾

(𝒾)
൯ 

𝐲𝒶,௜
(𝒾)

= 𝚽𝒶𝛉௜
(𝒾) 

𝛉௜
(𝒾) is the weight vector for the 𝑖th community 𝐶௜

(𝒾) in 
network 𝐺𝒾; 𝚯𝒾 is a matrix of them.  

𝐂𝒾,𝒿 
The alignment matrix for communities in 𝐺𝒾  and 
communities in 𝐺𝒿, 𝒾 ≠ 𝒿. 

𝐕𝒾,𝒿 
The alignment matrix for vertices in 𝐺𝒾 and vertices in 
𝐺𝒿, 𝒾 ≠ 𝒿. 

Table 1. Notations 

 

 Definition 1 𝐺𝒾 = (𝑉𝒾, 𝐸𝒾, 𝑋𝒾), 𝒾 = 1, … , 𝑁 is defined as the 
attributed networks in this paper, and they are the input data of 
our model. 
As mentioned in section 1, aligning vertices of various 

networks is an important problem, many existing models have 
been trying to handle, and the main idea of our approach is 
“divide-and-conquer”: first cluster nodes into communities, align 
communities, and then align nodes between aligned communities. 
The communities and their alignment serve as guidance for node 
alignment, reducing the solution space and computation cost; in 
return node alignment results have a way to feedback the 
clustering of community. 

We assume each network 𝐺𝒾  has 𝑘𝒾  non-overlapping latent 

communities 𝒞𝒾 = ቄ𝐶ଵ
(𝒾)

, … , 𝐶௞𝒾

(𝒾)
ቅ where 𝒞𝒾 is a partition of 𝑉𝒾. We 

also define a membership vector 𝐳𝒾 indexed by vertices in 𝑉𝒾 so 
that 𝐳𝒾(𝑣) indicates which community 𝑣 belongs to, and we have 

𝑣 ∈ 𝐶𝐳𝒾(௩)
(𝒾) . The community alignment between 𝒞𝒾 and 𝒞𝒿 of every 

pair of networks 𝐺𝒾, 𝐺𝒿 can be represented by a |𝒞𝒾| × ห𝒞𝒿ห matrix 

𝐂𝒾,𝒿  s.t. 𝐂𝒾,𝒿(𝑖, 𝑗) ∈ [0,1] is a score indicating how strong 𝐶௜
(𝒾) 

aligns with 𝐶௝
(𝒿) , which can be viewed as a probability. Likewise, 

alignment between 𝑉𝒾 and 𝑉𝒿 of every pair of networks 𝐺𝒾 , 𝐺𝒿 can 
be represented by a |𝑉𝒾| × ห𝑉𝒿ห matrix 𝐕𝒾,𝒿  s.t. 𝐕𝒾,𝒿(𝑢, 𝑣) ∈ [0,1] 
indicates how strong a vertex 𝑢 ∈ 𝑉𝒾 aligns with a vertex 𝑣 ∈ 𝑉𝒿 . 

 Problem definition. Altogether, a formal statement of our research 
question can be written as the following: given large attributed 
networks 𝐺𝒾 = (𝑉𝒾, 𝐸𝒾 , 𝑋𝒾), 𝒾 = 1, … , 𝑁, how to infer the following 
three sub-problems altogether, 

1) community discovery: the membership vectors 𝐳𝒾 for every 𝒾 =

1, … , 𝑁. 

2) community alignment: the community alignment matrices 𝐂𝒾,𝒿 

for every (𝒾, 𝒿) ∈ {1, … , 𝑁}ଶ . 

3) network alignment: the node alignment matrices 𝐕𝒾,𝒿 for every 

(𝒾, 𝒿) ∈ {1, … , 𝑁}ଶ . 

To start with, this paper mainly targets the third sub-problem, 
by designing an alignment model framework that uses community 
information as its guidance. We believe all three sub-problems can 
be and should be jointly solved, as argued earlier, they share 
similar assumptions: topological consistency and attribute 
consistency. 

3.2 Model Formulation 
This section describes our modeling of each sub problem and 

how various parameters are integrated into one framework. A 
plate diagram is shown in Figure 2 as an overview. 

 
Figure 2 Plate diagram of our model CAlign. 𝐸𝒾 , 𝐸𝒿 , 𝒜 are observed edges sets and 

attribute values. 𝐸𝒾 , 𝐸𝒿 are generated by SBM model defined by block matrices 𝐏𝒾 , 𝐏𝒿 

and membership vectors 𝐳𝒾, 𝐳𝒿. 𝒜 is generated, by design of this paper, a Dirichlet-

Multinomial defined by representation of meta communities 𝚽 and mix vectors 𝚯𝒾 , 𝚯𝒿. 

Community alignment matrix 𝐂𝒾,𝒿 =
𝟏

௞
𝚯𝒾

𝐓𝚯𝒿  as in equation (7). Node alignment 𝐕𝒾,𝒿 

can be computed by any existing algorithms with a cost function, and can be treated as 
“partial observation” to feedback the mix vectors. 𝐳𝒾 , 𝐳𝒿 plays the role of exchanging 

information between topology and node attributes within each network, and 𝚽 plays the 
role of exchanging information among networks. 

For community discovery, we employ the Stochastic Block 
Model (SBM) [17] as the basic method. SBM has one additional 
parameter for each graph 𝐺(𝒾): a |𝒞𝒾| × |𝒞𝒾| block matrix 𝐏𝒾 s.t. 

𝐏𝒾(𝑖, 𝑗) ∈ [0,1] is the probability that a vertex of community 𝐶௜
(𝒾) 

has an edge to any vertex of community 𝐶௝
(𝒾). 

Let 𝛿௨,௩
(𝒾)

= ൜
1 (𝑢, 𝑣) ∈ 𝐸𝒾

0 (𝑢, 𝑣) ∉ 𝐸𝒾
 be the indicator function for 

(𝑢, 𝑣) ∈ 𝐸𝒾 , then SBM assumes for each vertex pair (𝑢, 𝑣) ∈ 𝑉𝒾
ଶ, 

independently 

𝛿௨,௩
(𝒾)

~Bernoulli ቀ𝐏𝒾൫𝐳𝒾(𝑢), 𝐳𝒾(𝑣)൯ቁ  (1) 

i.e. 𝛿௨,௩
(𝒾)

= 1 with probability 𝐏𝒾൫𝐳𝒾(𝑢), 𝐳𝒾(𝑣)൯. Thus, given 𝐳𝒾, 𝐏𝒾, 

let 𝑒௜,௝
(𝒾)

= ∑ 𝛿௨,௩
(𝒾)

௨∈஼೔
(𝒾)

,௩∈஼
ೕ
(𝒾)  be the number of edges between 

community 𝐶௜
(𝒾)  and 𝐶௝

(𝒾) , and let 𝑛௜,௝
(𝒾)

= ቚ𝐶௜
(𝒾)

ቚ × ቚ𝐶௝
(𝒾)

ቚ  be the 

maximum possible number of edges between 𝐶௜
(𝒾) and 𝐶௝

(𝒾), then 

the log-likelihood of observing 𝐸𝒾 is  
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ℒଵ
(𝒾)(𝐳𝒾, 𝐏𝒾|𝐸𝒾) = log ℙ(𝐸𝒾|𝐳𝒾, 𝐏𝒾)

= ෍ ൫𝑒௜,௝
(𝒾)

log 𝐏𝒾(𝑖, 𝑗) + ൫𝑛௜,௝
(𝒾)

− 𝑒௜,௝
(𝒾)

൯ log൫1 − 𝐏𝒾(𝑖, 𝑗)൯൯

௜,௝∈{ଵ,…,௞𝒾}

 (2) 

We will discuss inference of 𝐳𝒾 , 𝐏𝒾 based on the observation of 
𝐸𝒾 in section 2.2. As mentioned earlier, the crucial issue here is the 
inference time complexity which should depend as less as possible 
on 𝑘𝒾 , otherwise this part will itself introduce intolerable cost. We 
will later use a mathematical trick and a heuristic to reduce the 
complexity of the maximum likelihood estimator (MLE) derived 
from equation (2). 

For community alignment, we follow the generative model 
scheme to indirectly model 𝐂𝒾,𝒿, assuming there exists some global 
latent meta-communities in this world which can be characterized 
by a set of Dirichlet distributions that generate vertex attributes in 
observable real-world networks. Moreover, we assume a 
community in 𝒞𝒾 usually do not correspond to just one meta 
community, but rather a mix of them. 
 Definition 2. Every meta-community 𝐶௜ ∈ 𝒞, 𝑖 = 1, … , 𝑘 is a set of 

Dirichlet distributions ൛Dir൫𝛟𝒶,௜൯, 𝒶 ∈ 𝒜ൟ, where 𝛟𝒶,௜  denote the 

Dirichlet parameters. Let 𝚽𝒶 = ൫𝛟𝒶,௜ , … , 𝛟𝒶,௞൯, which is a |𝒶| × 𝑘 

matrix with columns being the Dirichlet parameters of all 

communities for attribute 𝒶. Let 𝚽 = ቀ𝚽𝒶భ
, … , 𝚽𝒶|𝒜|

ቁ be the array 

of all such matrices. 

 Definition 3. A community 𝐶௜
(𝒾) of network 𝐺𝒾 is represented by a 

set of Dirichlet distributions ቄDirቀ𝐲𝒶,௜
(𝒾)

ቁ, 𝐲𝒶,௜
(𝒾)

= 𝚽𝒶𝛉௜
(𝒾)

, 𝒶 ∈ 𝒜ቅ 

whose parameters are a mix of 𝚽 specified by a mix vector 𝛉௜
(𝒾) of 

length 𝑘 s.t. every value of 𝛉௜
(𝒾) is in range [0,1]. They will serve as 

prior distributions for generation of node attributes in each network 
community. 

We assume for each vertex 𝑣 ∈ 𝐶௜
(𝒾),  each attribute 𝒶 ∈ 𝒜, a 

categorical distribution 𝛑𝒶,௩  is first drawn from Dir ቀ𝚽𝒶𝛉௜
(𝒾)

ቁ , 

where 𝛑𝒶,௩  can be viewed as a random variant of 𝚽௔𝛉௜
(𝒾) . 

Intuitively, each node is viewed as a random sample of its 
community s.t. the overall expectation of all members is the 
community “itelf” (a Dirichlet parameter is the expectation of its 

samples). Recall 𝑋𝒶,௩
(𝒾) denotes the set of all attribute values of 𝒶 for 

node 𝑣 ∈ 𝑉𝒾 , then each 𝑥 ∈ 𝑋𝒶,௩
(𝒾)  is assumed independently drawn 

from 𝛑𝒶,௩ . In summary, 

𝛑𝒶,௩~Dir ቀ𝐲𝒶,𝐳𝒾(௩)
(𝒾)

ቁ , ∀𝑣 ∈ 𝑉(௜), ∀𝒶 ∈ 𝒜 

𝑥~Categorical൫𝛑𝒶,௩൯, ∀𝑥 ∈ 𝑋𝒶,௩
(𝒾) 

 (3) 

Let 𝚯𝒾 = ቀ𝛉ଵ
(𝒾)

, … , 𝛉௞𝒾

(𝒾)
ቁ, 𝛉௩

(𝒾)
= 𝛉𝐳𝒾(௩)

(𝒾)  for simplicity, and let 

𝐧𝒶,௩
(𝒾)  be a counting vector of length |𝒶| s.t. 𝐧𝒶,௩

(𝒾)
(𝑥) is the number 

of occurrences of 𝑥 in 𝑋𝒶,௩
(𝒾), then the log-likelihood of observing 𝑋𝒾 

given 𝚽, 𝚯𝒾 is 

ℒଶ
(𝒾)(𝚽, 𝚯𝒾, 𝐳𝒾|𝑋𝒾) = log ℙ(𝑋𝒾|𝚽, 𝚯𝒾, 𝐳𝒾) = ෍ ෍ ℒଶ,𝒶,௟

(𝒾)

௟∈{ଵ,…,௞𝒾}𝒶∈𝒜

 (4) 

where 

ℒଶ,𝒶,௟
(𝒾) (𝚽, 𝚯𝒾 , 𝐳𝒾|𝑋𝒾) = log ℙቀ𝑋𝒶,௟

(𝒾)
ቚ𝚽, 𝚯𝒾 , 𝐳𝒾ቁ

= log
Γ ቀቛ𝐲𝒶,௟

(𝒾)
ቛ

ଵ
ቁ

Γ ቀቛ𝐧𝒶,௟
(𝒾)

+ 𝐲𝒶,௟
(𝒾)

ቛ
ଵ

ቁ
+ ෍ log

Γ ൬ቀ𝐧𝒶,௟
(𝒾)

+ 𝐲𝒶,௟
(𝒾)

ቁ(𝑥)൰

Γ ቀ𝐲𝒶,௟
(𝒾)(𝑥)ቁ௫∈𝒶

 
 (5) 

derived from taking logarithm of compound Dirichlet-multinomial 
distributions and dropping constant terms (see [21] and [22]), with 
Γ denoting the Gamma function. We assume the generation of 
network data 𝐸𝒾, 𝑋𝒾  of the 𝒾 th network are conditional 
independent given 𝐳𝒾, and the generation of network data of each 
network (𝐸𝒾, 𝑋𝒾), 𝒾 = 1, … , 𝑁 are independent given 𝚽, then the 

overall likelihood is simply sum of ℒଵ
(𝒾)s and ℒଶ

(𝒾)s. 

ℒ = ෍ ቀℒଵ
(𝒾)(𝐳𝒾, 𝐏𝒾|𝐸𝒾) + ℒଶ

(𝒾)(𝚽, 𝚯𝒾, 𝐳𝒾|𝑋𝒾)ቁ

ே

𝒾ୀଵ

  (6) 

It is easy to see from above that 𝐳𝒾 plays the role of exchanging 
information between topology and node attributes within network 
𝐺𝒾, and 𝚽 plays the role of exchanging information among the 
networks. Finally, once all 𝚯𝒾 are inferred, we can compute the 
community alignment matrix 𝐂𝒾,𝒿 as 

𝐂𝒾,𝒿 =
1

𝑘
𝚯𝒾

୘𝚯𝒿  (7) 

where coefficient 
ଵ

௞
 normalizes all elements in 𝐂𝒾,𝒿 in range [0,1]. 

For a large network of at least tens of thousands of nodes, there 
will be hundreds of communities. It is realistic to assume one 

community 𝐶௜
(𝒾) in 𝐺𝒾 is aligned with only a few communities in 

another graph 𝐺𝒿. Therefore, we impose a regularization terms on 
(6) as the following, 

ℒ = ෍ቀℒଵ
(𝒾)

+ ℒଶ
(𝒾)

ቁ

ே

𝒾ୀଵ

− ෍ 𝜆𝒾,𝒿ฮ𝐂𝒾,𝒿ฮ
0

ଵஸ𝒾ழ𝒿ஸே

  (8) 

where ‖⋅‖଴ is the so-called “ℓ଴-norm”, the number of non-zero 
elements of a matrix, and 𝜆𝒾,𝒿 is a parameter specifying the level of 
penalty. Due to the NP-hardness of optimizing zero-norm [11, 23], 
ℓ଴-norm is often relaxed as ℓଵ-norm, e.g. our later gradient (15) is 
derived using ℓଵ-norm. With such regularization, the resulting 𝐂𝒾,𝒿 
will contain many small quantities. If we view communities as 
super-nodes, then the communities form a weighted multipartite 
network; in the case of 𝑁 = 2, it is a bipartite network, and here is 
where weighted bipartite network clustering comes into play. We 
adopt a simple combination of [24] and [25] for our purpose, 
assuming edge weights obey Beta distributions of different 
parameters. Detailed discussion is omitted due to space limitation. 
The algorithm takes 𝑂(𝑘𝒾𝑘𝒿) computation time, and yields a set of 
disconnected bipartite communities, where network alignment is 
performed within each component. We observe from our 
experiments that on average most components have 4 to 8 
communities and do not depend on network size, and can be 
treated as a constant when analyzing complexity. 

For network alignment, nodes of two networks 𝐺𝒾 and 𝐺𝒿 are 
aligned with respect to the bipartite community clusters derived 
from community alignment. In the process of parameter inference, 
community clusters may change, and network alignment is re-
computed with respect to the new clusters, but with a restriction 
that a node in 𝐺𝒾 switches its aligned node in 𝐺𝒿 only if a better 
match is found, i.e. that switch decreases alignment cost. Thus, 
network alignment is NOT designed to be restricted by the 
community alignment, but community alignment functions more 
like a guide telling nodes where to find potentially better matches. 

Technically, our model CAlign can combine any algorithm 
with a cost function to align nodes. In this paper, we experiment 
on [11] with ‖𝐏𝐀 − 𝐁‖୊ as cost function where 𝐏 is from their 
equation 5, and [12] with their equation 7 as cost function. In 
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addition, we will experiment on the following simple similarity-
based approach that we call Sim-Align: given two networks 𝐺𝒾, 𝐺𝒿, 

every node is aligned with the most similar one in terms of first 
cosine-similarity and secondly Euclidean distance based on node 
attributes. We find such simple method already works well when 
rich attributes are available. 

3.3 Parameter Estimation 
We analyze that the model complexity as the number of 

vertices |𝑉𝒾| in each network grows. |𝒶|, |𝒜|, 𝑁 are clearly fixed 
constants, but 𝑘𝒾 , 𝑘, |𝐸𝒾| usually grows with |𝑉𝒾|. We also assume 
𝑘 < 𝑠௞ = ∑ 𝑘𝒾

ே
𝒾ୀଵ . 

Update membership vector 𝒛 . We update 𝐳𝒾(𝑣)  for every 
node 𝑣 ∈ 𝑉𝒾 as the community that maximizes the likelihood of 
the edge set 𝐸𝒾 and the attributes 𝑋𝒾 

𝐳𝒾
(୬ୣ୵)

(𝑣) = arg max
𝐳𝒾(௩)∈{ଵ,…,௞𝒾}

ℒଵ
(𝒾)

+ ℒଶ
(𝒾)  (9) 

When optimizing (9), the likelihoods are computed based on the 
current 𝐳𝒾  except for varying 𝐳𝒾(𝑣) = 1, … , 𝑘𝒾 , and adjust the 

affected addends in ℒଵ
(𝒾)  and ℒଶ

(𝒾)  accordingly. Suppose we try 
switching 𝐳𝒾(𝑣) = 𝑟 to 𝐳𝒾(𝑣) = 𝑟ᇱ. 

We first check the switch only affects those addends in ℒଶ
(𝒾) 

with counting vectors 𝐧𝒶,௥
(𝒾) , 𝐧

𝒶,௥ᇲ
(𝒾) . The number of such addends is 

fixed, so re-computing ℒଶ
(𝒾) takes only constant complexity for 

each switch, and thus in total 𝑂(𝑘𝒾|𝑉𝒾|) complexity for trying 
each 𝐳𝒾(𝑣) = 1, … , 𝑘𝒾 for every 𝑣 ∈ 𝑉𝒾 . We then discuss the more 

troublesome ℒଵ
(𝒾). From [17] we have 

ℒଵ
(𝒾)

= ෍ ൫𝑒௜,௝
(𝒾)

ln 𝑒௜,௝
(𝒾)

− 𝑛௜,௝
(𝒾)

ln 𝑛௜,௝
(𝒾)

+ ൫𝑛௜,௝
(𝒾)

− 𝑒௜,௝
(𝒾)

൯ ln൫𝑛௜,௝
(𝒾)

− 𝑒௜,௝
(𝒾)

൯൯

௜,௝∈{ଵ,…,௞𝒾}

 

 (10) 

 The switch only affects those 𝑒௜,௝
(𝒾) s.t. one of 𝐶௜

(𝒾) and 𝐶௝
(𝒾) is 

the adjacent communities of 𝑣 . Thus, the adjustment of 

∑ 𝑒௜,௝
(𝒾)

ln 𝑒௜,௝
(𝒾)

௜,௝∈{ଵ,…,௞𝒾}  takes at most 𝑂(deg 𝑣)  time, where 

deg 𝑣 is the sum of in-degree and out-degree of 𝑣. 

 Unfortunately, all 𝑛௥,௝
(𝒾)

, 𝑛௜,௥
(𝒾)

, 𝑛
௥ᇲ,௝

(𝒾)
, 𝑛

௜,௥ᇲ
(𝒾)  need re-computation, and 

this takes 𝑂(𝑘𝒾) time. 
Therefore, the time complexity of (10) is 𝑂(𝑘𝒾

ଶ) in total for trying 
each 𝐳𝒾(𝑣) = 1, … , 𝑘𝒾 , and 𝑂(𝑘𝒾

ଶ|𝑉𝒾|)  for a whole sweep of 
updating 𝐳𝒾. This complexity depends too much on 𝑘𝒾 , causing the 
community number dilemma as discussed in section 1, where the 

“culprit” is 𝑛௜,௝
(𝒾). We now try to remove “𝑛௜,௝

(𝒾)” from (10) by first 

using the fact that  

ln(1 − 𝑥) = −𝑥 ln 𝑥 + 𝑥 − ෍
𝑥௡ାଵ

𝑛(𝑛 + 1)

ஶ

௡ୀଵ

, ∀|𝑥| < 1 

and 0 ≤
௘೔,ೕ

(𝒾)

௡೔,ೕ
(𝒾) ≤ 1 to expand 

lnቀ𝑛௜,௝
(𝒾)

− 𝑒௜,௝
(𝒾)

ቁ = −
𝑒௜,௝

(𝒾)

𝑛௜,௝

(𝒾)
ln

𝑒௜,௝
(𝒾)

𝑛௜,௝

(𝒾)
+

𝑒௜,௝
(𝒾)

𝑛௜,௝

(𝒾)
+ ln 𝑛௜,௝

(𝒾)
+ 𝑂 ቌ൭

𝑒௜,௝
(𝒾)

𝑛௜,௝

(𝒾)
൱

ଶ

ቍ 

Plug above back in (10) and after rearrangement we have 

ℒଵ
(𝒾)

= ෍ 𝑒௜,௝
(𝒾)

ln
𝑒௜,௝

(𝒾)

𝑛௜,௝

(𝒾)

௜,௝∈{ଵ,…,௞𝒾}

− |𝐸𝒾| +  𝑂 ൭
𝑒௜,௝

(𝒾)

𝑛௜,௝

(𝒾)
൱  (11) 

where the proof is in appendix A.1 at the end.  
 Definition 3. A graph 𝐺 = (𝑉, 𝐸) is asymptotic sparse if the ratio 

between the number of observed edges and the maximum possible 

number of edges in the network approaches zero as the graph 

becomes very large [26], i.e. lim
|௏|→ஶ

|ா|

|௏|మ
= 0. This is actually a 

weaker condition than the densification power law [20], thus 
many real-world networks that follow densification power law are 
immediately asymptotic sparse. 
For our purpose, we in addition assume the networks are also 
locally asymptotic sparse: the subgraphs of each community and 

the inter-community links are all spare, i.e. 
௘೔,ೕ

(𝒾)

௡೔,ೕ
(𝒾) → 0 as |𝑉𝒾| → ∞ 

for any 𝑖, 𝑗, 𝒾. 
 Proposition 1. Under the assumption of definition 3, we have 

ℒଵ
(𝒾)

≈ ෍ 𝑒௜,௝
(𝒾)

ln
𝑒௜,௝

(𝒾)

𝑛௜,௝

(𝒾)

௜,௝∈{ଵ,…,௞𝒾}

  (12) 

The proof is the derivation of (11) above. 

At first glance 𝑛௜,௝
(𝒾)  is still there, but we note 𝑛௜,௝

(𝒾)
=

ቚ𝐶௜
(𝒾)

ቚ ቚ𝐶௝
(𝒾)

ቚ and we can further decompose (12) as the following, 

proof in appendix A.2 at the end. 

෍ 𝑒௜,௝
(𝒾)

ln
𝑒௜,௝

(𝒾)

𝑛
௜,௝

(𝒾)

௜,௝∈{ଵ,…,௞}

= ෍ 𝑒௜,௝
(𝒾)

ln 𝑒௜,௝
(𝒾)

௜,௝∈{ଵ,…,௞}

− ෍ 𝑒௜,∗
(𝒾)

lnห𝐶௜
(𝒾)

ห

௞

௜ୀଵ

− ෍ 𝑒∗,௝
(𝒾)

lnห𝐶௝
(𝒾)

ห

௞

௝ୀଵ

 

(13) 

where 𝑒௜,∗
(𝒾)

= ∑ 𝑒௜,௝
(𝒾)௞𝒾

௝ୀଵ  is the number of edges starting from a 

vertex of community 𝐶௜
(𝒾), and 𝑒∗,௝

(𝒾)
= ∑ 𝑒௜,௝

(𝒾)௞𝒾
௜ୀଵ  is the number of 

edges ending at a vertex of community 𝐶௜
(𝒾). 

 Proposition 2. On a large sparse graph (12) contributes 𝑂(𝑘𝒾|𝐸𝒾|) 
time complexity to one complete sweep of updating 𝐳𝒾. 

Proof: when 𝐳𝒾(𝑣)  varies, “ lnቚ𝐶௜
(𝒾)

ቚ ” requires constant time to 

update, and as discussed earlier at most deg 𝑣 of those 𝑒௜,௝
(𝒾) might 

change, then adjustment of Error! Reference source not found.) 
takes 𝑂(deg 𝑣) time. Thus, an entire sweep of updating 𝐳𝒾  takes 
𝑂(𝑘𝒾|𝐸𝒾|) time. 
 
Iteration 1 2 3 4 5 
Amazon 
77222(1) 

23677(2)/16100(3) 
(20.8%(4)) 

5389/2458 
(3.2%) 

1866/348 
(0.45%) 

710/122 
(0.15%) 

/5) 

PlosOne 
53374 

22096/19425 
(36.4%) 

9974/3642 
(6.8%) 

3161/1163 
(2.2%) 

1129/373 
(0.7%) 

512/143 
(0.27%) 

LinkedIn 
34221 

14020/8845 
(25.8%) 

3316/1963 
(5.7%) 

928/228 
(0.7%) 

297/115 
(0.3%) 

/ 

AMiner 
30045 

15903/5642 
(18.8%) 

3081/1274 
(4.2%) 

866/210 
(0.7%) 

282/108 
(0.3%) 

/ 

Fliker 
21945 

16422/10324 
(47.0%) 

7798/2666 
(12.1%) 

3596/503 
(2.3%) 

1322/369 
(1.7%) 

754/287 
(1.3%) 

Lastfm 
26426 

15650/11563 
(43.8%) 

7985/2994 
(11.3%) 

3297/620 
(2.4%) 

1617/294 
(1.1%) 

833/261 
(1.0%) 

Table 2 Membership switch statistics of various datasets, based on CAlign-Full-S. (1) 
total number of nodes; (2) number of nodes that switch membership; (3) number of 
nodes that switch to non-adjacent communities; (4) percentage of nodes switching to 
non-adjacent communities against total number of nodes; (5) algorithm converges and 
is terminated. 

Here is where a heuristic kicks in to further reduce 
computation time: it quickly becomes less likely for a vertex to 
switch to a non-adjacent community after the initialization (see 
later) and the first iteration. Brief statistics for various datasets 
used in experiments of section 3 are shown in Table 2. This 
phenomenon is consistent with the dense intra-community 
connection and loose inter-community connection assumption 
mentioned in section 1. As the iterations go on, many nodes 
become “internal” inside a community and effectively stop 
switching membership. 
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Based on above observation, we propose the following strategy 
named CAlign-Fast to boost update of 𝐳. First define a probability 
parameter 𝑝, and let 𝑝௩ = 𝑝 for every node 𝑣 in the network.  
Starting form the second iteration, a node can try non-adjacent 
communities if it switches to non-adjacent communities in the 
previous iteration. Otherwise, with probability 𝑝௩ it can try non-
adjacent communities; if the attempt fails, then 𝑝௩ = 𝑝௩

ଶ. We call 
our model without this strategy as CAlign-Full. as 

Initialization of 𝐳. We recommend an initialization of 𝑧 based 
on the observation that high-degree node and its neighbors tend to 
be in the same community. So, we start with a high-degree node as 
a singleton community, expand the community by putting those of 
its neighbors in the same community whose number of edges to 
and from the community are higher than the average 
neighborhood degree by a threshold, see algorithm 1. 
ALGORITHM 1: Initialization of membership 𝐳 for a network 𝐺 

input: a network 𝐺; number of communities 𝑘; max_expan: indicating the 
maximum number of expansion for each iteration; t(avg_deg, 𝑖 , 𝑗 ): a 
degree threshold function that grows with iteration index 𝑖 and expansion 
index 𝑗. 

 
output: initialized membership vector 𝐳. 

In our experiment of section 3, we use 𝑡 = (𝑎𝑣𝑔_𝑑𝑒𝑔) ×

1.15௜ × ቀ1.5 +
଴.ହ௝

௞𝒾
ቁ, which grows with index 𝑖, 𝑗 because we find 

the heuristic of algorithm 1 becomes less reliable as 𝑖, 𝑗 increase. 
The initialization can be implemented in 𝑂(|𝐸|) time. It almost 
halves the iterations needed for convergence than a random 
initialization and always leads to a higher likelihood in our 
experiment. 

Update community representation 𝐘  & mix vectors 𝚯 
before node alignment. We follow [27] and use gradients to 
update the parameter estimation of the Dirichlet-multinomial 

mixture in (4). As before, let 𝐲𝒶,௟
(𝒾)

= 𝚽𝒶𝛉௟
(𝒾), and we update 𝐲𝒶,௟

(𝒾)s in 

order to update 𝚽𝒶. Let 𝐧𝒶,௟
(𝒾) be a counting vector of length |𝑎| s.t. 

𝐧𝒶,௟
(𝒾) is the number of occurrences of attribute values in community 

𝐶௟
(𝒾)

. 

 Proposition 3. The gradient of (4) w.r.t. 𝐲𝒶,௟
(𝒾), denoted by 𝛁

𝐲𝒶,೗
(𝒾) , is a 

vector of length |𝒶| given by 

𝛁
𝐲𝒶,೗

(𝒾) = Ψ ቀቛ𝐲𝒶,௟
(𝒾)

ቛ
ଵ

ቁ − Ψ ቀቛ𝐧𝒶,௟
(𝒾)

+ 𝐲𝒶,௟
(𝒾)

ቛ
ଵ

ቁ

+ Ψቀ𝐧𝒶,௟
(𝒾)

+ 𝐲𝒶,௟
(𝒾)

ቁ − Ψቀ𝐲𝒶,௟
(𝒾)

ቁ 
(14) 

where we slightly abuse the notation for clarity: Ψ(⋅) applied on a 
vector means applying the digamma function on every component 
of that vector, and a number plus a vector means adding that 

constant to every component of that vector. Likewise, gradient of 

(4) w.r.t. 𝛉௟
(𝒾), denoted by 𝛁

𝛉೗
(𝒾) , is a vector of size 𝑘 determined by 

𝛁
𝛉೗

(𝒾)(𝑖)

= ෍ ቌቆΨ ቀቛ𝐲𝒶,௟
(𝒾)

ቛ
ଵ

ቁ − Ψ ቀቛ𝐧𝒶,௟
(𝒾)

+ 𝐲𝒶,௟
(𝒾)

ቛ
ଵ

ቁቇ ‖𝚽𝒶(⋅, 𝑖)‖ଵ

𝒶∈𝒜

+ ෍ ൬Ψ ቀ𝐧𝒶,௟
(𝒾)(𝑥) + 𝐲𝒶,௟

(𝒾)(𝑥)ቁ − Ψ ቀ𝐲𝒶,௟
(𝒾)(𝑥)ቁ൰ 𝚽𝒶(𝑥, 𝑖)

௫∈𝒶

ቍ

− ෍ 𝜆𝒾,𝒿ฮ𝚯𝒿(𝑖,⋅)ฮ
ଵ

𝒿ୀଵ,…,ே,𝒿ஷ𝒾

 

𝑖 = 1, . . , 𝑘  (15) 

The complexity of (14) and (15) are constant since the attribute set 
and attribute dimensions are fixed constants. Thus, computing all 
𝛁

𝐲𝒶,೗
(𝒾) takes 𝑂(𝑘𝒾) time, and computing all 𝛁

𝛉೗
(𝒾) takes 𝑂(𝑘𝑘𝒾) time. 

We have a constant time Newton-Raphson update for 𝐲𝒶,௟
(𝒾) by 

𝐲𝒶,௟
(𝒾),୬ୣ୵

= 𝐲𝒶,௟
(𝒾),୭୪ୢ

− 𝐇
𝐲𝒶,೗

(𝒾)
ିଵ 𝛁

𝐲𝒶,೗
(𝒾)   (16) 

where 𝐇
𝐲𝒶,೗

(𝒾) is the Hessian matrix of (4) w.r.t. 𝐲𝒶,௟
(𝒾), due to the nice 

algebraic structure of 𝐇
𝐲𝒶,೗

(𝒾) . Thus, updating all 𝐲𝒶,௟
(𝒾)  can be 

completed in 𝑂(𝑘𝒾) time. 

 Proposition 4. The Hessian of (4) w.r.t. 𝐲𝒶,௟
(𝒾), denoted by 𝐇

𝐲𝒶,೗
(𝒾), 

is a |𝒶| × |𝒶| matrix given by 
𝐇

𝐲𝒶,೗
(𝒾) = 𝚲 + 𝑐𝟏𝟏୘  (17) 

where 𝚲 is a diagonal matrix s.t. 

𝚲(𝑥, 𝑥) = Ψᇱቀ𝐧𝒶,௟
(𝒾)

(𝑥) + 𝐲𝒶,௟
(𝒾)

(𝑥)ቁ − Ψᇱቀ𝐲𝒶,௟
(𝒾)

(𝑥)ቁ, 𝑥 ∈ 𝒶 

and 𝑐 = Ψᇱ ቀቛ𝐲𝒶,௟
(𝒾)

ቛ
ଵ

ቁ − Ψᇱ ቀቛ𝐧𝒶,௟
(𝒾)

+ 𝐲𝒶,௟
(𝒾)

ቛ
ଵ

ቁ. 

Unfortunately, Newton-Raphson update for all 𝛉௟
(𝒾)  will take 

unacceptable 𝑂(𝑘ସ) time, so we instead use gradient ascent in (18) 
where 𝜂௟ is step. 

𝛉௟
(𝒾),୬ୣ୵

= 𝛉௟
(𝒾),୭୪ୢ

+ 𝜂௟𝛁
𝛉೗

(𝒾)   (18) 

Let 𝐲𝒶,௟
(𝒾),∗

= 𝚽𝒶 ቀ𝛉𝑙
(𝒾)

+ 𝜂
𝑙
𝛁

𝛉𝑙
(𝒾)ቁ, then the optimal step 𝜂௟  is the 

root of the following complicated equation and hence hard to 
solve. 

൬Ψ ቀฮ𝐲𝒶,௟
(𝒾),∗ฮ

ଵ
ቁ − Ψ ቀฮ𝐧𝒶,௟

(𝒾)
+ 𝐲𝒶,௟

(𝒾),∗ฮ
ଵ
ቁ൰ ฯ𝚽𝒶𝛁

𝛉೗
(𝒾)ฯ

ଵ

+ ෍ ൬Ψ ቀ൫𝐧𝒶,௟
(𝒾)

+ 𝐲𝒶,௟
(𝒾),∗൯(𝑥)ቁ − Ψ ቀ𝐲𝒶,௟

(𝒾),∗(𝑥)ቁ൰ 𝛁
𝛉೗

(𝒾)(𝑥)

௫∈𝒶

= 0 
 (19) 

We just start with a conservative value 𝜂௟ = 0.05, check a fixed 
number of 2𝜂௟ , 3𝜂௟ , etc. to see if they are better. The complexity of 
updating all 𝚯𝒾, including (18) and (19), is 𝑂(𝑘𝑘𝒾). 

Update 𝚯 & meta communities 𝚽 after node alignment. 
Based on current 𝚯, we can perform node alignment with respect 
to the bipartite community clusters as discussed in section 2.2. 
After that, we first compute 𝐂𝒾,𝒿 by  

𝐂𝒾,𝒿(𝑖, 𝑗) =

∑ 𝐕𝒾,𝒿(𝑢, 𝑣)
௨∈஼

೔
(𝒾)

,௩∈஼
೔
(𝒾)

2 ∑ ฮ𝐕𝒾,𝒿(𝑢,⋅)ฮ
ଵ௨∈஼

೔
(𝒾)

+

∑ 𝐕𝒾,𝒿(𝑢, 𝑣)
௨∈஼

೔
(𝒾)

,௩∈஼
೔
(𝒾)

2 ∑ ฮ𝐕𝒾,𝒿(⋅, 𝑣)ฮ
ଵ௩∈஼

ೕ
(𝒿)

 (20) 

𝐂𝒾,𝒿 computed in this way satisfies 𝐂𝒾,𝒿 = 𝐂𝒿,𝒾
୘ . Then we perform 

SVD on 𝐂𝒾,𝒿 so that 
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𝐂𝒾,𝒿 = 𝓤𝒾,𝒿𝚲𝒾,𝒿𝓥𝒾,𝒿
୘ ⇒

⎩
⎨

⎧𝚯𝒾 = ට𝑘𝚲𝒾,𝒿𝓤𝒾,𝒿
்

𝚯𝒿 = ට𝑘𝚲𝒾,𝒿𝓥𝒾,𝒿
୘

  (21) 

By property of SVD, the solution of 𝚯𝒾 , 𝚯𝒿 are unique. For 
large network where each community has at least hundreds of 
nodes, this update of 𝚯𝒾 , 𝚯𝒿 from will not change a lot and can be 
viewed as feedback adjustment from the node alignment. Let 𝐘𝒶 =

ቀ𝐲
𝒶,1

(1)
, … , 𝐲

𝒶,𝑘1

(1)
, … , 𝐲

𝒶,1

(𝑁)
, … , 𝐲

𝒶,𝑘𝑁

(𝑁)
ቁ, we now can update 𝚽𝒶 as  

𝐘𝒶 = 𝚽𝒶𝚯 ⇒ 𝚽𝒶 = 𝐘𝒶𝚯ା  (22) 

for every 𝒶 ∈ 𝒜 where 𝚯ା is the Moore-Penrose inverse of 𝚯, 
which is also computed by SVD. Updates in (15) and (22) will 
converge because SVD is numerical stable. The feedback to 𝚯𝒾, 𝚯𝒿 
will become less and less as fewer and fewer nodes switch 
alignment [28], and consequently change in 𝚽𝒶 will also decrease 
through the process. Suppose 𝑘𝒾 ≤ 𝑘𝒿, 𝑘 < 𝑠௞ = ∑ 𝑘𝒾

ே
𝒾ୀଵ , the time 

complexity of (15) is 𝑂(𝑘𝒾𝑘𝒿
ଶ) and of (22) is 𝑂(𝑘𝑠௞

ଶ).  

Initialization of 𝐘, 𝐂, 𝚯, 𝚽 . Each 𝐲𝒶,௟
(𝒾)  is the Dirichlet-

multinomial parameter of a local community 𝐶௟
(𝒾) , and we 

initialize it as the sample mean 𝐲𝒶,௟
(𝒾)

=
𝐧𝒶,೗

(𝒾)

ቚ஼೗
(𝒾)

ቚ
. Community alignment 

matrix 𝐂𝒾,𝒿 is initialized as a cosine-similarity matrix of every pair 

in 𝒞𝒾 × 𝒞𝒿 based on the aggregated node attributes, and 𝚯𝒾, 𝚯𝒿 are 

initialized by SVD as in (21). 𝚽𝒶 is initialized according to (22). 

Summary and choice of 𝑘𝒾 , 𝑘. Putting everything together, 
we summarize the entire algorithm of our model in algorithm 2, 
for the case of 𝑁 = 2. The design of our model is suitable for a 
general finite 𝑁, but we have to integrate alignment consistency [2] 
and find an efficient 𝑁-partite graph clustering. Therefore, this is 
left as future work. 
ALGORITHM 2: CAlign-Full/Fast, 𝑁 = 2 
input: attributed networks 𝐺𝒾, 𝒾 = 1,2 ; number of communities 𝑘ଵ, 𝑘ଶ ; 
number of meta communities 𝑘 ; convergence threshold 𝑟  (default 1%); 
necessary input for algorithm 1 and the network alignment model plugin. 

 
output: 𝐳ଵ, 𝐳𝟐, 𝐘, 𝐂, 𝚯, 𝚽. 

For choice of 𝑘, our approach is to sample sub-networks from 
𝐺ଵ, 𝐺ଶ, consider their singular values 𝜎ଵ, 𝜎ଶ, …, and let 𝑘 be the one 
such that 𝜎ଵ + ⋯ + 𝜎௞ account for 80% of the sum of all singular 
values. Repeat several times and take the average. If 𝑘 is larger 
than min{𝑘ଵ, 𝑘ଶ}, let 𝑘 = min{𝑘ଵ, 𝑘ଶ}. 

For choice of 𝑘ଵ, 𝑘ଶ, [29] and [30] use the method to maximize 
the likelihood on held-out sub-network samples, but we have 
another more important concern. We let 𝑘𝒾 = |𝑉𝒾|ఈ , 𝒾 = 1,2 for 
some power 𝛼. Let 𝑑𝒾  be the densification power of 𝐺𝒾 , |𝑉| =

max{|𝑉ଵ|, |𝑉ଶ|} , 𝑑 = max{𝑑ଵ , 𝑑ଶ} , then under this setup, the 
overall time complexity of CAlign is 𝑂(max(|𝑉|ଷఈ , |𝑉|ఈାௗ)), 

sub-quadratic if 𝛼 < min ቀ
ଶ

ଷ
, 2 − 𝑑ቁ. The datasets in this paper 

have their 𝑑 < 1.3 (social networks and co-author networks). As 
an overall consideration, we recommend use 𝛼 = 0.4 for our 
experiments. 

CAlign-Fast saves time by a small power dependent on 𝑑, the 
network size, and how much of the algorithm is running under 
𝑂(|𝑉|ఈାௗ) complexity. For example, if α = 0.4, |𝑉| = 10଺, 𝑑 =

1.2, and 20% of the algorithm runs under 𝑂(|𝑉|ଵ.଺) , then the 
overall complexity is of power log|௏|(0.8 + 0.2|𝑉|଴.ସ)|𝑉|ଵ.ଶ ≈

1.6 − log|௏|0.2 ≈ 1.49. This downgrade, seemingly small, but is 
actually remarkable; it means CAlign-Fast could save 75% time 
from CAlign-Full for 1 million nodes. 

Finally, the space complexity of CAlign is determined by the 
maximum size of 𝐳ଵ, 𝐳𝟐, 𝐘, 𝐂, 𝚯, 𝚽 and auxiliary variables including 

𝑒௜,௝
(𝒾)

, 𝑛௜,௝
(𝒾)

, 𝐧௔,௟
(𝒾) , which clearly scales at most 𝑂(𝑘ଵ𝑘ଶ), less than 

𝑂(|𝑉|) when 𝛼 = 0.4. 

3. EXPERIMENTS & EVALUATION 
The experiments for our proposed C-Align model framework 

are done with Matlab on an 8-core Intel i7 3.00GHz machine with 
32GB memory. We compare CAlign-Full/Fast with the Sim-Align 
described at the end of section 2.2, Uni-Align in [11] and FINAL-N 
in [12], using them as plugin models. We use the initial big letter 
to indicate which mode we use, e.g. CAlign-Fast-S means we use 
Sim-Align for CAlign-Fast. For all networks, we use attributes that 
have been experimented in pervious papers [11, 12, 29], etc., 
including degree, h-index (reflecting node significance), number of 
adjacent triangles, clustering coefficient and neighborhood 
average degree (reflecting local topology). All sub-networks are 
extracted by sampling edges, which better preserves topological 
information than sampling nodes. 

3.1 Performance & Efficiency Analysis 
Homogeneous networks. We experiment on two 

homogeneous datasets with rich text attributes. 

 Two Amazon co-purchase networks from [31]. In both 
networks, nodes are products, mostly book, DVD, music and 
video. If a product is frequently co-purchased with another 
product, then there is an edge between them. Two sub 
networks of about 40,000 nodes are extracted so that can be 
handled by all algorithms tested here. The first network 
contains 37,201 nodes and 104,105 edges. The second network 
contains 40,021 nodes and 144,284 edges. The two networks 
have 29,760 nodes in common as ground truth. We use top-
2000 lemmatized title word counts as non-topological 
attributes of each product, and  

the count of other words is summed as one attribute “other”. 
Densification power: 1.12; 𝑘ଵ = 69, 𝑘ଶ = 69, 𝑘 = 32. 

 Two PlosOne coauthor networks from http://journals.plos.org. In 
both networks, nodes are article authors, and there is an edge 
between two authors if they ever co-authored one article. The 
first network contains 21,211 distinct nodes and 116,032 edges. 
The second network contains 32,163 distinct nodes and 176,035 
edges. The two networks have 6,507 overlapping nodes as 
ground truth. We extract top-2000 most frequent words in  
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 scientific terms recognized from the article texts by techniques 
developed in [32], and count their frequencies as non-
topological node attributes. Densification power: 1.16; 𝑘ଵ =

54, 𝑘ଶ = 63, 𝑘 = 25. 

Note we are unable to pre-align nodes by name for above 
homogenous datasets because their ground truth is exactly 
established by name. As an alternative, we randomly sample a 
percent of the nodes and treat their alignment as known, from 50% 
to 0%. Accuracy are measured by how much of the remaining node 
can be correctly aligned, the same as [11] and [12]. Experiments at 
each percentage level are repeated 3 times, and the average results 
are shown in Figure 3(a). 

Heterogeneous networks. We then experiment on two 
heterogeneous datasets from [2]. 

 ArnetMiner-LinkedIn. The ArnetMiner coauthor dataset comes 
with rich user profile like location, gender, sign, hobby, job. It in 
total has 1,053,188 nodes and 3,916,907 edges. In the LinkedIn “co-
viewed” network, two users have an edge if their profile are 

frequently viewed by the same visitor. The dataset has everything 
you can see on LinkedIn, including skills, educating background 
and career history; it has 2,985,414 nodes and 25,965,384 edges. 
The rich profiles are broken down to lemmatized word counts as 
non-topological attributes. The entire data set is later used for 
parallelization and scalability tests. The ground truth contains 
4,269 matches, and we extract two sub-networks containing it. The 
ArnetMiner network contains 30,045 nodes and 83,946 edges. The 
LinkedIn network contains 34,221 nodes and 112,852 edges. 
Densification power: 1.10 and 1.14; 𝑘1 = 62, 𝑘2 = 65, 𝑘 = 30. 

 Fliker-Last.fm. Edges in flicker dataset represent friendship, in 
Last.fm dataset represent following relationship. Only username 
and gender are available as non-topological attributes. We 
compute the Jaro-Winkler distance between names and split its 
range to three categories. The first network has 21,945 nodes and 
544,217; the second network has 26,426 nodes and 226,506 edge. 
The ground truth has only 641 matches for this data set. 
Densification power: 1.30 and 1.21; 𝑘1 = 55, 𝑘2 = 59, 𝑘 = 31. 

    

    

 

 

 

 
Amazon Co-purchase network 

(with text attributes) 
Amazon Co-purchase network 

(without text attributes) 
PlosOne Coauthor network 

(with text attributes) 
PlosOne Coauthor network 

(without text attributes) 

Figure 3(a) Experiment results of CAlign with other models on two homogeneous networks. First row: alignment accuracy with varying percentage of pre-alignment. Second row: 
time-accuracy plot for the case of no pre-alignment. Third row, maximum memory use recorded when running the experiment; CAlign-Full/Fast have the same memory use, so we 
let CAlign represent both.  

    
ArnetMiner-LinkedIn Fliker-Last.fm 

Figure 3(b) Experiment results of CAlign with other models on two heterogenous networks. Memory use is omitted for they are similar to (a). First chart: alignment accuracy with 
varying percentage noise on name-match based pre-alignment. Second chart: time-accuracy plot for the case of 20% noise. 
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For both networks, name-match has 70% and 37% accuracy on 
the ground truth. Following [12], we add 5% to 20% error to the 
pre-alignment. The results are shown in Figure 3(b). We omit 
demo of memory use for space, and they are similar to Figure 3(b). 

Main result. By design in section 2.2, CAlign combines with 
other algorithms for alignment. Based on Figure 3, when 
combining with Sim-Align and Uni-Align, it achieves a +10% ~ 
+20% performance improvement, by introducing topological 
information originally not compatible with those algorithms. The 
improvement is especially obvious when rich attributes are not 
available. CAlign generally achieves better performance in 
comparison to FINAL-N, up to +15% when no pre-alignment is fed 
to FINAL-N. 

On the scale of a network about 20,000 to 40,000 nodes, CAlign 
already runs faster on sufficiently sparse network. In Amazon 
dataset and PlosOne dataset, it uses only half of the computation 
time of FINAL-N. The exception is Fliker-Last.fm, CAlign runs 
much slower on this dataset because this network has a relatively 
higher densification power 𝑑 = 1.3 that result in much more 
edges, and the complexity of CAlign grows with the number of 
edges. Despite this, since CAlign still scales sub-quadratically 
when 𝑑 = 1.3, it will eventually outrun other models. 

Moreover, CAlign makes good use of memory. Unlike UniAlign 
and FINAL-N, there is no large matrix operations since the 
matrices are “divided” by the “communities”. Both UniAlign and 
FINAL-N are not able to run on larger datasets for our experiments 
due to the memory limit. 

CAlign-Fast. Sometimes it is not performing as good as 
CAlign-Full, because of accumulation of errors through the 
iterations. This error might not be much in terms of community, 
but have certain impact on alignment. However, we still 
recommend it for large or “relatively denser” networks like in 
Fliker-Last.fm experiment for efficiency. When higher 
performance is desired, we can either postpone the partial 
membership switch to a later iteration, or increase the rate of full 
switch. 

Rich attributes. They do help improve alignment 
performance: the performance is generally 20% higher for Amazon 
co-purchase network and 35% higher for PlosOne coauthor 
network when text attributes are considered. The results of 
ArnetMiner-LinkedIn experiment, which considers rich attributes, 
is also better than the Fliker-Last.fm experiment. 

SimAlign, UniAlign and FINAL-N. When network is of 
moderate size and rich attributes are present, the simple SimAlign 
can already achieve good result. UniAligh might be of good use for 
a small network, but might not perform well on a large network, 
possibly because it is non-iterative and relaxing the permutation 
matrix 𝐏 introduces too much error. FINAL-N has best overall 
performance among the three in case of no rich attributes, but it 
takes too much memory and we find its performance somewhat 
relies on the “preference matrix” 𝐇 (the pre-alignment in our 
terminology). Altogether we choose the simple Sim-Align for our 
further experiments of scalability and parallelization. 

3.2 Scalability & Parallelization 
Scalability: We evaluated the scalability of CAlign, 

summarized in Figure 4. The first experiment is on entire Amazon 
data set, the second is on ArnetMine-LinkedIn dataset up to 1 
million nodes. We can see the running time of both CAlign-Full 
and CAlign-Fast is sub-quadratic w.r.t. the number of network 

nodes. In particular, CAlign-Fast grows at a low power around 1.25 
and looks almost linear. CAlign-Full grows at a power about 1.6. 
The accuracy of CAlign stays stable as network expands; we 
believe the communities that contain correctly aligned nodes 
“shield” them from the noise introduced by more nodes. 

By Figure 5, the number of iterations to convergence grows 
with network size, but the growth is linear and slow:10 times node 
growth results in about 2 to 3 times number of iterations. Thus, its 
impact on time complexity is small, less than power of 0.1. 

  

Figure 4 Scalability of CAlign on two datasets. 

  

Figure 5 Iterations needed for convergence of CAlign on two datasets. 

Parallelization. Our modeling approach easily lends itself to 
parallelization and a simple strategy as in Algorithm 3 can achieve 
4 to 6 times acceleration on our 8-core virtual machine. 

ALGORITHM 3: Parallelization of CAlign 

1) After initialization in algorithm 1, for each network 𝐺𝒾, 𝒾 = 1,2 , 
starting with the community of smallest size, greedily group 
communities with more links into 4 partitions roughly of the same 

size 
|௏𝒾|

ସ
, based on adjacency information in 𝑒௜,௝

(𝒾). 

2) Launch 4 threads for each partition. Each thread is responsible for 

updating node membership and 𝐲𝒶,௟
(𝒾)

, 𝛉௟
(𝒾) in its own partition. Only 

need to lock resources related to other partitions when updating 
“boarder” nodes. 

3) After all threads report completion of one sweep, launch one thread 
to update 𝚽, and for each connected component of the community 
bipartite graph, launch a new thread to perform network alignment. 
Algorithm converges when less than 1% node switch membership or 
alignment. 

Both the single-thread version and the parallelized version of 
CAlign-Full-S and CAlign-Fast-S are tested on the same data as in 
Figure 4. Time usage and memory usage are shown in Figure 6. 
Our simple parallelization achieves 3.2x to 3.8x acceleration. We 
achieve aligning 1 million nodes of ArnetMiner-LinkedIn dataset 
in about two hours’ time. 
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Figure 6 Parallelization acceleration of CAlign. 

4. CONCLUSION 
In this paper, we come up with the research question that if 

network community and network alignment can be integrated, 
based on that they share similar consistency assumptions. We 
target network alignment in this paper. We employ stochastic 
block model and Dirichlet multinomial and carefully construct 
sub-quadratic time model CAlign. Any existing alignment model 
with a cost function can plug in our framework. Communities and 
their alignment are intended to instruct alignment models to 
search for matches in right places. Experiments on homogeneous 
and heterogenous networks confirm our models are effective in 
terms of accuracy, time and memory use. At the end, we validate 
our model can handle millions of nodes. A simple parallelization 
strategy is designed and achieves more than 3 times acceleration 
on an 8-core desktop computer.   

We have approached our research question from one 
perspective, but other aspects of the problem remain unsolved. 
This paper targets alignment, which tolerates error in community. 
We look forward to truly jointly solving three sub-problems 
defined in section 2.1 altogether in the future. 
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