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ABSTRACT

Network alignment is becoming an active topic in network data
analysis. Despite extensive research, we realize that efficient use of
topological and attribute information for large attributed network
alignment has not been sufficiently addressed in previous studies.
In this paper, based on Stochastic Block Model (SBM) and
Dirichlet-multinomial, we propose “divide-and-conquer” models
CAlign that jointly consider network alignment, community
discovery and community alignment in one framework for large
networks with node attributes, in an effort to reduce both the
computation time and memory usage while achieving better or
competitive performance. It is provable that the algorithms derived
from our model have sub-quadratic time complexity and linear
space complexity on a network with small densification power,
which is true for most real-world networks. Experiments show
CAlign is superior to two recent state-of-art models in terms of
accuracy, time and memory on large networks, and CAlign is
capable of handling millions of nodes on a modern desktop
machine.

CCS Concepts: General and reference~Reference works;
Information systems~Data mining; Information systems~Social
networks; Networks~Online social networks; Human-centered
computing~Social network analysis

Keywo rds: Attributed Network Alignment, Community
Discovery, Large Network, Stochastic Block Model, Dirichilet-
Mutinomial

INTRODUCTION
Network alignment can be roughly described as matching the

1.

same or similar nodes in different networks. It recently draws a lot
of attention for a variety of purposes and applications: [1] [2] for
social networks, [3] for academic co-authorship networks, [4-6] for
protein networks, [7] for aligning knowledge bases, and [8] for
chemical compound networks, etc. Previously, node attributes are
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typically first reduced to node similarities [9, 10]. A recent trend in

methodology of network alignment is to directly include network

attributes, and they demonstrate better performance. For example,

[11] aligns vertices through constructing and then aligning

bipartite node-feature networks. [12] computes node similarities

by using Kronecker product to propagate attribute information.

All these papers share the same fundamental assumptions,

e Topological consistency: if two nodes are topologically close
in one network, their matched nodes in other networks should
be near. For example, two people are friends and have frequent
interactions in Facebook, and they also appear in Twitter, then
even if they have few direct interactions on Twitter, it is likely
that they stay in the same neighborhood.

e Attribute consistency: a node in one network and its matches
in other networks should exhibit similar features. For example,
the same author usually studies similar topics and uses similar
terminology for both journal and conference publications.
Despite extensive research on network alignment, a crucial

issue we recognize in previous models are the balance between
computation complexity and performance. For example, FINAL-N
in [12] makes use of both topology and node attributes, however,
it scales at O(|V|?) for both time and space for every iteration
where |V| is the number of nodes, and runs out of 32GB memory
on a network of about 50,000 nodes and 10 attributes.
Consequently, its design is not able to handle high-dimensional
attributes like text. For another example, UniAlign in [11]
completes in one iteration, and supports high-dimensional
attributes, however, the topological adjacency information is lost
in the conversion of the original network to a node-feature
bipartite network which results in low accuracy, especially on a
large network. The algorithm also has O(|V|?) time complexity
even though it is non-iterative. To our best knowledge, efficient
use of full topology and attribute information for large attributed
network alignment is challenging and has not been sufficiently
addressed in the past.

Is it necessary and a good practice to consider entire network
to determine node correspondence when matching two large
networks consisting of millions of nodes? We believe the answer is
no for real-world networks, and we take the considerations of the
divide-and-conquer strategy and network communities. From
complexity perspective, real-world networks is organized into
densely connected communities [13]: no matter a person in social
network, an author in a co-authorship network, a protein in a PPI
network, or a concept in a knowledge base, they mainly interact
with part of the network. As a result, information outside that
“part” has little impact on what happens inside, and intuitively
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need not be considered when performing alignment. From
performance perspective, many current network alignment
models are formulated as non-convex optimization that is only
able to find local optimum, therefore it is very important to guide
the optimization search in the right places, especially for large
networks that come with much similar local topology and
immense solution universe. An example in Figure 1 illustrates
similar local topology which can confuse the state-of-art models.

Figure 1 Example sub-networks from two Amazon co-purchase networks (see 3.1)
that confuse global-alignment models [9, 11, 12] due to similar local topology. All
three models have less than 60% accuracy on this example. Nodes from aligned
communities computed by our model are pained the same color. Red arrows
indicate communities with more than 50% error and the major source of error. Our
model achieves 79% accuracy on this example.

Thus, it is appealing to us that if we can first discover
communities and match those communities, then it is possible to
perform local node alignments in some way with much less cost
and potentially better performance.

Network community discovery problem is a classic and yet still
popular research topic in network analysis, aiming to cluster
nodes into “communities” [14]. A basic requirement behind most
community discovery models is that topologically close nodes and
more similar nodes should have higher probability to be grouped
together, highly analogous to the above-mentioned alignment
consistency assumptions, strengthening our motivation to handle
the two types of problems together.

In particular, we propose a community-based network
alignment model named CAlign that adopts stochastic block model
(SBM) [15] as the start point. SBM is a widely-used probabilistic
generative model for network community discovery with strong
mathematical and statistical background [16] [17]. Probabilistic
methods have an elegant theory in exploiting information of entire
network [18, 19] and is easily extendable.

Meanwhile, we realize it is necessary to overcome a community
number dilemma. In SBM, the number of communities in the
network is pre-defined and denoted by letter k. As discussed in
equation (10) in Section 2.3 that the standard solution depends
quadratically on k. In contrast, the complexity of network
alignment roughly decreases proportionally with k. For simplicity,
if we only allow nodes being aligned within each pair of matched
communities, then it is easy to see the alignment complexity is

V|2 . L .
0 (%) the situation is the same for more advanced designs. Thus,

we want a small k for community discovery, a large k for network
alignment, and hence the dilemma. We will have to carefully
modify the standard SBM so that it depends as less on k as
possible. The complexity analysis and reduction relies on a fact
that most real-world networks have low densification power
logy||E| [20], where |E| denotes the number of edges in a
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network. The main contribution of this paper can be summarized

as the following:

e Novelty: to our best knowledge, we are the first to jointly
consider community discovery, community alignment and
node alignment in one framework.

e Efficiency: time and space complexity is considered as a major
concern in development of our approach, and we propose
algorithms with provable sub-quadratic time complexity and
linear space complexity; in addition, we experiment on a
simple parallelization strategy that enables us to finish
processing 1 million nodes in 1hr on an 8-core desktop
machine.

e Performance: extensive experiments are conducted on large
networks against two state-of-art models [11] and [12] that
directly involve node attributes in computation, validating that
our approach is superior in terms of both time and accuracy on
large networks.

In the rest of this paper, section 2 will first define the problem,
then formulate our model and develop the parameter inference.
Section 3 presents experiment results on network alignment,
model scalability, parallelization and communities. Related work
and conclusion are given in section 4 and section 5 respectively.

2. MOEL & INFERENCE

Notation in this paper is summarized in Table 1. By convention,
small bold letters represent vectors and big bold letters represent
matrices. The operator |-| denotes the size of a set, and operator
[|-]| denotes a norm. Other notation will be explained when they
are first encountered through our discourse.

3.1 Problem Definition
We consider N directed network graphs G, = (V,;, E;), 1 =

1,..,N, where V;, = {Ul(i), . UI(I?I} is the vertex set or node set of

the ith network of size |V;|, and E; S V? is the edge set.
Throughout this paper, script letters 4,7 are used to index
networks. We develop the model theory for the general case of
arbitrary finite N, but focus on the case of N = 2 for experiments
and some special discussion in this paper. We also focus on
directed networks for mathematical convenience (e.g. no need for
special treatment of diagonal elements of the block matrix in SBM
model), but it is readily applicable to undirected graphs.

Each network node inherently comes with some topological
attributes, such as degree, centrality, h-index, adjacent triangles,
average neighborhood degree, etc. For real-world networks, a node
is usually also associated with certain non-topological network-
specific attributes, like location, gender, user tags, and user
vocabulary in social networks. We predefine a set of discrete node
attributes used in the model, denoted by A = {aq, ..., a ﬂ|} where
|A| is the number of pre-defined attributes. In future discussion,
we overload the symbol “a” to also represent the set of all possible
values of a, or we say the range of @, and the size of a is denoted
by |a|. The observed attribute values in network V; of an attribute

a € A on some node v are denoted as X 0(3,

denote the collection of all observed attribute values in network

and X, is used to

G;. X o(fl), is a singleton for most topological attributes, e.g. degree,
while it might be non-singleton for some non-topological
attributes, e.g. user vocabulary and user tags.
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Network Data

A is a set of predefined observable attributes in the
network data, where each attribute in A is denoted by
a. All possible values of a is named its range. We
denote a value in @’s range by x € a and the range
size is denoted by |a|.

Aa,lal,x€a

The 4th network graph with its vertex set V; and edge
set E;. Script letters 4, # are used to index networks
throughout the paper.

G, = (Vw Ei)

X, is the collection of all observed attributes values in

the ith network; Xg’,z denotes the observed attribute
X, sz,ng,(x) value of attribute @ € A and vertex v € V,. nf,f?, is a
counting vector of length |a| s.t. nf,fl),
of occurrences of x in X, ;4,3

(x) is the number

Model

C={Cy,..,C} The set of k global latent communities.

¢, =1{c?,...c ,g)} The set of k® latent communities of the 4th network.

z,; is the membership vector of vertices V; of the ith

z,(v) network, with z; (v) denoting the membership of some
vertex v € V.
In the 4 th network, P; is the block matrix for
@ @ communities, ei(j.), L(? are respectively the number of
Pueijim; actual and maximum possible edges between
community C, i(i) and C j(i).
o, = ( o ¢M) @, is the Dirichlet parameter of attribute a for the ith

meta community C;; @, is a matrix of them.

— (@ (@) ; ;
0, = (81", 0y, Bl@ is the weight vector for the ith community Cim in

ygl) = cpa(-)gi) network G;; ©; is a matrix of them.
C.. The alignment matrix for communities in G; and
i communities in G, 4 # .
V. The alignment matrix for vertices in G; and vertices in

“ Gy i # 4.

Table 1. Notations

e Definition 1G; = (V;,E;, X;),i =1,..,Nis defined as the
attributed networks in this paper, and they are the input data of
our model.

As mentioned in section 1, aligning vertices of various
networks is an important problem, many existing models have
been trying to handle, and the main idea of our approach is
“divide-and-conquer”: first cluster nodes into communities, align
communities, and then align nodes between aligned communities.
The communities and their alignment serve as guidance for node
alignment, reducing the solution space and computation cost; in
return node alignment results have a way to feedback the
clustering of community.

We assume each network G; has k; non-overlapping latent
communities C; = {Cl(i), e, C ,S)} where C; is a partition of V;. We
also define a membership vector z; indexed by vertices in V; so
that z,;(v) indicates which community v belongs to, and we have
vec® .
z;(v)
pair of networks G;, G; can be represented by a |C;| x |C’;| matrix

The community alignment between C; and C; of every

C;; st. C;;(i,j) €[0,1] is a score indicating how strong Ci({)
aligns with (,']-(7)
alignment between V; and V; of every pair of networks G;, G; can
be represented by a |V;| X |Vj| matrix V, ; s.t. V; ;(u,v) € [0,1]
indicates how strong a vertex u € V; aligns with a vertex v € V.

, which can be viewed as a probability. Likewise,
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e Problem definition. Altogether, a formal statement of our research
question can be written as the following: given large attributed
networks G; = (V;, E;, X;),4 = 1, ..., N, how to infer the following
three sub-problems altogether,

1) community discovery: the membership vectors z; for every 4 =

1,..,N.

2) community alignment: the community alignment matrices C;;
for every (4,7) € {1, ..., N}*.

3) network alignment: the node alignment matrices V,; for every

(i,§) €{1,..,N}*.

To start with, this paper mainly targets the third sub-problem,
by designing an alignment model framework that uses community
information as its guidance. We believe all three sub-problems can
be and should be jointly solved, as argued earlier, they share
similar assumptions: topological consistency and attribute
consistency.

3.2 Model Formulation

This section describes our modeling of each sub problem and
how various parameters are integrated into one framework. A
plate diagram is shown in Figure 2 as an overview.

Node
Alignment

o
quxul]lunty )
Alignment .,

Attribute!

Figure 2 Plate diagram of our model CAlign. E;, Ej, A are observed edges sets and
attribute values. E;, E; are generated by SBM model defined by block matrices P;, P;
and membership vectors z;,2;. A is generated, by design of this paper, a Dirichlet-
Multinomial defined by representation of meta communities @ and mix vectors 0, ©,.
Community alignment matrix C;; = %0'{0, as in equation (7). Node alignment V, ;
can be computed by any existing algorithms with a cost function, and can be treated as
“partial observation” to feedback the mix vectors. z;, Z; plays the role of exchanging

information between topology and node attributes within each network, and @ plays the
role of exchanging information among networks.

For community discovery, we employ the Stochastic Block

Model (SBM) [17] as the basic method. SBM has one additional
parameter for each graph G®: a|C;| X |C;| block matrix P; s.t.
P,(i,j) € [0,1] is the probability that a vertex of community Ci@)
has an edge to any vertex of community Cj(i).
1 (wv)€EE;
0 (u,v)¢E;
(u,v) € E;, then SBM assumes for each vertex pair (u,v) € V72,
independently

6,5?,~Bernoulli (Pi (zi (w),z; (17)))

Let 61(3 ={ be the indicator function for

@
ie. 51(3 = 1 with probability P;(z;(w),z;(v)). Thus, given z;, P,,

let ei(j-) = ZuE @ pec® 61(111), be the number of edges between
i VEGj

community Cl@ and Cj(i), and let nl( be the

9 = |

x | Cj(i)

maximum possible number of edges between Ci(i) and Cj(i), then

the log-likelihood of observing E; is
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£9(z,P,|E,) = log P(E,|z;, P,)

= Z (e D1ogP,(i, ) + (n(")
§jETke}
We will discuss inference of z;, P; based on the observation of

(4)) log(1 - P,(i,)))) @

E; in section 2.2. As mentioned earlier, the crucial issue here is the
inference time complexity which should depend as less as possible
on k;, otherwise this part will itself introduce intolerable cost. We
will later use a mathematical trick and a heuristic to reduce the
complexity of the maximum likelihood estimator (MLE) derived
from equation (2).

For community alignment, we follow the generative model
scheme to indirectly model C; ;, assuming there exists some global
latent meta-communities in this world which can be characterized
by a set of Dirichlet distributions that generate vertex attributes in
observable real-world networks. Moreover, we assume a
community in C; usually do not correspond to just one meta
community, but rather a mix of them.

e Definition 2. Every meta-community C; € C,i =1, ...,k is a set of

Dirichlet distributions {Dir(q)m-), ae€ cfl}, where ¢, ; denote the
= (airr o), whichisalal x k

matrix with columns being the Dirichlet parameters of all

) be the array

Dirichlet parameters. Let @,

communities for attribute a. Let ® = (<l>a,1, o @y

of all such matrices.

o Definition 3. A community Ci(i) of network G; is represented by a

set of Dirichlet distributions {Dir(y(?),y(? = @,6{,a € 4}

whose parameters are a mix of ® specified by a mix vector GL@ of
length k s.t. every value of 91@ is in range [0,1]. They will serve as

prior distributions for generation of node attributes in each network
community.

We assume for each vertex v € C i(i), each attribute a € A, a

categorical distribution m, ,, is first drawn from Dir (Cl)a()@)

where m,, can be viewed as a random variant of ®, 0(1)

Intuitively, each node is viewed as a random sample of its
community s.t. the overall expectation of all members is the

community “itelf” (a Dirichlet parameter is the expectation of its

(1)

samples). Recall X, denotes the set of all attribute values of a for

node v € V;, then each x€X, 5  1s assumed independently drawn
from 7, ;,. In summary,

T, ,~Dir (ygz)i(v)) VreVv®d vaeA 3
x~Categorical(1‘ta 1,) Vx € X(f,),
— (@ @Y @ Q)
= (0%”,...0"). 0% = 07

(1) ;, be a counting vector of length |a| s.t. nm 5, (x) is the number

Let ©; for simplicity, and let

1
of occurrences of x in X, L(l 1),

then the log-likelihood of observing X;
given @, 0, is

£(®,0,7,X,) = log P(X,|®,0,,2,) = Los @
€A 1€, k;}
where
£ (®,0,,2,|X,) = logP(x{’ )|c1> 0,z,)
r([ve2l,) r(( “3 +y)e) )
(i) +Z BT T DN

XEa

Sl

()

590

CIKM’17, November 6-10, 2017, Singapore

derived from taking logarithm of compound Dirichlet-multinomial
distributions and dropping constant terms (see [21] and [22]), with
I" denoting the Gamma function. We assume the generation of
network data E; X; of the 4 th network are
independent given z;, and the generation of network data of each
network (E;, X;),i = 1,.

overall hkehhood is 31mply sum of L§ )s and L(i)

conditional

., N are independent given ®, then the

L= Z (£ PUIE) + £ (@,0,2,/X))) ©
=1

It is easy to see from above that z; plays the role of exchanging

information between topology and node attributes within network

G;, and @ plays the role of exchanging information among the

networks. Finally, once all @, are inferred, we can compute the

community alignment matrix C; ; as

1
C,, =-0l0, %)

k
where coefficient % normalizes all elements in C; ; in range [0,1].

For a large network of at least tens of thousands of nodes, there

will be hundreds of communities. It is realistic to assume one
community Cim in G; is aligned with only a few communities in

another graph G;. Therefore, we impose a regularization terms on

(6) as the following,
N

L= Z(Lg) + Lgi)) Z Agllcill,
i=1 1<i<z<N

where |||l is the so-called “fy-norm”,
elements of a matrix, and 4, ; is a parameter specifying the level of

®

the number of non-zero

penalty. Due to the NP-hardness of optimizing zero-norm [11, 23],
£o-norm is often relaxed as #;-norm, e.g. our later gradient (15) is
derived using #;-norm. With such regularization, the resulting C, ;
will contain many small quantities. If we view communities as
super-nodes, then the communities form a weighted multipartite
network; in the case of N = 2, it is a bipartite network, and here is
where weighted bipartite network clustering comes into play. We
adopt a simple combination of [24] and [25] for our purpose,
assuming edge weights obey Beta distributions of different
parameters. Detailed discussion is omitted due to space limitation.
The algorithm takes O (k;k;) computation time, and yields a set of
disconnected bipartite communities, where network alignment is
performed within each component. We observe from our
experiments that on average most components have 4 to 8
communities and do not depend on network size, and can be
treated as a constant when analyzing complexity.

For network alignment, nodes of two networks G; and Gﬂ» are
aligned with respect to the bipartite community clusters derived
from community alignment. In the process of parameter inference,
community clusters may change, and network alignment is re-
computed with respect to the new clusters, but with a restriction
that a node in G, switches its aligned node in G; only if a better
match is found, ie. that switch decreases alignment cost. Thus,
network alignment is NOT designed to be restricted by the
community alignment, but community alignment functions more
like a guide telling nodes where to find potentially better matches.

Technically, our model CAlign can combine any algorithm
with a cost function to align nodes. In this paper, we experiment
on [11] with ||PA — B|| as cost function where P is from their
equation 5, and [12] with their equation 7 as cost function. In
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addition, we will experiment on the following simple similarity-
based approach that we call Sim-Align: given two networks G, G,
every node is aligned with the most similar one in terms of first
cosine-similarity and secondly Euclidean distance based on node
attributes. We find such simple method already works well when
rich attributes are available.

3.3 Parameter Estimation

We analyze that the model complexity as the number of
vertices |V;| in each network grows. |a|, |A|, N are clearly fixed
constants, but k;, k, |E;| usually grows with |V;|. We also assume
k<sp =YY k.

Update membership vector z. We update z;(v) for every
node v € V; as the community that maximizes the likelihood of
the edge set E; and the attributes X;

(new) _ (1) (4)
z, (v)= argw)rg(agg_,ki}ﬁl + L, ©)

When optimizing (9), the likelihoods are computed based on the
k;, and adjust the
affected addends in Lii) and Lg) accordingly. Suppose we try
switching z; (v) = rtoz;(v) = 1.

We first check the switch only affects those addends in L(i)

with counting vectors Sl, n( ‘), The number of such addends is

current z; except for varying z;(v) =1, ...,

fixed, so re-computing Lg % takes only constant complexity for

each switch, and thus in total O(k;|V;|) complexity for trying

eachz;(v) = 1, ..., k; for every v € V;. We then discuss the more

troublesome Lg). From [17] we have

£ = z (ei(j) In ei(j.) (1) In nw + (nw
i,je{1,...k;}

(¢)) ln(nw (¢)))

(10

e The switch only affects those e( ) s.t. one of C;  and G O
the adjacent communities of v. Thus, the ad)ustment of
2 JE(L..k} € ]) In e(i)
degv is the sum of in-degree and out-degree of v.

(@) @ @) ()

 Unfortunately, all n,;,n; 5, nr o

this takes O (k) time.
Therefore, the time complexity of (10) is O(k?) in total for trying
each z;(v) = 1,...,k;, and O(k?|V;|) for a whole sweep of
updating z;. This complexity depends too much on k;, causing the
community number dilemma as discussed in section 1, where the

()

takes at most O(degv) time, where

, need re-computation, and

“culprit” isn; /. We now try to remove n(i)” from (10) by first

using the fact that
n+1

x
In(1-x) = —xlnx+x—2m,lel <1
n=

(1)
and 0 < <5 () < 1 to expand
M

e(t) (¢) (t) e®
(4 (’L) () Lj
ln(ni‘j €;; ) (4) In—5 (¢) +—o Tt Inn;; +0 < (¢)>
n; J ij i ]

Plug above back in (10) and after rearrangement we have

4 e e
L9 = Z mln |E|+0< ) (11

i,je{1,...ki} z} ij
where the proof is in appendix A.1 at the end.
e Definition 3. A graph G = (V, E) is asymptotic sparse if the ratio
between the number of observed edges and the maximum possible
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number of edges in the network approaches zero as the graph

becomes very large [26], ie. |‘;llm %— 0. This is actually a

weaker condition than the densification power law [20], thus
many real-world networks that follow densification power law are
immediately asymptotic sparse.

For our purpose, we in addition assume the networks are also

locally asymptotic sparse: the subgraphs of each community and
e
the inter-community links are all spare, i.e. (4) - 0as|V| -
i
for any i, j, 4.
e Proposition 1. Under the assumption of definition 3, we have
(¢)
L9 ~ Z e In—% (12)
i je(aks} n;
The proof is the derivation of (11) above.

(1) (1)

At first glance n; is still there, but we note n;
@) @)
|| |c
proof in appendix A.2 at the end.
k k

(i)
(1) — (@) O] [©] @) (@) O]
In n“) Z e Ine;; —Zei’* ln|Cl. |—Ze*’j ln|Cj |

i,je{1,..k} ij i,jE{1,...k} i=1 j=1
(13)

and we can further decompose (12) as the followmg,

where e() Zki @

j=16ij
vertex of community C; ( ), and e,

is the number of edges starting from a

(1) 21{41 1(3) is the number of

edges ending at a vertex of commumty c i( ),

e Proposition 2. On a large sparse graph (12) contributes O (k;|E;|)
time complexity to one complete sweep of updating z;.

”»

requires constant time to

Proof: when z;(v) varies, ln|Ci(i)

update, and as discussed earlier at most deg v of those e mlght

change, then adjustment of Error! Reference source not found.)
takes O(degv) time. Thus, an entire sweep of updating z, takes

Iteration 1 2 3 4 5
Amazon | 23677@'161000) | 5389/2458 | 1866/348 | 710/122 A
772220 (20.8%9) (3.2%) (0.45%) (0.15%)
PlosOne 22096/19425 9974/3642 | 3161/1163 | 1129/373 | 512/143
53374 (36.4%) (6.8%) (2:2%) (0.7%) (0.27%)
LinkedIn 14020/8845 3316/1963 | 928/228 297/115 ,
34221 (25.8%) (5.7%) (0.7%) (03%)
AMiner 15903/5642 3081/1274 |  866/210 282/108 ,
30045 (18.8%) (4.2%) (0.7%) (03%)
Fliker 16422/10324 7798/2666 | 3596/503 | 1322/369 | 754/287
21945 (47.0%) (12.1%) (23%) (1.7%) (1.3%)
Lastfm 15650/11563 7985/2994 | 3297/620 | 1617/294 | 833/261
26426 (43.8%) (11.3%) (24%) (1.1%) (1.0%)

Table 2 Membership switch statistics of various datasets, based on CAlign-Full-S. (1)
total number of nodes; (2) number of nodes that switch membership; (3) number of
nodes that switch to non-adjacent communities; (4) percentage of nodes switching to
non-adjacent communities against total number of nodes; (5) algorithm converges and
is terminated.

Here is where a heuristic kicks in to further reduce
computation time: it quickly becomes less likely for a vertex to
switch to a non-adjacent community after the initialization (see
later) and the first iteration. Brief statistics for various datasets
used in experiments of section 3 are shown in Table 2. This
phenomenon is consistent with the dense intra-community
connection and loose inter-community connection assumption
mentioned in section 1. As the iterations go on, many nodes
become “internal” inside a community and effectively stop
switching membership.
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Based on above observation, we propose the following strategy
named CAlign-Fast to boost update of z. First define a probability
parameter p, and let p, = p for every node v in the network.
Starting form the second iteration, a node can try non-adjacent
communities if it switches to non-adjacent communities in the
previous iteration. Otherwise, with probability p,, it can try non-
adjacent communities; if the attempt fails, then p,, = p2. We call
our model without this strategy as CAlign-Full. as

Initialization of Z. We recommend an initialization of z based
on the observation that high-degree node and its neighbors tend to
be in the same community. So, we start with a high-degree node as
a singleton community, expand the community by putting those of
its neighbors in the same community whose number of edges to
higher
neighborhood degree by a threshold, see algorithm 1.

and from the community are than the average

ALGORITHM 1: Iitialization of membership z for a network G

input: a network G; number of communities k; max_expan: indicating the
maximum number of expansion for each iteration; t(avg deg, i,j): a
degree threshold function that grows with iteration index i and expansion
index j.

for i < 1 to k do

Find the node of highest degree not assigned to any community, add it to C;
N(C;) « neighborhood of C;
avg_deg < average degree of N(C;)
j+0
while j < maz_expan and there is new node in N(C;) do
for each node v in C; do
if the number of edges between v and C; > t(avg_deg,i,j) then
| C; «w;
end
J=0+0
end
end
end
for each node v without community assignment do

| assign it to the community that has most links to v
end

output: initialized membership vector z.

In our experiment of section 3, we use t = (avg_deg) X
1.15% x (1.5 + Oki) which grows with index i, j because we find

the heuristic of algorithm 1 becomes less reliable as i, j increase.
The initialization can be implemented in O(|E|) time. It almost
halves the iterations needed for convergence than a random
initialization and always leads to a higher likelihood in our
experiment.

Update community representation Y & mix vectors ©
before node alignment. We follow [27] and use gradients to
update the parameter estimation of the Dirichlet-multinomial

mixture in (4). As before, let ysl) = CDaGy), and we update ysl) sin

order to update ®,,. Let ngg be a counting vector of length |a| s.t.

g is the number of occurrences of attribute values in community

(@
n,
c?.

e Proposition 3. The gradient of (4) w.r.t. ysl) , denoted by Vy(»i), isa
’ a,l
vector of length |a| given by

N = () _ (1) (2
o= (1520wl 521,
+w(ng) +y.0) - v(ve?)
where we slightly abuse the notation for clarity: W(-) applied on a

vector means applying the digamma function on every component
of that vector, and a number plus a vector means adding that

14
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constant to every component of that vector. Likewise, gradient of
(4) w.r.t. 9%4’), denoted by V), is a vector of size k determined by
1

Vegi)(i)
-3 (w2~ (521, ) Jrocon
a€eA

+ Z (‘P (nfﬁ ) +y (X)) -v (sz) (x))) D, (x, 1)

- > aulleall,

j=1,..Nj#i

i=1,..k (15)

The complexity of (14) and (15) are constant since the attribute set

and attribute dimensions are fixed constants. Thus, computing all

Vy(i) takes O (k;) time, and computing all V) takes O(kk;) time.
al 1

We have a constant time Newton-Raphson update for yé? by

(@)new _ _ (i),0ld -1
Yoi  =Ya ~HaVe (16)
a,l a,l
where Hy(i) is the Hessian matrix of (4) w.r.t. ya(fl), due to the nice
a,l !

algebraic structure of H . Thus, updating all ygl) can be
al ’

completed in O (k;) time.
e Proposition 4. The Hessian of (4) w.r.t. yo(fl) , denoted by Hy(i),
4 a,l

isa|a| X |a| matrix given by

N = T
Hyl(;l) =A+cl11 a7
where A is a diagonal matrix s.t.
AGx) =¥ (080 +y 0 0) - ¥ (yhw)xea
— () _w (9 (€]
andc =W (||Ya,l 1) v (”na,l + Vi 1).
Unfortunately, Newton-Raphson update for all eE” will take

unacceptable O (k*) time, so we instead use gradient ascent in (18)

where 1); is step.

egi),new — egi),nld (18)

=0, (91(4) + anel(i)), then the optimal step n;is the

+ mvega
Let ya(:l)'*

root of the following complicated equation and hence hard to
solve.

(w(y11,) = w (I +5571,))| 1

#2 (#(09 +¥2)@) - w (1)) 90 0 = 0
X€Ea
We just start with a conservative value 17; = 0.05, check a fixed

¢¢Veg¢')

(19)

number of 27, 31;, etc. to see if they are better. The complexity of
updating all @, including (18) and (19), is O (kk;).

Update ® & meta communities ® after node alignment.
Based on current ©, we can perform node alignment with respect
to the bipartite community clusters as discussed in section 2.2.
After that, we first compute C, ; by
Zueci@),veci@ Vi, (wv) ZuECi(i),UECim Vii (w,v)

+
2 Zusci“)”vﬁ ) ”1 2 Z,,EC]@ Vi, G0l )

C,; (L)) = (20)

C;; computed in this way satisfies C;; = C;i. Then we perform
SVD on C; ; so that
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(0, = [ka,uT,

Coy = UMV, = {
,kAi_,VE,;

o=

By property of SVD, the solution of ®;, @, are unique. For

@1

large network where each community has at least hundreds of
nodes, this update of @, @; from will not change a lot and can be

viewed as feedback adjustment from the node alignment. Let Y, =

1 1 N N
(y;i, ,y;il, ,y;l), ...,y;k)N), we now can update ®, as

Y,=®,0>®, =Y,0" 2)
for every a € A where @% is the Moore-Penrose inverse of @,
which is also computed by SVD. Updates in (15) and (22) will
converge because SVD is numerical stable. The feedback to ©,, 0;
will become less and less as fewer and fewer nodes switch
alignment [28], and consequently change in &, will also decrease
through the process. Suppose k; < k;, k < s = YNk, the time
complexity of (15) is O(kik;») and of (22) is O (ks?).

Initialization of Y,C,0,® . Each y{gjl) is the Dirichlet-
multinomial parameter of a local community C l(i) , and we
(4)
= |21+4§ Community alignment

matrix C; ; is initialized as a cosine-similarity matrix of every pair

initialize it as the sample mean yo(jl)

in C; X C; based on the aggregated node attributes, and @, ©; are
initialized by SVD as in (21). @, is initialized according to (22).
Summary and choice of k;, k. Putting everything together,
we summarize the entire algorithm of our model in algorithm 2,
for the case of N = 2. The design of our model is suitable for a
general finite N, but we have to integrate alignment consistency [2]

and find an efficient N-partite graph clustering. Therefore, this is
left as future work.

ALGORITHM 2: CAlign-Full/Fast, N = 2

input: attributed networks G, 4 = 1,2; number of communities kq, k, ;
number of meta communities k; convergence threshold r (default 1%);
necessary input for algorithm 1 and the network alignment model plugin.

initialize membership vectors as in algorithm 1, O(|E|)

initialize all necessary auxiliary variables like e; j, n;; in equation (13), O(|V])
initialize Y, C, ®, ® in order, O(ky(k; + k2)?)
while ratio of nodes that switch membership or alignment is higher than r do
for each node v in each network do
update its membership z(v) according to equation (9)
Full: consider all communities for switch, O(k; degv)
if not first iteration then
| Fast: consider adjacent communities for switch, almost O(degv)
end
end
update Y by equation (16), O(k;)
update © by equation (18, O(kk;)
update C by equation (7). cluster the weighted bipartite community graph, O(kiks)
compute node alignment w.r.t. the clusters using a chosen model, scales at almost ,% of
the original complexity
update © again by equation (21), O(kik3)
update ® by equation (22), O(k1 (k1 + k2)?)

end

output: z,,7,,Y,C, 0, ®.

For choice of k, our approach is to sample sub-networks from
G4, G, consider their singular values g, g5, ..., and let k be the one
such that g; + -+ + 0} account for 80% of the sum of all singular
values. Repeat several times and take the average. If k is larger
than min{k4, k,}, let k = min{k4, k,}.

For choice of kq, k,, [29] and [30] use the method to maximize
the likelihood on held-out sub-network samples, but we have
another more important concern. We let k; = |V;|%,4 = 1,2 for
some power &. Let d; be the densification power of G, |V| =

593

CIKM’17, November 6-10, 2017, Singapore

max{|V;,|V»|},d = max{d,,d,}, then under this setup, the
overall time complexity of CAlign is O(max(|V[3%,|V|**4)),

sub-quadratic if @ < min G, 2 - d). The datasets in this paper

have their d < 1.3 (social networks and co-author networks). As
an overall consideration, we recommend use a = 0.4 for our
experiments.

CAlign-Fast saves time by a small power dependent on d, the
network size, and how much of the algorithm is running under
0(|V|%*4) complexity. For example, if a = 0.4,|V|=10°,d =
1.2, and 20% of the algorithm runs under O(]V|*®), then the
overall complexity is of power log,(0.8 + 0.2|V[°) V|12 =~
1.6 —log)y|0.2 =~ 1.49. This downgrade, seemingly small, but is
actually remarkable; it means CAlign-Fast could save 75% time
from CAlign-Full for 1 million nodes.

Finally, the space complexity of CAlign is determined by the
maximum size of z;,2,,Y,C, 0, ® and auxiliary variables including

i(j-), l(?,nf;g which clearly scales at most O(k;k,), less than

O(|V]) whena = 0.4.

e n

3. EXPERIMENTS & EVALUATION

The experiments for our proposed C-Align model framework
are done with Matlab on an 8-core Intel i7 3.00GHz machine with
32GB memory. We compare CAlign-Full/Fast with the Sim-Align
described at the end of section 2.2, Uni-Align in [11] and FINAL-N
in [12], using them as plugin models. We use the initial big letter
to indicate which mode we use, e.g. CAlign-Fast-S means we use
Sim-Align for CAlign-Fast. For all networks, we use attributes that
have been experimented in pervious papers [11, 12, 29], etc.,
including degree, h-index (reflecting node significance), number of
adjacent triangles, clustering coefficient and neighborhood
average degree (reflecting local topology). All sub-networks are
extracted by sampling edges, which better preserves topological
information than sampling nodes.

3.1 Performance & Efficiency Analysis
Homogeneous networks. We  experiment
homogeneous datasets with rich text attributes.

on two

e Two Amazon co-purchase networks from [31]. In both
networks, nodes are products, mostly book, DVD, music and
video. If a product is frequently co-purchased with another
product, then there is an edge between them. Two sub
networks of about 40,000 nodes are extracted so that can be
handled by all algorithms tested here. The first network
contains 37,201 nodes and 104,105 edges. The second network
contains 40,021 nodes and 144,284 edges. The two networks
have 29,760 nodes in common as ground truth. We use top-
2000 lemmatized title word counts non-topological
attributes of each product, and

as

the count of other words is summed as one attribute “other”.
Densification power: 1.12; k; = 69,k, = 69,k = 32.

e  Two PlosOne coauthor networks from http://journals.plos.org. In

both networks, nodes are article authors, and there is an edge
between two authors if they ever co-authored one article. The
first network contains 21,211 distinct nodes and 116,032 edges.
The second network contains 32,163 distinct nodes and 176,035
edges. The two networks have 6,507 overlapping nodes as
ground truth. We extract top-2000 most frequent words in
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Figure 3(a) Experiment results of CAlign with other models on two homogeneous networks. First row: alignment accuracy with varying percentage of pre-alignment. Second row:
time-accuracy plot for the case of no pre-alignment. Third row, maximum memory use recorded when running the experiment; CAlign-Full/Fast have the same memory use, so we
let CAlign represent both.
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Figure 3(b) Experiment results of CAlign with other models on two heterogenous networks. Memory use is omitted for they are similar to (a). First chart: alignment accuracy with
varying percentage noise on name-match based pre-alignment. Second chart: time-accuracy plot for the case of 20% noise.

scientific terms recognized from the article texts by techniques
developed in [32], and count their frequencies as non-
topological node attributes. Densification power: 1.16; k; =
54,k, = 63,k = 25.

Note we are unable to pre-align nodes by name for above

homogenous datasets because their ground truth is exactly

est

ablished by name. As an alternative, we randomly sample a

percent of the nodes and treat their alignment as known, from 50%

to 0%. Accuracy are measured by how much of the remaining node
can be correctly aligned, the same as [11] and [12]. Experiments at
each percentage level are repeated 3 times, and the average results
are shown in Figure 3(a).

Heterogeneous networks. We then experiment on two

heterogeneous datasets from [2].

ArnetMiner-LinkedIn. The ArnetMiner coauthor dataset comes
with rich user profile like location, gender, sign, hobby, job. It in
total has 1,053,188 nodes and 3,916,907 edges. In the LinkedIn “co-
viewed” network, two users have an edge if their profile are
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frequently viewed by the same visitor. The dataset has everything
you can see on LinkedIn, including skills, educating background
and career history; it has 2,985,414 nodes and 25,965,384 edges.
The rich profiles are broken down to lemmatized word counts as
non-topological attributes. The entire data set is later used for
parallelization and scalability tests. The ground truth contains
4,269 matches, and we extract two sub-networks containing it. The
ArnetMiner network contains 30,045 nodes and 83,946 edges. The
LinkedIn network contains 34,221 nodes and 112,852 edges.
Densification power: 1.10 and 1.14; k; = 62, k, = 65, k = 30.

Fliker-Last.fm. Edges in flicker dataset represent friendship, in
Last.fm dataset represent following relationship. Only username
and gender are available as non-topological attributes. We
compute the Jaro-Winkler distance between names and split its
range to three categories. The first network has 21,945 nodes and
544,217; the second network has 26,426 nodes and 226,506 edge.
The ground truth has only 641 matches for this data set.
Densification power: 1.30 and 1.21; ky = 55, k, = 59, k = 31.
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For both networks, name-match has 70% and 37% accuracy on
the ground truth. Following [12], we add 5% to 20% error to the
pre-alignment. The results are shown in Figure 3(b). We omit
demo of memory use for space, and they are similar to Figure 3(b).

Main result. By design in section 2.2, CAlign combines with
other algorithms for alignment. Based on Figure 3, when
combining with Sim-Align and Uni-Align, it achieves a +10% ~
+20% performance improvement, by introducing topological
information originally not compatible with those algorithms. The
improvement is especially obvious when rich attributes are not
available. CAlign generally achieves better performance in
comparison to FINAL-N, up to +15% when no pre-alignment is fed
to FINAL-N.

On the scale of a network about 20,000 to 40,000 nodes, CAlign
already runs faster on sufficiently sparse network. In Amazon
dataset and PlosOne dataset, it uses only half of the computation
time of FINAL-N. The exception is Fliker-Last.fm, CAlign runs
much slower on this dataset because this network has a relatively
higher densification power d = 1.3 that result in much more
edges, and the complexity of CAlign grows with the number of
edges. Despite this, since CAlign still scales sub-quadratically
when d = 1.3, it will eventually outrun other models.

Moreover, CAlign makes good use of memory. Unlike UniAlign
and FINAL-N, there is no large matrix operations since the
matrices are “divided” by the “communities”. Both UniAlign and
FINAL-N are not able to run on larger datasets for our experiments
due to the memory limit.

CAlign-Fast. Sometimes it is not performing as good as
CAlign-Full, because of accumulation of errors through the
iterations. This error might not be much in terms of community,
but have certain impact on alignment. However, we still
recommend it for large or “relatively denser” networks like in
Fliker-Last.fm When  higher

performance is desired, we can either postpone the partial

experiment for efficiency.
membership switch to a later iteration, or increase the rate of full
switch.

Rich attributes. They do help

performance: the performance is generally 20% higher for Amazon

improve alignment
co-purchase network and 35% higher for PlosOne coauthor
network when text attributes are considered. The results of
ArnetMiner-LinkedIn experiment, which considers rich attributes,
is also better than the Fliker-Last.fm experiment.

SimAlign, UniAlign and FINAL-N. When network is of
moderate size and rich attributes are present, the simple SimAlign
can already achieve good result. UniAligh might be of good use for
a small network, but might not perform well on a large network,
possibly because it is non-iterative and relaxing the permutation
matrix P introduces too much error. FINAL-N has best overall
performance among the three in case of no rich attributes, but it
takes too much memory and we find its performance somewhat
relies on the “preference matrix” H (the pre-alignment in our
terminology). Altogether we choose the simple Sim-Align for our
further experiments of scalability and parallelization.

3.2 Scalability & Parallelization

Scalability: We evaluated the scalability of CAlign,
summarized in Figure 4. The first experiment is on entire Amazon
data set, the second is on ArnetMine-LinkedIn dataset up to 1
million nodes. We can see the running time of both CAlign-Full
and CAlign-Fast is sub-quadratic w.r.t. the number of network
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nodes. In particular, CAlign-Fast grows at a low power around 1.25
and looks almost linear. CAlign-Full grows at a power about 1.6.
The accuracy of CAlign stays stable as network expands; we
believe the communities that contain correctly aligned nodes
“shield” them from the noise introduced by more nodes.

By Figure 5, the number of iterations to convergence grows
with network size, but the growth is linear and slow:10 times node
growth results in about 2 to 3 times number of iterations. Thus, its
impact on time complexity is small, less than power of 0.1.

16000 CAlgaFullS

+ 2 Ss 8 - CAlignFast-S
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Figure 4 Scalability of CAlign on two datasets.

18 [ [——caignFul-s
— - CAlignFast-s

16

—+— CAlignFul-S
- CAlignFast-S

14t

.
Number of Iterations
%

Number of lterations

4 2 4 6 8 10
ArnetMiner-Linkedin, Numer of nodes 10°

05 1 15 2 25 3 35
Amazon Coauthor, Numer of nodes 10°

Figure 5 Iterations needed for convergence of CAlign on two datasets.

Parallelization. Our modeling approach easily lends itself to
parallelization and a simple strategy as in Algorithm 3 can achieve
4 to 6 times acceleration on our 8-core virtual machine.

ALGORITHM 3: Parallelization of CAlign

1) After initialization in algorithm 1, for each network G;,i = 1,2,
starting with the community of smallest size, greedily group
communities with more links into 4 partitions roughly of the same

@

iLj

vl . . Lo
size T‘, based on adjacency information in e

2) Launch 4 threads for each partition. Each thread is responsible for

updating node membership and y(gil) ,
need to lock resources related to other partitions when updating

“boarder” nodes.

Bgi) in its own partition. Only

3) After all threads report completion of one sweep, launch one thread
to update @, and for each connected component of the community
bipartite graph, launch a new thread to perform network alignment.
Algorithm converges when less than 1% node switch membership or

alignment.
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Both the single-thread version and the parallelized version of
CAlign-Full-S and CAlign-Fast-S are tested on the same data as in
Figure 4. Time usage and memory usage are shown in Figure 6.
Our simple parallelization achieves 3.2x to 3.8x acceleration. We
achieve aligning 1 million nodes of ArnetMiner-LinkedIn dataset
in about two hours’ time.
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Figure 6 Parallelization acceleration of CAlign.

4. CONCLUSION

In this paper, we come up with the research question that if
network community and network alignment can be integrated,
based on that they share similar consistency assumptions. We
target network alignment in this paper. We employ stochastic
block model and Dirichlet multinomial and carefully construct
sub-quadratic time model CAlign. Any existing alignment model
with a cost function can plug in our framework. Communities and
their alignment are intended to instruct alignment models to
search for matches in right places. Experiments on homogeneous
and heterogenous networks confirm our models are effective in
terms of accuracy, time and memory use. At the end, we validate
our model can handle millions of nodes. A simple parallelization
strategy is designed and achieves more than 3 times acceleration
on an 8-core desktop computer.

We have approached our research question from one
perspective, but other aspects of the problem remain unsolved.
This paper targets alignment, which tolerates error in community.
We look forward to truly jointly solving three sub-problems
defined in section 2.1 altogether in the future.
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