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Abstract. We present a probabilistic model counter that can trade off
running time with approximation accuracy. As in several previous works,
the number of models of a formula is estimated by adding random parity
constraints (equations). One key difference with prior works is that the
systems of parity equations used correspond to the parity check matri-
ces of Low Density Parity Check (LDPC) error-correcting codes. As a
result, the equations tend to be much shorter, often containing fewer
than 10 variables each, making the search for models that also satisfy
the parity constraints far more tractable. The price paid for computa-
tional tractability is that the statistical properties of the basic estimator
are not as good as when longer constraints are used. We show how one
can deal with this issue and derive rigorous approximation guarantees
by performing more solver invocations.

1 Introduction

Given a CNF formula F with n variables, let S = S(F) denote the set of its
satisfying assignments (models). One way to estimate | S| is to proceed as follows.
For a fixed integer 0 < i < n, let R; C {0,1}" be a random set such that
Pr[oc € R;] = 27 for all 0 € {0,1}". Markov’s inequality implies that if |S| <
2i=1 then Pr[S N R; # 0] < 1/2. Therefore, if we select independent random
sets RY, R? ..., R! and find that the intersection with S is non-empty for the
majority of them, we can declare that |S| > 2¢~! with confidence 1—exp(—0O(t)).

What happens if in the majority of the trials we find the intersection to be
empty? Can we similarly draw the conclusion that |S| is unlikely to be much
more than 2°? Unfortunately, no. The informativeness of S N R; = () depends
on significantly more refined statistical properties of the random set R; than
the property that Pr[c € R;] = 27¢ i.e., uniformity. For example, imagine
that |S| = 2¢ and that the distribution of R; is uniform but such that either
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SNR;=0or SNR; =8, always. Then, the number of trials needed to have a
reasonable chance of ever witnessing SN R; # 0 is 2(2%). In other words, with
this distribution for R;, we can not distinguish between an unsatisfiable formula
and one with 2¢ models.

In the above example, the distribution of the random set R; is such that the
random variable X = |S N R;| exhibits extreme variance, a so-called “lottery
phenomenon”: it typically equals 0, but with very small probability it is huge.
(Nearly) at the other end of the spectrum are distributions for the set R; that
exhibit pairwise independence, i.e.,

Prjc € R;AT € R;] =Pr[o € R;|-Pr[r € R;] forevery o #7€{0,1}". (1)

To get a feel for (1), fix any o € {0,1}" and sample R;. Observe that conditional
on o € R;, the probability that 7 € R; must be the same whether 7 is at
Hamming distance 1 from o, or at distance, say, n/2 (throughout, distance will
mean Hamming distance). In other words, the characteristic function of the set
R; must decorrelate in a single step!

It is possible to show that Eq. (1) implies that Pr[S N R; # 0] > (EX)/(1 +
EX) and, thus, that if |S| > 2¢, then Pr[S N R; # ] > 1/2. Therefore, if, as
before, we repeat the experiment ¢ times and find the intersection to be empty in
the majority of the trials, now we can declare that |S| < 2¢*! with confidence 1—
exp(—O(t)). Combined with the lower bound argument for |S| outlined earlier,
we see that in order to efficiently approximate |S| within a factor of 4 it suffices to
have a distribution of sets R; for which (1) holds and for which checking whether
SN R; =0 or not can be done efficiently. Indeed, given such a distribution one
can estimate |.S| within a (1+e¢) factor, for any € > 0, and any desired confidence
1 -4, in O(e 2?log(1/9)) trials.

In order to be able to check efficiently whether S N R; = () we must, at a
minimum, be able to represent the random sets R; compactly, in spite of their
exponential size. The key to this is to represent each set R; implicitly as the set
of solutions to a system of ¢ random parity (XOR) constraints (linear equations
modulo 2). More precisely, for any fixed matrix A € {0,1}**"  consider the
partition (hashing) of {0,1}" induced by the value of Ao € {0,1}". Let

R;={0€{0,1}": Ac = b} where b € {0,1}" is uniformly random.  (2)

Observe that even though the 2! parts may have dramatically different sizes,
the uniformity in the choice of b in (2) implies that Pr[oc € R;] = 27, for every
o € {0,1}", as desired. At the same time, checking whether SN R; = () or not
can be done by converting the i parity constraints to clauses and using a SAT
solver, or, more recently, by using a SAT solver supporting parity constraints,
e.g., CryptoMiniSat [14].

From the above discussion we see that the only issue left is how the choice of
the matrix A affects the variance of the sizes of the different parts and, thus, the
variance of |S N R;|. To that end, it is not hard to prove that if A is a uniformly
random element of {0,1}"*" (equivalently, if each element A;; is set to 0/1
independently with equal probability), then membership in R; enjoys pairwise
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independence, i.e., (1) holds. As mentioned above, this is essentially perfect
from a statistical point of view. Unfortunately, though, under this distribution
for A each parity constraint contains n/2 variables, on average, and changing
any variable in a parity constraint immediately changes its truth value (whereas
in clauses that’s not the case, typically, motivating the two watched literals
heuristic [11]). As a result, the branching factor of the search for satisfying
assignments (models) that also satisfy the parity equations gets rapidly out of
hand as the number of variables in the formula increases.

All ideas presented so far, including in particular the choice of a uniformly
random matrix A € {0,1}**", first appeared in the pioneering theoretical works
by Sipser [13], Stockmeyer [15], and Valiant and Vazirani [17]. As we discuss in
Sect. 2, there has since been a long line of works aiming to make the approach
practical. Specifically, the limitations posed by long parity constraints, i.e., those
of (average) length n/2, was already recognized in the very first works in the
area [7,8]. Later works [6,18] tried to remedy the problem by considering parity
equations where each constraint includes each variable independently with prob-
ability p < 1/2. While such sparsity helps the solver in finding elements of SN R,
the statistical properties of the resulting random sets deteriorate rapidly as p
decreases. Crucially, in all these works, different constraints (parity equations)
select their set of variables independently of one another.

In [1] we introduced the idea of using random matrices A € {0,1}"*" with
dependent entries, by selecting A uniformly from an ensemble of Low Density
Parity Check (LDPC) matrices. A simplest such ensemble comprises all matri-
ces where every row (equation) contains the same number 1 of ones and every
column contains the same number r > 3 of ones. We gave a first mathematical
analysis of the statistical properties of the resulting sets R; and some experimen-
tal evidence that their actual statistical properties are probably much better than
what is suggested by the mathematical analysis.

A key idea motivating our work here and in [1] is the realization that to prove
mathematically rigorous lower bounds, the random sets R; do not need to come
with any statistical guarantees (besides the trivial requirement of uniformity).
The obligation to use distributions Z; with statistical guarantees exists only for
upper bounds and, crucially, only concerns their behavior over sets of size 2°
or greater. When 4/n is not tiny we will see that short parity constraints have
provably good statistical behavior.

In this paper we present' an approximate model counter, called F2, with
rigorous guarantees based on these ideas. F2 has three modes of operation, trad-
ing accuracy for computation time. To discuss these modes, let us foreshadow
that the statistical demerit of a distribution on matrices 4 € {0,1}"*" in our
context will be captured by a scalar quantity B = B(i,n) > 1 that increases as
the average constraint length decreases, with B = 1 corresponding to pairwise
independence (and average constraint length n/2).

Given any § > 0, let ¢ = 1n(1/§). Given any € € (0,1/3], with probability at
least 1 — §, all of the following will occur, in sequence:

! F2 source code available at https://github.com/ptheod /F2.git.
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1. After O(q + log, n) solver invocations, F2 will return a number ¢ < log, | S|
and B.

2. After O(¢B) solver invocations, F2 will return a number u > log, |S].

3. After O(qB?/e*) solver invocations, F2 will return a number Z € (1 £ ¢)|S)|.

Observe that while the bounds ¢ < log, |S| < u are guaranteed (with probability
1 —§), no a priori bound is given for u — £. In other words, in principle the
algorithm may offer very little information on log, |S| at the end of Step 2. As
we will see, in practice, this is not the case and, in fact, we expect that in most
practical applications Step 3 will be unnecessary. We give a detailed experimen-
tal performance of F2 in Sect.10. The main takeaway is that F2 dramatically
extends the range of formulas for which one can get a rigorous model count
approximation.

2 Previous Work

The first work on practical approximate model counting using systems of random
parity equations was by Gomes et al. [8]. Exactly along the lines outlined in the
introduction, they proved that when A € {0,1}*" is uniformly random, i.e.,
when each entry of A is set to 1 independently with probability p = 1/2, one
can rigorously approximate log, |S| within an additive constant by repeatedly
checking if S N R; = (, for various values of i. They further proved that if
each entry of A is set to 1 with probability p < 1/2 one get a rigorous lower
bound, but one which may be arbitrarily far from the truth. In [7], Gomes et al.
showed experimentally that it can be possible to achieve good accuracy (without
guarantees) using parity constraints of length k < n/2.

Interest in the subject was rekindled by works of Chakraborty et al. [3] and of
Ermon et al. [5]. Specifically, a complete, rigorous, approximate model counter,
called ApproxMC, was given in [3] which takes as input any d,e > 0, and with
probability at least 1 — § returns a number in the range (1 £ ¢)|S|. In [5] an
algorithm, called WISH, is given with a similar (4, €)-guarantee for the more
general problem of approximating sums of the form (0,137 w(o), where w
is a non-negative real-valued function over 2", where 2 is a finite domain.
Both ApproxMC and WISH also use uniformly random A € {0,1}**" so that
the resulting parity equations have average length n/2, limiting the range of
problems they can handle.

ApproxMC uses the satisfiability solver CryptoMiniSat (CMS) [14] which
has native support and sophisticated reasoning for parity constraints. CMS can,
moreover, take as input a cutoff value z > 1, so that it will run until it either finds
z solutions or determines the number of solutions to be less than z. ApproxMC
makes use of this capability in order to target i such that |S N R;| = ©(52),
instead of i such that |S N R;| ~ 1. Our algorithms make similar use of this
capability, using several different cutoffs.

The first effort to develop rigorous performance guarantees when p < 1/2
was made by Ermon et al. in [6], where an explicit expression was given for
the smallest allowed p as a function of |S|,n,d,e. The analysis in [6] was
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recently improved by Zhao et al. in [18] who, among other results, showed
that when log, |S| = £2(n), one can get rigorous approximation guarantees with
p = O((logn)/n), i.e., average constraint length O(logn). While, prima facie,
this seems a very promising result, we will see that the dependence on the con-
stants involved in the asymptotics is very important in practice. For example,
in our experiments we observe that already setting p = 1/8 yields results whose
accuracy is much worse than those achieved by LDPC constraints.

Finally, in [4] Chakraborty et al. introduced a very nice idea for reducing the
number of solver invocations without any compromise in approximation quality.
It amounts to using nested sequences of random sets Ry D Ro D R3 D --- DO R,
in the search for i = log,|S|. The key insight is that using nested (instead
of independent) random sets R; means that |S N R;| is deterministically non-
increasing in ¢, so that linear search for ¢ can be replaced with binary search,
reducing the number of solver invocations from linear to logarithmic in n. We
use the same idea in our work.

2.1 Independent Support Sets

A powerful idea for mitigating the severe limitations arising from long parity
constraints was proposed by Chakraborty et al. in [2]. It is motivated by the
observation that formulas arising in practice often have a small set of variables
I C V such that every value-assignment to the variables in I has at most one
extension to a satisfying assignment. Such a set [ is called an independent support
set. Clearly, if S’ C {0,1}! comprises the value assignments to the variables in [
that can be extended to satisfying assignments, then |S| = |S’|. Thus, given I,
we can rethink of model counting as the task of estimating the size of a subset of
{0,1}, completely oblivious to the variables in V — I. In particular, we can add
random parity constraints only over the variables in I, so that even if we use long
constraints each constraint has |I|/2 instead of |V'|/2 variables on average. Since
independent support sets of small size can often be found in practice [9], this
has allowed ApproxMC to scale to certain formulas with thousands of variables.

In our work, independent support sets are also very helpful, but per a rather
“dual” reasoning: for any fixed integers i, k, the statistical quality of random sets
defined by systems of i parity constraints with k£ variables each, decreases with
the number of variables over which the constraints are taken. Thus, by adding
our short constraints over only the variables in an independent support set, we
get meaningful results on formulas for which |I|/2 is too large (causing CMS
and thus ApproxMC to timeout), but for which |I|/|V] is sufficiently large for
our short parity constraints to have good statistical properties.

Variable Convention. In the rest of the paper we will think of the set of vari-
ables V' of the formula F being considered as being some independent support
set of F' (potentially the trivial one, corresponding to the set of all variables).
Correspondingly, n will refer to the number of variables in that set V.
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3 Our Results

In [1], the first and last authors showed that systems of parity equations based on
LDPC codes can be used both to derive a rigorous lower bound for |S| quickly,
and to derive a (4, €)-approximation of |S| with O(qB?/e*) solver invocations, as
per Step 3 of F2. The new contributions in this work are the following.

— In Sect.5 we show how to compute a rigorous upper bound for |S| with a
number of solver invocations that is linear in B. While the bound does not
come with any guarantee of being close to |S|, in practice it is remarkably
accurate. Key to our approach is a large deviations inequality bounding the
lower tail of a random variable as a function of the ratio between its second
moment and the square of its first moment. Notably, the analogue of this
inequality does not hold for the upper tail. Recognizing and leveraging this
asymmetry is our main intellectual contribution.

— In Sect. 6 we simplify and streamline the analysis of the (4, €)-approximation
algorithm of [1], showing also how to incorporate the idea of nested sampling
sets.

— In Sects.7-9 we refine the analysis of [1] for B, resulting in significantly
better bounds for it. Getting such improved bounds is crucial for making
our aforementioned upper-bounding algorithm fast in practice (as it is linear
in B).

— Finally, we give a publicly available implementation, called F2.

4 First a Lower Bound

To simplify exposition we only discuss lower bounds of the form |S| > 2° for
i € N, deferring the discussion of more precise estimates to Sect.6. For any
distribution Z, let R ~ 2 denote that random variable R has distribution 2.

Definition 1. Let 7 be a distribution on subsets of a set U and let R ~ 2. We
say that 7 is i-uniform if Prjo € R] = 27" for every o € U.

Algorithm 1 below follows the scheme presented in the introduction for prov-
ing lower bounds, except that instead of asking whether typically S N R # (), it
asks whether typically |S N R| > 2. To do this, |S N R| is trimmed to 4 in line 5
(by running CryptoMiniSat with a cutoff of 4), so that the event Z > 2t in line 8
can only occur if the intersection had size at least 2 in at least ¢/2 trials.

Theorem 1 ([1]). Pr[The output of Algorithm 1 is incorrect] < e~/8.

To get a lower bound for |S| we can invoke Algorithm 1 with i =1,2,...,n
sequentially and keep the best lower bound returned (if any). To accelerate this
linear search we can invoke Algorithm 1 with ¢ = 1,2,4,8,... until the first
“Don’t know” occurs, say at i = 2*. At that point we can perform binary search
in {2v71 ... 2% — 1}, treating every “Don’t know” answer as a (conservative)
imperative to reduce the interval’s upper bound to the midpoint and every “Yes”
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Algorithm 1. Given i,¢ decides if |S| > 2° with error probability e~*/8
1: Z 0

2: 50

3: while j <t and Z < 2t do > The condition Z < 2t is an optimization
4: Sample R; ~ %; > 2; can be any i-uniform distribution
5: Y; «— min{4, |S N R;|} > Run CryptoMiniSat with cutoff 4
6: Z—7Z+Y;

T j—j+1

8: if Z > 2t then

9: return “Yes”

10: else

11: return “Don’t know”

answer as an allowance to increase the interval’s lower bound to the midpoint.
We call this scheme “doubling binary search.” In Step 1 of F2 this is further
accelerated by invoking Algorithm 1 with a very small number of trials, ¢, in
the course of the doubling-binary search. The result of the search is treated as a
“ballpark” estimate and a proper binary search is done in its vicinity, by using
for each candidate 7 the number of iterations suggested by Theorem 1.

5 Then an Upper Bound

As discussed in the introduction, lottery phenomena may cause Algorithm 1
and, thus, Step 1 of F2 to underestimate log, |:S| arbitrarily. To account for the
possibility of such phenomena we bound the “lumpiness” of the sets R; ~ Z; by
the quantity defined in (3) below, measuring lumpiness at a scale of M.

Definition 2. Let 7 be any distribution on subsets of {0,1}" and let R ~ 9.
For any fixed M > 1, let

1 Prlo,7 € R]
Boost(2, M) = . 3
007, M) = max  TSIIST= 1) 2 Pr[o € R Pr[7 € R ®)
[S]>M a'c;;GTS

To develop intuition for (3) observe that the ratio inside the sum is the
factor by which the a priori probability that a truth assignment belongs in R
is modified by conditioning on some other truth assignment belonging in R. So,
if membership in R is pairwise independent, then Boost(Z,-) = 1. Note also
that since |S| > M instead of |S| = M in (3), the function Boost(Z, -) is non-
increasing in M. As we will see, the critical quantity for an i-uniform distribution
9; is Boost(%;,2%), i.e., an i-uniform distribution can be useful even if Boost(%;)
is huge for sets of size less than 2°.

To analyze Algorithm 2 we will use the following inequality of Maurer [10].
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Algorithm 2. Given § > 0 and L < |S| returns Z > |S| with probability 1 — ¢
: £« |log, L]
9y — any f-uniform distribution
B «— any upper bound for Boost(Z,, 2¢)
t«— [8(B+1)In(1/4)]
Z —0
for j from 1 to ¢t do
Sample R; ~ %,
X; — |SNRy| > Run CryptoMiniSat without cutoff
Ze— Z+X,
: return ¢|S| < 2°T1(Z/t)”

—_
o

Lemma 1. Let Xq,...,X; be non-negative i.i.d. random wvariables. Let Z =
S Xi. IFEX?/(EX,)? < B, then for any o > 0,

Pr[Z < (1 — a)EZ] < exp <;‘Z> .

Theorem 2. Pr[The output of Algorithm 2 is correct] > 1 — 4.

Proof. Let Z be the random variable equal to the value of variable Z in line 9,
right before line 10 is executed. If Z = z, in order for the output to be wrong it
must be that |S| > 2/71(z/t), implying EZ = t|S|2¢ > 22 and, therefore, that
the event Z < EZ/2 occurred. Since Z is the sum of i.i.d. non-negative random
variables X7, ..., X;, we can bound Pr[Z <EZ/2] via Lemma 1.

To bound EX7 /(EX1)?, we write X1 = > __¢1,er, and observe that

EX? = ) Prlo,7 € Ry

o,TES
=Y Prloc Ri]+ Y Prlo,7€ Ry
g€eS o,TES
oFT
< 3" Prlo € Ry +27%S](|S| — 1)Boost(2,]S])
oceS

< EX; + Boost(2, |S])(EX;)2.

Since |S| > L > 2° and Boost(%,, M) is non-increasing in M, we see that

EX? 1 ,
<—+B <1+ Boos 2°). 4
EX,)? S EX + Boost(2,]S5]) < 1+ Boost(Z, 2%) (4)

Therefore, applying Lemma 1 with o = 1/2 and recalling the definitions of B
and ¢ in lines 3 and 4 of Algorithm 2, we see that Pr[Z < EZ/2] < §, as desired.
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F2. Given L < |S| < U, 4,0 > 0 returns Z € (1 & 0)|S| with probability 1 — 6

: if L < 4/§ then
: E — number of solutions found by CryptoMiniSat ran with cutoff 4/
if £ <4/6 then return E > In this case |S| = F

1
2
3
4:
5: € — |log,(6L/4))|
6
7
8

:u— [log, Ul _
: B «— Any upper bound for zgigaf—QBOOSt(@i’ 2")
9: § «— min{0,1/3}
10: £ —8/¢
11: b [€+2(€ +€2(B—1))] > If B =1, then b = [24/4]
12: ¢« [(2b%/9)In(5/0)]
13:
14: Zo, Zos1,. .., Zy — 0
15:
16: for j from 1 to ¢t do
17: M « a uniformly random element of an LDPC ensemble over {0, 1}**"
18: y < a uniformly random element of {0, 1}*
19: for ¢ from ¢ to u do
20: Let M;,y; comprise the first ¢ rows of M and y, respectively
21: R;; — {o€{0,1}" : Mjoc = y;} > Enforce the first ¢ parity constraints
22: Y; ; < min{b, |S N R; ;|} > Run CryptoMiniSat with cutoff b
23: Zi — Z; + Yi’j
24:
25: j e max{—1,max{{ <i<w:Z; >t(1—9)(4/0)}}
26:

27: if j # —1 then return 27(Z;/t)
28: else return “Fail”

6 Finally a (1 £ 6)|S| Approximation

Given any bounds L < |S| < U, for example derived by using Algorithms 1
and 2, algorithm F2 below yields a rigorous approximation of |S| within 1 + §
with a number of solver invocations proportional to B2/§*, where

B = max BOOSt(.@i72i)7
(<i<u—2

where ¢ ~ log,(6L) and u ~ log, u. (If B = 1, the iterations drop to O(672).)
Theorem 3. Pr[F2 returns Z € (1£0)|S|] >1—6.

To prove Theorem 3 we will need the following tools.

Lemma 2 (Hoeffding’s Inequality). If Z =Y, +--- + Y;, where 0 <Y; <
are independent random variables, then for any w > 0,

Pr[Z/t > EZ/t+w] < e 2W/0°  and  Pr[Z/t <EZ/t—w] < e 2®/D*  (5)



Fast and Flexible Probabilistic Model Counting 157

Lemma 3 ([1)). Let X > 0 be an arbitrary integer-valued random variable.
Write EX = u and Var(X) = o2. For some integer b > 0, define the random
variable Y = min{X,b}. For any A > 0, if b >+ \o?, then EY > EX — 1/)\.

Lemma 4 (/1)). Let 2 be any i-uniform distribution on subsets of {0,1}". For
any fized set S C {0,1}", if R ~ 2 and X = |S N R|, then Var(X) < EX 4+
(Boost(2,]S]) — 1)(EX)2.

Proof. If |S| < 4/6, the algorithm returns exactly |S| and exits. Otherwise, the
value ¢ defined in line 5 is non-negative and ¢ := [log,(8|S|/4)| > ¢ since L < |S|.
Let A; = Z;/t. We will establish the following propositions:

(a) Pr[A,29 & (1+6)|S|] < 2e791/(20%),

(b) Pr{A, 1211 ¢ (14 )[S]] < 2e-9/C¥"),

(c) If A,29 € (1+6)|S|, then j > ¢ in line 25 (deterministically).
(d) Pr[j > q+2] < e 8/,

Given propositions (a)—(d) the theorem follows readily. If A,4429%" is in the
range (1+6)|S] for k € {0,1} but for k > 2 it is less than (1 — §)(4/0), then the
algorithm will report either 4,29 or A,.129%1, both of which are in (1 £ §)[9|.
Thus, the probability that the algorithm does not report a number in (1 £ 6)|S|
is at most 2 - 2e~9/(26°) 4 ¢=8t/6" which, by our choice of ¢, is less than 6.

To establish propositions (a)—(d) we start by noting the following facts:

i) R; ; is sampled from an i-uniform distribution for every i, j.
J
(ii) The sets R;1,...,R;; are independent for every i.
(ili) Rej 2 Ryy1,j 2 - 2 Ry—1,; 2 R, ; for every j.

Now, fix anyz' = q+k, where k > 0. Let X, ; = |[SNR; ;| and write EX; ; = p,,
Var(X; ;) = o?. By fact (ii), Z; is the sum of ¢ independent random variables
0<Y;; <b. Slnce EZ;/t < p;, Hoeffding’s inequality implies that for all ¢ > ¢,

Pr(Z;/t > (14 0)u;] < exp <—2t (‘2}“) ) : (6)

To bound Pr[Z;/t > (1—8)u;] for k € {0,1} we first observe that |S| > 2¢+1,
since 0 < 2. Since Boost(Z2, M) is non-increasing in M and ¢ < u — 2 we see
that

max_Boost(Zy+k, |S]) < max{Boost(Z,,29"), Boost(Z,11,27"")}

ke{0,1}
< max{Boost(Z,, 29), Boost(Z,11,297)}
Se<11navj( Boost(Z;,2")
< B. (7)

Fact (i) implies that X;; satisfies the conditions of Lemma 4. Therefore, for
i € {q¢,q+ 1}, Lemma 4 combined with (7) implies 02 < p; + (B — 1)u?. Since
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w; < 8/68 for all i > ¢ while & = 8/6, we see that b = [£ +2(£ + £2(B —1))] >
wi + 202, Thus, for i € {q,q + 1} the random variables X; ;,Y; ; satisfy the
conditions of Lemma 3 with A = 2, implying EY; ; > EX, ; — 1/2. Therefore,
EZ;/t > p; —1/2 for i € {q,q + 1} so that Hoeffding’s inequality implies

Pr{Z:/t < (1 - 8)ju] < exp (—% (‘W)) . (3)

To establish propositions (a) and (d) observe that i, > 2275/ by Fact (i).
Therefore, (6) and (8) imply that for k& € {0, 1}, the probability that A,;,29"*
is outside (1 & ¢)|S] is at most

2 exp <—2t <2Hb_1/2) ) < 2exp(—9t/(2b?)) .

To establish proposition (c) note that if A, > (1—06) g, then A, > (1-5)(4/9)
and, thus, j > ¢. Finally, to establish proposition (d) observe that, by Fact (iii),
the random variables Z; are non-increasing in 4, so that j > ¢ + 2 implies
Ag422772 < (1 = 6)(4/5). To bound the probability of this event we note that
tgt2 < 2/6. Thus, pgye +w > (1 — §)(4/0), implies w > 2(1 — 26)/4, which,
since § < 1/3, implies w > 2. Therefore, (5) implies Pr[j > ¢+ 2] < e =8t/

7 Homogeneous Distributions

Our goal in Sects.7-9 is to derive an upper bound for B when the random
matrix A corresponds to the parity check matrix of an LDPC code. To that
end, in this section we derive an expression for B valid for any random set
distribution that satisfies certain symmetry properties. In Sect.8 we relate the
sets R; corresponding to codewords of LDPC codes to these properties. Finally,
in Sect. 9 we discuss how to deal with miscellaneous technical issues arising from
the need to be able to work with formulas with an arbitrary number of variables
and clauses, while retaining mathematical rigor in our bounding of B.

The analysis in this section is identical to the one in [1] except for requiring
that f(n) = 0 in the definition of tractability. This has the effect of changing
the lower index of summation in the definition of B in Theorem 4 from 0 to 1
which, in turn, makes a significant difference in practice.

Definition 3. An i-uniform distribution, 2; is homogeneous if there exists a
function f, called the density of %;, such that for all o,7 € {0,1}", if R ~ %;,
then Pr[r € R| o € R] = f(Hamming(o,7)).

Definition 4. A homogenous distribution is tractable if its density f satisfies:
fG) = fG+1) for j <n/2, f(j) < f(n—j) for j =n/2, and f(n)=0.
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For any S C {0,1}" and o € S, let HZ (d) denote the number of elements of
S at Hamming distance d from o. In [1] it was shown that for any homogenous
distribution %;, and any M > 1,

2t
Boost(Z;, M) < —= _N"HS .
oost(Z5, M) < masx e ) H7(d)1(d) (9)
[S|>M d=1
g€eS

To bound (9), we assume that |S| > 2n + 1 so that there exists 2 < z <n/2
such that (|S]—1)/2 = (1) +(5)+---+(,",) +a(}), for some a € [0,1). (If | S| <
2n + 1, then we can estimate |S by using a handful of long parity constraints.)
Fact f(j) < f(n—j) for j > n/2 implies (10). Facts f(j) > f(j+1) for j < n/2
and f(n) =0 imply (11). Finally, the fact f(z — 1) > f(z) implies (13).

Sy HE@)S) _ il HE@ () + Sy HS (@) f (0= d)

S-1 < 51 10)
2 (Zict (D@ +a()f(2)
: ST .
i) () Fd) + (D) f(2) '
= —1 /n n )
D a1 (d) + a(z) |
o X (DF@) (13)
D Sl ()
= B(2). (14)

To bound B(z) observe that since f(j) > f(j + 1) for j < n/2 it follows
that B(j) > B(j + 1) for j < n/2. Thus, to bound B(z) from above it suffices
to bound z from below. Let h : x — —xlogy,x — (1 — z)log, z be the binary
entropy function and let A= : [0,1] — [0,1] map y to the smallest number x
such that h(z) = y. It is well-known that >_5_; (7)) < 2nh(z/n) for every integer
1 < z < n/2. Therefore, z > [nh~1(logy(|S]/2)/n)], which combined with (9)
and (14) implies the following.

Theorem 4. If &; is a tractable distribution with density f, then

Boost(Z;, M) < 2'B qnhl (logQMl)D , (15)

n

where B(2) = Y421 (W) £(d)/>X52) (7) and A= 2 [0,1] v [0,1] maps y to the
smallest number x such that h(x) =y, where h is the binary entropy function.

8 Low Density Parity Check Codes

We will consider the set of all matrices {0,1}*™ where:
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(i) Every column (variable) has exactly 1 > 3 non-zero elements.
(ii) Every row (equation) has |r| or [r] non-zero elements, where r = 1n/i.

Given n, i, and 1, let iy denote the number of equations with |r| variables
and let i; =i — iy. Let A be selected uniformly at random? among all matrices
satisfying (i)—(ii). Let R = {0 € {0,1}" : Ao = b}, where b € {0, 1}* is uniformly
random. Lemma 3.157 of [12] implies that for every o € {0,1}",if o € R, then the
expected number of codewords at distance d from o, denoted by codewords(d),
is independent of o (due to the row- and column-symmetry in the distribution
of A) and equals the coefficient of 2% in the polynomial

A %0 A\ 21
(n) (EJ (22‘)372]) (ZJ (T;jl)x%)
: ()

If 2; denotes the distribution of R, the uniformity in the choice of b implies
that 2; is i-uniform. The fact that for every o € {0,1}", conditional on o € R,
the expected number of codewords at distance d from o is independent of o
implies that for any fixed 7 # o, Pr[both 0,7 € R] = 27¢f(d), where f(d) =
codewords(d)/(7}), making Z; homogeneous with density f.

Regarding tractability, we begin by noting that if any equation has an odd
number of variables, then the complement of a codeword can not be a codeword,
implying codewords(n) = 0. When r is an ever integer we achieve i; > 0 by
adding a single dummy Boolean variable to the formula (and reducing all our
estimates of |S| by 2). To simplify exposition in the following we assume i; > 0.

It is also well-known [12] that codewords(j) > codewords(j + 1) for j < n/2,
so that we are left to establish f(j) > f(j+1) for all 0 < j < n/2. Unfortunately,
this is not strictly true for a trivial reason: in the vicinity of n/2 the function f
is non-monotone, exhibiting minuscule fluctuations (due to finite-scale-effects)
around its globally minimum value at n/2. While this prevents us from applying
Theorem 4 immediately, it is easy to overcome. Specifically, for the proof of
Theorem 4 to go through it is enough that f(j) > f(j+ 1) forall 1 < j < z
(instead of all 1 < j < n/2), something which for most sets of interest holds,
as z < n/2. Thus, to provide a rigorous upper bound on Boost, it is enough to
verify the monotonicity of f up to z while evaluating B(z).

9 Bounding B in Practice

In defining our systems of parity equations based on LDPC codes in the previ-
ous sections, we made sure that every variable participates in an even number
of equations, we used equations whose lengths are successive integers, and we
insisted on always having at least one equation of odd length. These seemingly

2 This can be done by selecting a uniformly random permutation of size [1n] and using
it to map each of the 1n non-zeros to equations; when 1,r € O(1), the variables in
each equation will be distinct with probability £2(1), so that a handful of trials suffice
to generate a matrix as desired.
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minor tricks make a very big difference in the bound of Boost in Theorem 4.
Unfortunately, the number of iterations, ¢, needed by our (4, €)-approximation
algorithm of Sect. 6 has a very large leading constant factor, in order to simplify
the mathematical analysis. (This is not the case for our upper-bounding algo-
rithm of Sect. 5.) For example, if the approximation factor § = 1/3 and the error
probability § = 1/5, even in the ideal case where B = 1, i.e., the case of pairwise
independence, t = 3,709. In reality, when B = 1, a dozen repetitions are more
than enough to get an approximation with this §,6. Far worse, when B = 2,
the number of repetitions t explodes to over 1 million, making the derivation of
rigorous (4, €)-approximations via Theorem 4 unrealistic. That said, we believe
that further sharpening of Theorem 4 is within grasp.

Luckily, our algorithms for deriving rigorous upper and lower bounds have
much better constant-factor behavior. Moreover, as we will see experimentally,
the heuristic estimate for |\S| that can be surmised from their (ultra-fast) execu-
tion appears to be excellent in practice. Below we describe a set of experiments
we performed showing that one can get rigorous results in realistic times using
our tools for formulas that are largely outside the reach of all known other model
counters.

10 Experiments

We compare Algorithms 1, 2, i.e., our lower and upper bounding algorithms,
with the deterministic, exact model counter sharpSAT [16] and the probabilistic,
approximate model counter ApproxMC2 (AMC2) [4]. We consider the same 387
formulas as [4] except for 2 unsatisfiable formulas and 10 formulas whose number
of solutions (and, thus, equations) is so small that our parity equations devolve
into long XOR equations. Of the remaining 375 formulas, sharpSAT solves 245 in
under 2s, in every case significantly faster than all other methods. At the other
extreme, 40 formulas are not solved by any method within the given time limit of
8 h. We report on the remaining 90, most interesting, formulas. All experiments
were run on a modern cluster of 13 nodes, each with 16 cores and 128 GB RAM.

We use an improved implementation of CryptoMiniSat [14] tuned for hashing-
based algorithms by Mate Soos and Kuldeep Meel, which is pending publication.
This also allows to deal with the fact that 10 of the 90 formulas come with a
sampling set, i.e., a subset of variables V' such that the goal is to count the size
of the projection of the set of all models on V. Since sharpSAT does not provide
such constrained counting functionality, we do not run it on these formulas.

To provide a sense of the tradeoff between the length of the parity constraints
and B, we note that when every variable appears in 6 parity constraints, then
B < 30 for all but 3 formulas, while for all but 1 formula all equations have
length at most 16. When every variable appears in 12 parity constraints, then
B < 3 for all but 3 formulas, while for all but 6 formulas all equations have
length at most 28.

Our Algorithms 1, 2 terminated within the allotted time for 87 of the 90
formulas, providing a rigorous lower bound and a rigorous upper bound. By
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Fig. 1. The sum of the running times of the lower and upper bounding algorithms in
F2 vs. the running time of sharpSAT.
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Fig. 2. The sum of the running times of the lower and upper bounding algorithms in
F2 vs. the running time of ApproxMC2.

comparison, sharpSAT terminated on 45 formulas (out of 90 — 10 =_80), while
ApproxMC2 on 25 of 90.

For most formulas the ratio between our two rigorous bounds is between 8
and 16 and for none more than 64. For the 48 formulas for which the model
count is known, either exactly via sharpSAT or approximately via ApproxMC2,
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the ratio between our upper bound and the known count was typically less than
2 and never more than 3. This is in spite of the fact that the time to derive
it is often just a handful of seconds for formulas for which ApproxMC2 and/or
sharpSAT time out given 8h.

In Figs. 1 and 2, we plot the sum of the running time of our two algorithms,
against the running time of sharpSat and ApproxMC2, respectively. (Marks out-
side the 8hr x 8hr box, indicate a time-out and only one of their two coordinates
is meaningful.)

11 Conclusions

We have shown that by using systems off parity constraints corresponding to
LDPC matrices, one can get rigorous lower bounds and rigorous upper bounds.
While these bounds do not come with a priori guarantees about how close they
will be to one another, in practice they are typically within a small multiplicative
factor, e.g., 2-3. We believe that for many practical applications such bounds
will be quite useful, as they are both rigorous and fast to derive. In particular,
when (log, |S])/n is not too small, the constraint lengths can remain bounded,
for arbitrarily large n. As a result, our tool F2 can deliver rigorous results for
formulas that appear outside the reach of tools based on long parity equations,
such as ApproxMC2.
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