
REINFORCEMENT LEARNING FOR 5G CACHING WITH DYNAMIC COST

Alireza Sadeghi†, Fatemeh Sheikholeslami†, Antonio G. Marques∗, and Gergios B. Giannakis†

†Digital Technology Center and Dept. of ECE, University of Minnesota, Minneapolis, USA
∗Dept. of Signal Theory and Comms., King Juan Carlos University, Madrid, Spain

ABSTRACT

In next generation cellular networks (5G) the access points
(APs) are anticipated to be equipped with storage devices to serve
locally requests for reusable popular contents by caching them at the
edge of the network. The ultimate goal is to shift part of the load on
the back-haul links from on-peak to off-peak periods, contributing
to a better overall network performance and service experience. In
order to enable the APs with efficient (optimal) fetch-cache decision
making schemes able to work in dynamic settings, we introduce
simple but flexible generic time-varying fetching and caching costs,
which are then used to formulate a constrained minimization of the
aggregate cost across files and time. Since caching decisions in
every time slot influence the content availability in future instants,
the novel formulation for optimal fetch-cache decisions falls into the
class of dynamic programming, for which efficient reinforcement-
learning-based solvers are proposed. The performance of our al-
gorithms is assessed via numerical tests, and discussions on the
inherent fetching-versus-caching trade-off are provided.

Index Terms— Caching, Fetching, Dynamic Programming, Re-
source allocation, Dynamic pricing.

1. INTRODUCTION

In the era of date deluge, storing “popular” contents at the edge of
5G cellular networks is a promising technique to satisfy the users’
demands while alleviating the congestion on the back-haul links. To
this aim, access points (APs) equipped with a local cache must intel-
ligently store reusable popular contents during off-peak periods, and
utilize the stored data during on-peak hours [1]. Due to its practi-
cal relevance, design of optimal caching schemes is quickly gaining
traction. In order to enable content-agnostic APs with the required
learning capability, a multi-armed bandit formulation of the prob-
lem in a static “popularity” scenario was investigated in [2]. The
coded, convexified, and distributed extensions of this problem were
later studied in [3]. Context and trend-aware learning approaches
were considered in [4] and [5]. From a similar perspective, an asyn-
chronous approach based on reinforcement learning was adopted in
[6], where Markov chains were used for modeling dynamic user de-
mands.

However, most existing efforts for 5G caching have focused on
enabling the APs for optimal caching in static scenarios with fixed
costs. By considering generic time-varying fetching and caching
costs, this paper aims at designing more flexible chaching schemes,

The work in this paper has been supported by USA NSF grants 1423316,
1508993, 1514056, 1711471, and by the Spanish MINECO grant OMI-
CROM (TEC2013-41604-R).

while enabling APs to learn the optimal fetching-caching decisions.
In particular, the caching and fetching schemes will be found as the
solution of a constrained optimization aimed at reducing the cost ag-
gregated across files and time instants. Since the caching decision
in a given time slot not only affects the instantaneous cost, but also
will influence the cache availability in future, the problem must be
handled using dynamic programming (DP) tools. The optimization
is shown to be separable across files, and thus it can be efficiently
solved by decomposing the value function associated with the orig-
inal DP into a summation of smaller-dimension value functions. To
reduce the computational complexity, a reduced (marginalized) ver-
sion of the so-called value iteration algorithm [7] is introduced, and
its performance is assessed via numerical tests.

2. OPERATING CONDITIONS AND COSTS

Consider a memory-enabled access point (AP) responsible for serv-
ing user file requests over f = 1, 2, . . . , F contents across time. The
requested contents are transmitted to users either by fetching through
a (expensive) back-haul link connecting the AP to the cloud, or by
utilizing the local storage unit in the AP to pro-actively cache the
popular contents ahead of time. The system is considered to operate
in a slotted fashion with t = 1, 2, . . . denoting time.

During slot t and given the available cache contents, the AP re-
ceives a number of file requests whose provision incurs certain costs.
Specifically for a requested file f , fetching it from the cloud through
the back-haul link gives rise to scheduling, routing and transmis-
sion costs, whereas its availability at the cache storage in the AP
will eliminate such expenses. However, local caching also incurs a
number of costs, such as storage, memory, or energy consumption,
for each time instant. This gives rise to an inherent caching-versus-
fetching trade-off, where one is promoted over the other depending
on their relative costs. The objective here is to propose a simple
but sufficiently general framework to minimize the sum-average cost
over time by optimizing fetch-cache decisions while adhering to the
constraints inherent to the operation of the system and the require-
ments from the users. The variables, constraints and costs involved
in this optimization are described in the ensuing subsections.

2.1. Variables and constraints

Consider the system at time slot t, where the binary state variable rft
represents the incoming request for file f ; that is, rft = 1 if the file
f is requested during slot t, and rft = 0 otherwise. Here, we assume
that rft = 1 necessitates serving the file to the user and dropping is
not allowed, thus requests must be carried out either by fetching the
file from the cloud or by utilizing cache capacity. Furthermore, at



the end of each time slot, the AP will decide if content f should be

stored in cache for possible future requests.

To formalize this, let us define the “fetching” decision variable

wf
t ∈ {0, 1} along the “caching” variable af

t ∈ {0, 1}. Having

wf
t = 1 implies “fetching” file f at time t, while wf

t = 0 means “no-

fetching”. Similarly, af
t = 1 implies that content f will be stored

in cache at the end of the slot t, while af
t = 0 implies that it will

not. Furthermore, let the storage state variable sft ∈ {0, 1} account

for the availability of the files at the local cache. In particular, sft =
1 if file f is available in the cache at the beginning of slot t, and

sft = 0 otherwise. Since the availability of file f directly depends

on caching decision at time t− 1, we have that

sft = af
t−1, ∀f, t, (1)

which will be incorporated to our optimization as constraints.

Moreover, since having rft = 1 necessitates the transmission

of file f to the user(s), it requires either having the file in cache

(sft = 1) or fetching it from the cloud (wf
t = 1), giving rise to the

second set of constraints

rft ≤ wf
t + sft , ∀f, t. (2)

Finally, the caching decision af
t can be set to 1 only when the content

f is available at time t; that is, only if either fetching is carried out

wf
t = 1 or the current cache state is sft = 1. This in turn implies the

third set of constraints as

af
t ≤ sft + wf

t , ∀f, t. (3)

2.2. Prices and aggregated costs

To account for the caching and fetching costs, let ρft and λf
t denote

the (generic) costs associated with af
t = 1 and wf

t = 1, respectively.

Focusing for now on the caching cost and with σf denoting the size

of content f , a simple form for ρft is

ρft = σf (ρ
′
t + ρ′ft ) + (ρ′′t + ρ′′ft ), (4)

where the first term is proportional to the file size σf and the sec-

ond one is constant. Note also that we consider file-dependent costs

(via variables ρ′ft and ρ′′ft ) as well as cost contributions which are

common across files (via ρ′t and ρ′′t). In most practical setups the

latter will dominate over the former. For example, the caching cost

per bit is likely to be the same regardless of the particular type of

content, so that ρ′ft = ρ′′ft = 0. From a modeling perspective, vari-

ables ρft can correspond to actual prices paid to an external entity

(e.g., if associated with energy consumption costs), marginal util-

ity or cost functions, congestion indicators, Lagrange multipliers as-

sociated with constraints, or linear combinations of those [7, 8, 9].

Analogously, the corresponding form for the fetching cost is

λf
t = σf (λ

′
t + λ′ft ) + (λ′′t + λ′′ft ), (5)

As before, if the transmission link from cloud to the AP is the same

for all contents, the prices λ′t and λ′′t are expected to dominate over

the file-dependent counterparts λ′ft and λ′′ft .

Upon defining cft (a
f
t , w

f
t ; ρ

f
t , λ

f
t ) = ρft a

f
t + λf

t w
f
t , the aggre-

gate cost at time t is given by

ct :=

F[
f=1

cft (a
f
t , w

f
t ; ρ

f
t , λ

f
t ) =

F[
f=1

ρft a
f
t + λf

t w
f
t , (6)

which is the basis for the DP formulated in the next section.

3. FETCH-CACHE DECISION MAKING VIA DP

Since decisions are coupled across time [cf. constraint (1)], and the

future value of prices as well as state variables are inherently ran-

dom, our goal is to optimize the long-term average aggregate cost

C̄ := E

⎤
⎦ ∞[

t=0

F[
f=1

γtcft

)
af
t , w

f
t ; ρ

f
t , λ

f
t

[⎣∑ (7)

where the expectation is taken with respect to (w.r.t.) the random

variables {rft , λf
t , ρ

f
t }, and 0 < γ < 1 is the discounting factor

whose tuning trades off current versus future costs. In the rest of the

paper, the prices and state variables {rft , λf
t , ρ

f
t } are assumed to be

stationarity, therefor the expectations can be practically estimated.

We investigate a setup where knowledge of the state information

is causal, that is, the exact values of {rft , ρft , λf
t } are revealed at the

beginning of each slot t, and decisions are made sequentially. Hence,

the goal is to make real-time fetch-cache decisions that minimize

the expected current plus future cost while adhering to operational

constraints, giving rise to the following optimization

(P1) min
{(wf

k
,a

f
k
)}f,k≥t

C̄t :=
∞[
k=t

F[
f=1

γk−t
E

]
cfk

)
af
k , w

f
k ; ρ

f
k , λ

f
k

[{

s.t. (wf
k , a

f
k) ∈ X (rfk , s

f
k), ∀f, k ≥ t

where X (rft , s
f
t ) := {(w, a) | w ∈ {0, 1}, a ∈ {0, 1}, sft =

af
t−1, rft ≤ w + sft , a ≤ sft + w} and the expectation is taken

w.r.t. {rfk , ρfk , λf
k}∀k≥t+1. In contrast to many resource allocation

problems where, after introducing pertinent prices (Lagrange multi-

pliers), the optimization decouples across time [8, 9], the presence

of constraint (1) entails that current caching decisions impact future

costs and therefore such costs must be taken into account. This ulti-

mately implies that (P1) is a DP [10, p. 79] and, therefore, to solve

it we need to: a) identify the current and the expected future aggre-

gate cost (this second term will give rise to the so-called value func-

tion); b) write the corresponding Bellman equations; and c) propose

a method to estimate the value function. This is the subject of the

ensuing subsections, which start by further exploiting the problem

structure to reduce complexity.

3.1. Bellman equations for the per-content problem

Focusing on (P1) one can readily realize that: (i) consideration of

the content-dependent prices renders the objective in (P1) separable

across f , and (ii) the constraints in (P1) are also separable across

f . Furthermore, the decisions af
t and wf

t do not affect the values

(distribution) of {rf ′
t′ , ρ

f ′
t′ , λ

f ′
t′ } for files f ′ �= f and for times t′ > t.

Thus (P1) naturally gives rise to the per-file optimization

(P2) min
{(wf

k
,a

f
k
)}k≥t

C̄ft :=

∞[
k=t

γk−t
E

]
cfk

)
af
k , w

f
k ; ρ

f
k , λ

f
k

[{

s.t. (wf
k , a

f
k) ∈ X (rfk , s

f
k), k ≥ t

which must be solved for f = 1, ..., F . Indeed, the aggregate cost

associated with (P2) will not depend on variables associated with

files f ′ �= f [7]. This is the case if, for example, the involved vari-

ables are independent of each other (which is the setup considered

here) or when the focus is on a large system where the contribution



)
wf∗

t , af∗
t

[
:= argmin
(w,a)∈X (r

f
t ,s

f
t )

}
E

r
f
k
,ρ

f
k
,λ

f
k

]
min

(wk,ak)∈X (r
f
k
,s

f
k
)

} ∞[
k=t

γk−t
]
cfk(a

f
k , w

f
k ; ρ

f
k , λ

f
k)
(((af

t =a,wf
t =w,θf

t = θf
0

{⎡{⎡
(8)

= argmin
(w,a)∈X (r

f
t ,s

f
t )

}
cft (a,w; ρft , λ

f
t ) + E

r
f
k
,ρ

f
k
,λ

f
k

]
min

(wk,ak)∈X (r
f
k
,s

f
k
)

∞[
k=t+1

γk−t
]
cfk(a

f
k , w

f
k ; ρ

f
k , λ

f
k)
(((sft+1 = a

{{⎡
(9)

V f
)
sf , rf ; ρf , λf

[
:= min
(w,a)∈X (r

f
t ,s

f
t )

}
E

r
f
k
,ρ

f
k
,λ

f
k

]
min

(wk,ak)∈X (r
f
k
,s

f
k
)

} ∞[
k=t

γk−t
]
cfk(a

f
k , w

f
k ; ρ

f
k , λ

f
k)
(((af

t =a,wf
t =w,θf

t = θf
{⎡{⎡

(10)

V̄ f (sf ) := E
rf ,ρf ,λf

]
min

(w,a)∈X (r
f
t ,s

f
t )

}
E

r
f
k
,ρ

f
k
,λ

f
k

]
min

(wk,ak)∈X (r
f
k
,s

f
k
)

} ∞[
k=t

γk−t
]
cfk(a

f
k , w

f
k ; ρ

f
k , λ

f
k)
(((af

t =a,wf
t =w,θf

t = θf
{⎡{⎡{

= E
rf ,ρf ,λf

min
(w,a)∈X (rf ,sf )

}
cf0 (a,w; ρf , λf ) + γV̄ f (a) (11)

of an individual variable to the aggregate network behavior is prac-

tically negligible.

Bellman equations and value function: Finding the solution to the

DP in (P2) requires writing the corresponding Bellman equations

and associated value function [10, p. 68]. To this end, consider the

system at time t where the cache state sft = sf0 , file request rft = rf0
as well as cost parameters λf

t = λf
0 and ρft = ρf0 are all given. For

brevity consider the vector θf
t := [rft , ρ

f
t , λ

f
t ] collecting the state

variables at time t for file f , then, the optimal fetch-cache decision

(wf∗
t , af∗

t ) is readily expressible as the solution to (8)1. The objec-

tive in (8) is then rewritten in (9) as the summation of current and dis-

counted average future costs. The form of (9) is testament to the fact

that problem (P2) is a DP and the caching decision a influences not

only the current cost cft (·), but also future costs through the second

term as well. Bellman equations can be leveraged for tackling such

a DP. Under the stationarity assumption for variables {rft , ρft , λf
t },

the term accounting for the future cost can be rewritten in terms of

the stationary value function V f sf , rf ; ρf , λf
∣

[10, p. 68]. This

function, formally defined in (10), captures the minimum sum av-

erage cost for the “state” (sf , rf ), parametrized by (λf , ρf ), where

for notational convenience, we define θf := [rf , ρf , λf ].

3.2. Reduced value function

If one further assumes that price parameters and requests are i.i.d.

across time, it can be shown that the optimal solution to (P2) can be

expressed in terms of the reduced value function [7]

V̄ f
)
sf

[
:= Erf ,λf ,ρf

]
V f

)
sf , rf ; ρf , λf

[{
, (12)

where the expectation is w.r.t {rf , ρf , λf}. This is important not

only because it captures the average future cost of file f for cache

state sf ∈ {0, 1}, but also because V̄ f (·) is a function of a binary

variable, and therefore, its estimation requires only estimating two

1In equations (8)-(11), the expectation (or minimization) w.r.t. variables

that have subscript k, the corresponding expectation (or minimization) is

w.r.t. ∀k ≥ t+ 1.

Algorithm 1: Value iteration for finding V̄ f (·)
1 Set V̄ f

0 (s) = 0, for s ∈ {0, 1} ;

Input : γ < 1, probability density function of ρft , λ
f
t and rf

Output: V̄ f (·)
2 while |V̄ f

k (s)− V̄ f
k+1(s)| < ε; s ∈ {0, 1} do

3 for s = 0, 1 do
4 V̄ f

k+1(s) =

Er,ρ,λ min
(w,a)∈X (r,s)

}
cft (a,w; ρ, λ) + γV̄ f

k (a)

5 end
6 k = k + 1

7 end

values. This contrasts with the original four-dimensional value func-

tion in (10), which is much harder to estimate.

By rewriting the proposed alternative value function V̄ f (·) in

a recursive fashion as the summation of instantaneous cost and dis-

counted future values V̄ f (·), one readily arrives at the Bellman equa-

tions provided in (11). Thus, the problem reduces to finding V̄ f (0)
and V̄ f (1) for all f , after which the optimal fetch-cache decisions

(wf∗
t , af∗

t ) are easily found as the solution to

(P3) min
(w,a)

cft (a,w; ρft , λ
f
t ) + γV̄ f (a)

s.t. (w, a) ∈ X (rft , s
f
t ).

The well-known value iteration algorithm is leveraged to find V̄ f (·)
as tabulated in Algorithm 1; c.f. [10, p. 100] for a detailed discussion

on value iteration. Alternatively, if the distributions of the random

parameters are unknown, stochastic Q-learning schemes that esti-

mate the proposed value function online while making decisions can

be developed [10, p. 148].

Remark (Augmented value functions). The value function V̄ f (sf )
can be redefined to account for additional information on rft , ρft or



Average caching cost, ρ̄
0 10 20 30

S
u
m

a
v
er
a
g
e
co
st

20

30

40

50

60

70

80
λ̄ = 43

λ̄ = 45

λ̄ = 50

λ̄ = 58

pr = 0.3

pr = 0.5

(a)

pr
0 0.2 0.4 0.6 0.8 1

S
u
m

a
v
er
a
g
e
co
st

0

20

40

60

80

100

120 ρ̄ = 3.5

ρ̄ = 7

ρ̄ = 24

ρ̄ = 34

ρ̄ = 50

ρ̄ = 80

ρ̄ = 3.5

ρ̄ = 7

ρ̄ = 100

λ̄ = 36

λ̄ = 72

(b)

0
10

ρ̄
20

30020
λ̄

406080
0

0.5

1

C
a
ch
in
g
ra
ti
o

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

pr

S
u
m

a
v
e
ra
g
e
c
o
st

 

 

Myopic
DP

ρ̄ = 62, γ = 0.9

ρ̄ = 31, γ = 0.9

ρ̄ = 62, γ = 0.6

(d)

Fig. 1: Average cost versus ρ̄ for different values of λ̄ and pr (a). Average cost versus pr for different values of ρ̄, λ̄ (b). Caching ratio vs. ρ̄
and λ̄ for pr = 0.5 and s = r = 1 (c). Performance of DP versus myopic caching for λ̄ = 53 (d).

λft upon existence. Consider for example that the distribution of
rft can be parametrized by pfr which measures the “popularity” of
the content [11]. In such cases, the value function can incorporate
the popularity parameter as an additional input to yield V̄ f (sf , pfr ).
Consequently, the optimal decisions will depend not only on the cur-
rent requests and prices but also on the (current) popularity pfr which
will affect future requests. This indeed broadens the scope of the
proposed approach, since certain types of non-stationary distribu-
tions for rft can be handled by enabling the parameter pfr to (slowly)
vary with time.

4. NUMERICAL TESTS

In this section, the performance of the proposed approach for learn-
ing optimal fetch-cache decisions is assessed via numerical tests.
Cache and fetch cost parameters are drawn from uniform distribu-
tions with mean ρ̄f and λ̄f , respectively. Furthermore, the request
variable rf is considered to be Bernoulli with mean pfr , whose value
indicates the popularity of file f . The simulations are carried out for
a content of unit size, and can be readily extended to files of different
sizes. To help readability, we drop the superscript f in this section.

Fig. 1a plots the sum average cost C̄ versus ρ̄ for different val-
ues of λ̄ and pr . Parameter λ̄ is varied over {43, 45, 50, 58} for two
different values of popularity pr ∈ {0.3, 0.5}. As depicted, higher
values of ρ̄, λ̄, pr generally lead to a higher average cost. In partic-
ular, when ρ̄ � λ̄, caching is considerably cheaper than fetching,
thus setting at = 1 is optimal for most t. As a consequence, the to-
tal cost linearly increases with ρ̄ as most requests are met via cached
contents rather than fetching. Interestingly, if ρ̄ keeps increasing, the
aggregate cost gradually saturates and does not grow anymore. The
reason behind this phenomenon is the fact that, for very high values
of ρ̄, fetching becomes the optimal decision for meeting most file re-
quests and, hence, the aggregate cost does not depend on ρ̄ anymore.
While this behavior occurs for the two values of pr , we observe that
for the smallest one, the saturation is more abrupt and takes place
at a lower ρ̄. The intuition in this case is that for lower popular-
ity values, the file is requested less frequently, thus the caching cost
aggregated over a (long) period of time often exceeds the “reward”
obtained when (infrequent) requests are served by the local cache.
As a consequence, fetching in the infrequent case of rt = 1 incurs
less cost than the caching cost aggregated over time. To corroborate

these findings, Fig. 1b depicts the sum average cost versus pr for
different values of ρ̄ and λ̄. The results in the figure show that for
large values of ρ̄ fetching is the optimal action, resulting in a linear
increase of the total cost as pr increases. In contrast, for small values
of ρ̄ caching is chosen more frequently, resulting in a sublinear cost
growth.

To investigate the caching-versus-fetching trade-off for a broader
range of ρ̄ and λ̄, let us define the caching ratio as the aggregated
number of positive caching decisions (those for which at = 1)
divided by the total number of decisions. Fig. 1c plots this ratio for
different values of (ρ̄, λ̄) and fixed pr = 0.5. As the plot demon-
strates, when ρ̄ is small and λ̄ is large, files are cached almost all
the time, with the caching ratio decreasing (non-symmetrically) as ρ̄
increases and λ̄ decreases.

Finally, Fig. 1d compares the performance of the proposed DP-
based strategy with that of a myopic one. The myopic policy sets
at = 1 if λt>ρt and the content is locally available (either because
wt = 1 or because st = 1); and sets at = 0 otherwise. The results
indicate that the proposed strategy outperforms the myopic one for
all values of ρ̄, λ̄, pr and γ.

5. CONCLUSIONS AND FUTURE WORK

A wireless setup where an AP makes sequential fetch-cache deci-
sions based on dynamic user requests as well as costs was inves-
tigated. Critical constraints were identified, generic time-varying
prices were considered, and the cost aggregated across flows and
time instants was formed. The proposed DP problem was solved via
reinforcement learning where a value iteration algorithm (operating
on a reduced-version of the value function) was put forth. Prelimi-
nary simulations demonstrated the benefits of the proposed approach
and motivate additional work. Future research includes: design of
enhanced suboptimal schemes; particularization of the form of the
dynamic prices to account for specific relevant operating conditions
(including finite-size limited storage); and consideration of scenar-
ios where the distribution of the state variables is tracked and the
parameters describing such distributions are incorporated as inputs
of the value function.



6. REFERENCES

[1] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah,
“Wireless caching: technical misconceptions and business bar-
riers,” IEEE Communications Magazine, vol. 54, no. 8, pp.
16–22, Aug. 2016.

[2] P. Blasco and D. Gündüz, “Learning-based optimization of
cache content in a small cell base station,” in Intl. Conf.
on Communications, Sydney, Australia, June 2014, pp. 1897–
1903.

[3] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C.
Clancy, “Learning distributed caching strategies in small cell
networks,” in Proc. Intl. Symp. on Wireless Communications
Systems, Barcelona, Spain, Aug. 2014, pp. 917–921.

[4] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in
wireless networks,” IEEE Transactions on Wireless Communi-
cations, vol. 16, no. 2, pp. 1024–1036, Feb. 2017.

[5] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-aware
video caching through online learning,” IEEE Transactions on
Multimedia, vol. 18, no. 12, pp. 2503–2516, Dec. 2016.

[6] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Opti-
mal and scalable caching for 5G using reinforcement learning
of space-time popularities,” arXiv preprint arXiv:1708.06698,
2017.

[7] L. M. Lopez-Ramos, A. G. Marques, and J. Ramos, “Jointly
optimal sensing and resource allocation for multiuser inter-
weave cognitive radios,” IEEE Transactions on Wireless Com-
munications, vol. 13, no. 11, pp. 5954–5967, Nov. 2014.

[8] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource alloca-
tion and cross-layer control in wireless networks,” Foundations
and Trends in Networking, vol. 1, no. 1, pp. 1–144, 2006.

[9] T. Chen, A. G. Marques, and G. B. Giannakis, “DGLB: Dis-
tributed stochastic geographical load balancing over cloud net-
works,” IEEE Transactions on Parallel Distributed Systems,
vol. 28, no. 7, pp. 1866–1880, July 2017.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction, MIT press Cambridge, 1998.

[11] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker, “Web caching and zipf-like distributions: Evidence
and implications,” in Intl. Conf. on Computer Communica-
tions, New York, USA, March 1999, pp. 126–134.


