Optimal Dynamic Proactive Caching via
Reinforcement Learning

Alireza Sadeghi, Fatemeh Sheikholeslami, and Georgios B. Giannakis
Dept. of Elec. & Comput. Engr. and Digital Technology Center, University of Minnesota, USA
{sadeghi, sheik081, georgios} @umn.edu

Abstract—Storage of popular reusable data at the edge of
a heterogeneous wireless cellular network (HetNet) offers the
premise of shifting the load on low-rate, unreliable backhaul
links during peak traffic hours to off-peak periods. In order to
intelligently capitalize on the limited available caching capacity, a
content-agnostic small base station (SB) needs to proactively learn
what and when to cache. An important challenge in a realistic
network scenario is the spatio-temporal dynamics, inherent to
the unknown content popularity profiles. To cope with such
dynamics, local and global Markov processes are exploited to
model user demands, whose structure and transition probabilities
are assumed unknown. A reinforcement learning framework is
put forth, through which a cache control unit (CCU) at the SB
can continuously learn, track, and possibly adapt to the underlying
dynamics of user demands. A Q-learning algorithm is developed
to solve the proposed reinforcement learning task, unraveling
the optimal caching policy in an online fashion. Simulated tests
demonstrate the effectiveness of the proposed proactive caching
scheme under spatio-temporal dynamic demands.

Index Terms—Proactive caching, dynamic popularity profile,
dynamic user demand, reinforcement learning.

I. INTRODUCTION

The advent of smart phones, tablets, mobile routers and
a massive number of devices connected through the Internet
of Things (IoT) have led to an unprecedented growth in
data demand. Increased number of users undergoing behav-
ioral changes towards video streaming, web browsing, so-
cial networking and online gaming, have urged providers to
pursue new service schemes under which acceptable quality
of experience (QoE) can be provided. Among the emerging
solutions, one promising technique is to densify the network
by deploying small pico- and femtocells, each of which will
be serviced by a low-power, low-coverage small base station
(SB). In this structure, known as heterogeneous cellular net-
works (HetNet), SBs are connected to the backbone network
by a cheap ‘backhaul’ link. While boosting the networking
capacity per area by substantial reuse of scarce resources, e.g.,
frequency, the HetNet architecture is restrained by its low-rate,
unreliable and highly-delayed backhaul links [1].

During peak traffic periods with increased electricity prices,
weak backhaul links can easily become congested, leading
to low QoE for end users. One approach for tackling this
limitation is to shift the excess load from peak traffic to the
off-peak periods. Caching in particular achieves this goal by
fetching the “anticipated” popular contents, i.e., reusable data,
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during off-peak periods, storing this data in memory-enabled
SBs, and reusing them during peak traffic hours [2], [3]. In
order to utilize the caching capacity intelligently, a content-
agnostic SB must exploit available observations to learn what
and when to cache. To this end, machine learning tools can
provide Next-G cellular networks with proactive caching, in
which a “smart” caching control unit (CCU) can learn, track,
and possibly adapt to the dynamics of user demands [2], [4].

Existing efforts in proactive caching are mainly focused
on enabling SBs to learn unknown static content popularity
profiles, and cache the most popular ones accordingly. Multi-
armed bandit formulation [5], its distributed and convexified
versions [6], and utilization of prior information through
transfer-learning [7], [8], are among such recent efforts. Nev-
ertheless, static modeling of popularity profiles is unrealistic
as it neglects the spatio-temporal dynamics of demands. For
instance, the emergence of new contents such as news or the
next El Clasico, along with popularity decay of relatively older
contents cannot be captured by such models. Furthermore, due
to the geographical and temporal variability of cellular data
traffic, global popularity profiles may not always be a good
representative of local demands. Targeting such considerations,
temporal dynamics of user demands have been modeled via
Ornstein-Uhlenbeck process in [9] and tackled through a
mean-field game-theoretic approach. A context-aware proac-
tive caching is studied in [10], [11], where dynamic user
demands are mapped into a pool of prototypical trends.

The present paper introduces a novel approach to account
for spatio-temporal variability of demands casting the task in a
reinforcement learning (RL) framework. Under Markovianity
of the underlying dynamics, RL-enabled caching can learn
the unknown behavior of the network in terms of demand
dynamics and time-varying costs, and consequently unravel
the optimal “caching policy.” The proposed approach is also
capable of differentiating between global and local popularity
patterns, and adapting the caching policy of the local SBs
accordingly. With proper selection of updating stepsize, the
framework is also capable of adaptively tracking demands
driven by non-stationary Morkov chains.

The rest of the paper is organized as follows. System model
and problem formulation are the subject of Section II. Section
IIT casts the problem in an RL framework, in which an online
solver based on ()-learning is introduced. Section IV presents
simulations for the proposed proactive caching approach, and
Section V delivers concluding remarks.



II. SYSTEM MODEL AND PROBLEM FORMULATION

In order to model a local section of a HetNet, let us consider
a single SB with a low-bandwidth, high-delay, unreliable
backhaul link. The SB is responsible for providing a high
QoE for end users within its coverage area, and is equipped
with a storage capacity of M units of content. Furthermore,
suppose that the network is a time-slotted system with time
intervals ¢ = 1,2,.... At the beginning of each interval, the
CCU-enabled SB is to “intelligently” select M files from the
total number of F' > M available ones at the backbone, and
cache those for the duration of the upcoming time interval .
For simplicity, here we assume all contents are of unit size.
Let us define the ' x 1 caching-indicator action of CCU at
time interval ¢ by a(t) € A, where A is the set of all feasible
actions defined as A := {ala € {0,1},a’1 = M}. That is,
ay(t) = 1 indicates that file f is cached for the duration of
time interval ¢, and a(t) = 0 indicates otherwise.

During time interval ¢, every local user may request a subset
of available files. For every requested file, if the SB has stored
the content in its cache memory, it will simply transmit the file
to the user, in which case the SB incurs no cost. Conversely,
if the requested content is not available in cache, the SB must
fetch its content through its low-rate backhaul link from the
backbone network, thus incurring certain cost.

According to the received requests by the end of time
interval ¢, the CCU can compute the local F' x 1-vector of
content popularity profile py(¢), whose f-th entry indicates
the expected local demand of file f, that is

# of local requests for file f at time slot ¢

[pL(t)} =

f Total # of local requests at time slot ¢

Moreover, suppose that the backbone network obtains the F'x 1
global popularity profile p(¢) similarly, and transmits that to
all the CCUs.

Let us now define the system state at the end of slot ¢ as

s(t) == [p&(t). L (t),a’ (t) (1)

In the proposed proactive caching, the goal is to find the
optimal action for the next time interval, namely a*(¢) on
the fly, as the current state s(t) and associated costs are
observed. A schematic of the proposed procedure is depicted
in Fig. 1, and explicit expression of the incurred cost and
analytical formulation of the objective are discussed in the
ensuing subsection.

]

A. Cost functions and caching strategies

Efficiency of a caching algorithm is measured by how well
it utilizes the available caching capacity in the local SB to
store the most popular files, and how often the demand is met
via fetching through the more expensive backhaul link. There
are multiple types of costs that a CCU may incur during a
time slot ¢.

The first type of cost pertains to fetching the selected files
and refreshing the cache, denoted by ¢ ,(a(t),a(t — 1)). In
its most general form, c¢; is a function of the new action
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Fig. 1. Schematics of the proposed system model for a caching-enabled SB
in a time-slotted network

a(t), and available contents at the cache, meaning those cached
according to the previous caching action a(t — 1). Note that
the subscript ¢ is to capture the time-varying nature of file
retrieval cost, which can occur due to possible congestion in
the backhaul connection or electricity price surges. A viable
choice of ¢1 +(-) would be ¢1 ¢ (a(t),a(t—1)) := Ay a’ (£)(1—
a(t—1)), which takes into account possible overlaps between
a(t — 1) and a(t), and essentially counts the number of files
to be fetched and cached prior to time interval ¢ that were not
stored according to previous action a(t — 1).

The second type of cost is incurred during the operational
phase of time slot ¢ for meeting the users’ demands. Denoting
this type of cost by ¢z ;(s(t)), a proper choice must: i) penalize
requests for cached files significantly less than the ones for
files not stored, and ii) be a non-decreasing function of
popularities [pz]s. Here for simplicity, let us assume that
transmission cost of cached files is negligible, and define
cat(s(t)) == Aa4(1 — a(t)) "pL(t), which solely penalizes
the not-cached files proportional to their local popularities.

The third type of cost considered captures how “different”
the caching action a(t) is from the global popularity profile
pac(t). Indeed, it is prudent to consider that the global popu-
larity of files is a good indication of what the profile will look
like in the near future; thus, keeping the caching action close
to pg(t) can reduce future possible costs of caching. These
considerations suggests the third type of cost to be modeled as
cz.(s(t)) := X34 (1 — a(t)) "py(t), penalizing the not-cached
files proportional to their global popularities.

Upon taking action a(t), and after the global and lo-



cal popularity profiles pg(t) and pr(t) are revealed, the
state of SB is updated as s(t), and conditional cost
Cy(s(t — 1),a(t) | pc(t), pL(t)) is incurred. Considering the
peak and off-peak retrieval costs, and time-invariant scenarios
At = A1, Ao = Ag, and A3, = A3, the overall conditional
cost is

C(s(t —1),a(t) | pa(t), pL(t))
i=c1(a(t),a(t — 1)) +c2 (s(t)) + cs(s(t))
=Ma' (t)(1—a(t—1))+ X (1 —a(t) 'pLt)
+A3(1 —a(t) "py(t). )

Parameters A\; and )y, and A3 control the proportional
significance of different costs on SB. In general we have
A1 < Ao, while A3 is tuned properly to match the interest in
(not)following global popularities in the network. For instance,
if the goal is to solely keep track of the SB’s connected users,
one can set A3 = 0, while A3 > 0 is desirable for networks in
which users have high mobility and may change SBs rapidly.

Given the random nature of user demands in local and global
scales, and possible randomness in a(t), the introduced cost
is a random variable, whose mean is given by

E[C( (t—1),a(t))]

pa(t),p(t),a(t) [Ce(s(t — 1), a(t) | pa(t), PL(?))]
=ME [T ()1 —-alt—1)] + ME[(1-a(t) pL(t)]
+ A E[(1—a(t) "py(t)] 3)

where the expectation is taken with respect to the randomness
in pr(t), pc(t), and a(t).

To outline the proposed Q-learning approach, let us define
policy function 7 : § — A, which maps any given state s €
S into the action set. Thus, under policy 7(-), for any state
s(7), caching is carried out via action a(7 + 1) = 7(s(7))
dictating what files should be cached in the (7 4 1)-st time
slot. Consequently, caching performance is measured via the
state value function defined as

Z,Yt TC

which is in fact the total cost incurred in an infinite time
horizon, discounted by factor v € (0,1). Since taking action
a(t) partially controls the state of SB in the next time slot,
future costs always are effected by previous actions. Discount
factor v captures this effect, whose tuning trades off current
versus future revenues. Moreover, vy can also capture modeling
uncertainties, as well as imperfections, or dynamics. For
instance, if there is ambiguity about future rewards, or if the
system changes very fast, setting 7y to a small value enables one
to prioritize current costs, whereas in a stationary setting one
may prefer to carefully consider future revenues by a larger .
The objective of this paper is to find the optimal policy 7*
such that the cost of initial state sg is minimized, that is,

So) - ®)

lim E

T—o0

Vi (s(1)) = m(s()| @

7" = argmin V; (
mell

where II denotes the set of all feasible policies. In the ensuing
section, we study the Bellman equations which serve as policy
optimality conditions, and introduce the proposed ()-learning
approach for tackling (5) via reinforcement learning.

IIT. BELLMAN OPTIMALITY CONDITIONS

By modeling py(¢) and pg(¢) as stationary Markov pro-
cesses, and defining [P%|ss as the transition probability of
going from the current state s = s(7) to the next state
s’ = s(7 + 1) under action a, that is,

|s(r) = s,7(s(r)) = a}

the state value function in (4) can be rewritten in a recursive
fashion as

Va (s) = E[C (s, 7(s))]

P(s’;s,a) :=Pr{s(t+1)=5¢

+7 Y P(sss,m(s)Va (8) Vs,

s'eS

(6)
The set of linear equations in (6) are known as Bellman
equations, and express the value of a state as the superposition
of immediate cost plus a discounted version of future state
values. Were the transition probabilities known, the state value
function for a given policy 7 could be found by solving the
equations in (6) with complexity O(|S|?).

In the setting of interest however, the transition probabilities
P(s’;s,a) are unknown. The class of adaptive dynamic pro-
gramming algorithms (ADP) aims at learning the transition
probabilities P(s’;s,a) for all s;s’ € S and a € A [12].
Unfortunately, such an approach is often very slow as it
estimates a huge number of |S|?x|.A| parameters, which may
not all be necessary. On the other hand, another class of
solvers, known as (Q-learning algorithms, aim at learning the
optimal policy 7* and state-value function in parallel on the
fly as new observations become available; see e.g., [12].

In order to utilize )-learning solvers, let us first define
the action-state value function QQ(s,a) under a given policy

() as

Qr (s,a) :=E[C (s,a))] +~ Z P(s';s,a)V. (') (7)
s'eS

which basically is the instant cost of taking action a when
in state s, followed by the discounted value of the following
states given the future actions are taken according to policy 7.
Defining Q*(s,a) := Q- (s,a) and V*(s) := Vi«(s), and
using the results in [12], the Bellman equation for the optimal
policy 7*(-) implies

@ () =E[C(s.0)] +7 ) P(¥is,8) min 0" (<)
®)
and the optimal policy is given by
7 (s) = argmin Q*(s,a), VseS. )
a

Furthermore, the Q-function and the state value function V (-)
under the optimal policy 7* are related by

V*(s) = mainQ*(s,a). (10)



Algorithm 1: Proactive caching via )-learning at CCU

1 Initialize s(0) randomly and Q(S, a)=0Vs,a
2 for t=1,2,... do
3 Take action a(t) chosen probabilistically by

a(t) = {

argminQ (s(t —1),a) w.p. 1—¢

random a € A W.p. €

Utilizing the optimality conditions in (8)-(10), an online Q-
learning-based solver for finding {7*(s), Q*(s,a), V*(s)} is
introduced in the ensuing subsection.

A. Optimal proactive caching via Q-learning

Q-learning is an online reinforcement learning method to
jointly estimate the optimal state-action pair value function
Q*(s,a) Vs,a, and learn the optimal policy 7*. The pro-
posed @-learning procedure for proactive caching is out-
lined in the pseudocode tabulated as Algorithm 1. In this
algorithm, the agent updates its estimated Q(s(t),a(t + 1))
as C'(s(t),a(t+1)|pg(t+1),pL(t+ 1)) is observed. That
is, given state s(t), Q-learning takes action a(t + 1), ob-
serves the new state s(t + 1), incurs immediate cost of
C(s(t),a(t+1)|pg(t+1),pL(t+ 1)), and finally updates
its estimated Q(s(t),a(t + 1)) while keeping the rest of the
entries in Q(, -) unchanged. Regarding convergence of the Q-
learning algorithm, i.e., Q (-,-) — Q* (-, ), a necessary condi-
tion is that all state-action pairs must be continuously updated.
Under this assumption and a variant of the usual stochastic
approximation conditions, Q (-,-) converges to Q* (-,-) with
probability 1 [12].

To meet the former condition, Q-learning utilizes a proba-
bilistic exploration-exploitation approach in action selection.
That is, at time ¢, exploitation happens with probability 1 — ¢,
where action a(t) = arg minae 4 Q(s(t — 1), a) as the antic-
ipated optimal action is chosen, and the exploration happens
with probability ¢, where SB takes a random exploratory ac-
tion a € A. Parameter ¢, tunes exploration versus exploitation,
guaranteeing the necessary condition for convergence. During
initial iterations or when the CCU observes considerable shifts
in content popularities, setting ¢; high promotes exploration in
order to learn the underlying dynamics. On the other hand, in
stationary settings and once “enough” observations are made,
small values of ¢; promote exploiting the learned Q(, -) by
taking the estimated optimal action arg ming Q (s(t),a).

4 | pr(t) and pg(t) are revealed
5 Set s(t) = [pr(t), pa(t), a(t)]
6 Incur cost C(s(t — 1), a(t) | pc(t), pL(t))
7 Update
Q (s(t—1),a(t)) « (1 - Bt)@t—l (s(t —1),a(t)) + B
8 C(s(t = 1),a(t)| po (1), pL(1)) + 7 min Qr—1 (s(t), a)

TABLE I
COST PARAMETERS

Scenario A1 A2 A3

(s1) 10 600 1000

(s2) 600 10 1000

(s3) 10 10 1000

(s4) 0 1000 0

(s5) 0 0 1000

IV. NUMERICAL TESTS

In this section, the performance of the proposed proactive
caching algorithm is assessed via numerical tests. We have
simulated a setup with the total of F* = 10 contents and a
caching capacity of M = 3 at the local SB. Moreover, global
popularity profile pa(t) is modeled via a two-state Markov
chain, represented by two popularity profiles pg) and pg),
each modeled with a Zipf distribution with parameters 1 = 1
and 7§ = 1.5, respectively. That is, for state i € {1,2}, the
F' contents are assigned a random ordering of popularities
and then sorted accordingly in a descending order. Given this
ordering and the Zipf distribution parameter niG , the popularity
of the f-th content is equal to

@] _ 1
{pG }f e ZF: l,,lg"

=1

for i1 =1,2.

The summation term in the denominator normalizes the com-
ponents into a valid probability mass function, and parameter
n¢ > 0 controls the skewness of the popularities. Specifically,
n¥ = 0 yields a uniform spread of popularity among the
contents, while a large value of ¢ generates more skewed
popularities.

The Markov transition probabilities are given by the transi-

tion matrix
. T1,2
T = =
72,2

where 7; ; indicates transition probability form state 7 to j,
1,7 € {1,2}.

Similarly, we consider a two-state Markov chain with Zipf
parameters 17 = 1.2 and 4 = 1.7 to model the local content
popularities. The state transition matrix 7' for local popularity

profile is set as
/
T1,2 } _
! =
T2,2

|

In the utilized Q-learning algorithm, [3; is set to a constant
B = 0.8, and the exploration-exploitation parameter ¢; = 0.05.
The proposed algorithm is run with different cost parameters
reported in table. I and the performance is averaged over 1000
independent realizations of the system for each setting.

Fig. 2 plots the evolution of cost versus iteration index for
the proposed approach, demonstrating its convergence to the
cost of optimal offline policy derived with known transition
probabilities. Slower convergence under (sl) is because of
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the relatively high local and global mismatch cost parameters
which necessitates learning both the global and local popular-
ity dynamics in order to find the optimal policy. In contrast,
under (s2) Ay corresponding to local popularity is low, thus
influence of local popularity on optimal policy is reduced, and
faster convergence is obtained. Finally setting A; = 10, further
reduces cache refreshing cost and more importance falls on
learning global popularity Markov chain, and a slightly faster
convergence is obtained compared to (s2).

Furthermore, Fig. 3 plots the percentage of requests served
directly via the locally-available cached contents. Observe
that penalizing local-popularity mismatches in (s4) forces the
caching policy to adapt to local request dynamics, while (s5)
prioritizes tracking global popularities, leading to a lower
cache hit rate.

All in all, the conducted simulation tests illustrate the
significance and effectiveness of the proposed online RL-
enabled caching, implemented locally in the SBs. To endow
the algorithm with scalability, and thus enable implementation
in real network scenarios involving large-scale Markov chains
where the size of contents can be very large, function ap-

proximation schemes can be considered instead. An extended
version of this work focusing on linear function approximation
can be found in [13].

V. CONCLUSION

The present work addresses caching in Next-G cellular
networks, in which local and global content popularity profiles
exhibit spatio-temporal dynamics. In this context, proactive
caching is accommodated by casting the problem in a rein-
forcement learning framework, for which an online solver with
optimality guarantees is proposed. Distributed and scalable
approaches for tackling the curse of dimensionality, e.g.,
parametric and non-parametric techniques for Q-function ap-
proximation, are among the future directions we will pursue.
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