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ABSTRACT

In this paper, we describe a trilogy of Massive Open Online Courses

(MOOCs) that together expose knowledge and skills of fundamental

importance to HPC. Linear Algebra: Foundations to Frontiers (LAFF)

covers topics found in an introductory undergraduate course on

linear algebra. It links abstraction in mathematics to abstraction in

programming, with many enrichments that connect to HPC. LAFF-

On Programming for Correctness introduces how to systematically

derive programs to be correct. Of importance to HPC is that this

methodology yields families of algorithms so that the best one for a

given situation can be chosen. Programming for HPC (working title)

is in the design stage. We envision using a very simple example,

matrix-matrix multiplication, to illustrate how to achieve perfor-

mance on a single core, on multicore and many-core architectures,

and on distributed memory computers. These materials lower bar-

riers into HPC by presenting insights, supports, and challenges to

novices and HPC experts while scaling access to the world.

CCS CONCEPTS

• Mathematics of computing → Mathematical software per-

formance; • Social and professional topics→Computing ed-

ucation;
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1 INTRODUCTION

When distributed memory parallel computers �rst became the

fastest supercomputers in the world, almost every e�ort to par-

allelize and optimize a computational application was a “one-o�”

customization. These were the early days of exploration to gain the

insight that underlies what we call the Science of High-Performance

Computing. Eventually, this exposed patterns and those patterns

then led to conjectures about general principles. Once these princi-

ples were further tested, what was an art became a science. Thus,

science organized knowledge into a systematic approach. By shar-

ing the method behind the mystique, we can increase the accessi-

bility of the �eld. Massive Open Online Courses (MOOCs) provide

a vehicle to make the world our audience.

Our expertise is in the area of high-performance dense linear

algebra software development. In the early 1990s, we made con-

tributions to the distributed memory parallelization of individual

operations in this domain. Often, others would approach us with

an algorithm that needed to be parallelized and eventually pat-

terns emerged behind the solutions that we found. Some of the key

insights gained are:

• When presenting algorithms, abstract away from the de-

tails regarding data storage and mapping of data to pro-

cessing nodes. This led to a new notation for expressing

dense linear algebra algorithms that we call the FLAME no-

tation [13, 20, 25], illustrated for LU factorization algorithms

in Figure 1(left) and 2(left).

• When representing algorithms in code, use Application Pro-

gramming Interfaces (APIs) – what we now would call do-

main speci�c languages, to implement libraries in an exist-

ing language. The API should closely mirror the notation

with which algorithms are presented, hiding details of data

storage and/or distribution, as illustrated in Figures 1(right)

and 2(right).

• When optimizing and/or parallelizing, don’t automatically

start with the legacy solution, which may or may not suit the

target situation well. Instead, derive families of algorithms

from the speci�cation of the operation and choose the “best”

(by some measure) as your point of departure.

• When implementing your software, layer carefully. Leverage

abstractions and isolate architecture-speci�c optimizations.

• When sharing gained insight, use the simplest example that

illustrates it. This broadens the audience and helps draw

novices into the �eld.
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The �rst bullets help make knowledge systematic. The last is our

guiding principle when sharing the resulting science.

By making HPC accessible, we can open the �eld so that its

practice is not restricted to the “high priests of high performance.”

MOOCs help draw a broad audience into HPC.

2 THE FLAME NOTATION

Dense linear algebra algorithms are traditionally presented as op-

erations performed on the elements of the arrays that store vectors

and matrices. Mapping algorithms to distributed memory architec-

tures added the need to describe the mapping of array elements

and operations to processors. These details quickly get in the way

of high level thinking, and stand in the way of democratizing HPC.

The solution? An alternative notation that abstracts away from

these details by closely mirroring how algorithms are naturally

explained on, for example, a chalkboard.

Let us examine a concrete example. In a linear algebra course, a

student will be taught Gaussian elimination and how it relates to LU

factorization. This is typically achieved by linking systems of linear

equations to matrices and then to the operations performed with

individual entries in those matrices. In a numerical linear algebra

course, algorithms for LU factorization are explained by starting

with the speci�cation: A = LU . Partitioning these matrices yields
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12
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™Æ̈ = ©≠́ 1 0

l21 L22
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This then leads to the observation that

• υ11 and u
T

12
respectively equal α11 and a

T

12
;

• l21 := a21/α11 can overwrite a21;

• A22 can be updated with the rank-1 updateA22 − l21u
T

12
; and

• L22 andU22 are computed as the LU factorization of A22.

The explanation is in terms of submatrices instead of individual

entries. On a chalkboard this is accompanied by drawing a square

that represents the matrix, and lines that partition this matrix into

submatrices.

While this is how the algorithm is elegantly explained, a typi-

cal numerical linear algebra text then presents the algorithm by

translating the submatrices into index ranges for the parts of the

array where the submatrices are stored: A22 − a21a
T

12
in “MATLAB

notation” becomes

A( j+1:n, j+1:n ) - A( j+1:n, j ) * A( j, j+1:n ),

where j is the index of the “current column” in the matrix. We

argue that there is a disconnect between the notation used to explain

how to obtain the algorithm and the notation used to express the

algorithm. This disconnect is much more pronounced for so-called

blocked algorithms that can attain high performance.

The algorithm, expressed with the FLAME notation that was

developed in our research and is used in our teaching, is given

in Figure 1. This notation is meant to capture how the algorithm

progresses through the matrix. We e�ectively used this notation to

bring freshman with no background in linear algebra up to a level

where they could get involved in our research on high-performance

linear algebra software development. Thus, the notation is valu-

able when introducing more advanced topics to those who have

experience with linear algebra and it can be used to �rst introduce

the subject. It becomes core to how our MOOCs enable abstract

thinking of value to HPC.

3 A TRILOGY OF MOOCS

We now describe a trilogy of MOOCs, two of which are currently

o�ered on the edX platform and a third one that is in the plan-

ning stages. The courses are by no means a sequence: They can

be taken individually and/or in any order. Someone with no or

limited background in linear algebra would want to start with the

�rst. What all three have in common is that they use linear algebra

(matrix computations) as a means by which to illustrate topics of

importance to HPC, thus providing an entry path into HPC.

3.1 Linear Algebra: Foundations to Frontiers

Linear Algebra - Foundations to Frontiers (LAFF) [21] is a MOOC

that has been o�ered regularly on the edX platform starting in

Spring 2014. It is a �fteen week course with a content and level that

falls somewhere between a �rst course on matrix computations

(what we would consider a "how to" course) and a �rst course on the

theory of linear algebra (which is often a �rst exposure to proofs in

a math department). What is di�erent is that it links abstraction in

mathematics (notation and proofs) to abstraction in programming

(APIs). It includes enrichments related to HPC, which makes the

course of interest to learners with varying levels of background,

ranging form high school students to Ph.D.s in related �elds. Many

use it to review.

3.1.1 Basic idea. The class focuses on linking the mathematics

with algorithms and their instantiation in code. E�ective reasoning

about algorithms requires abstraction. For this reason, the course

is structured, and the materials sca�olded, to e�ciently lead the

learner from the concrete stage of learning to the more abstract

stage of learning. Towards this purpose, the layering in the mathe-

matical theory is linked to the layering in the implementation. The

notation described in Section 2 supports this.

3.1.2 Links to HPC. Starting in the �rst week, the course stresses

thinking of vectors and matrices in terms of subvectors and sub-

matrices. This is accomplished by carefully sca�olding exercises to

lead the learner from concrete examples to abstract notation and

thinking. Operations with vector and matrix elements are linked

to algorithms cast in terms of subvectors and submatrices, using

the notation illustrated in Figure 1(left). This is further reinforced

by having the learners implement various operations using the

API illustrated in Figure 1(right), with MATLAB Online1. The rigid

structure of the algorithms and their implementation allows a code

skeleton to be generated from a webpage2 menu illustrated in Fig-

ure 3. The code implemented by the learner, written in MATLAB,

inherently does not attain high performance. However, the code is

1MathWorks gives learners access to a license to MATLAB Online for the duration of
the course.
2 http://www.cs.utexas.edu/users/�ame/Spark/
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Algorithm: [A] := LU_���_���5(A)

A →

 
AT L ATR

ABL ABR

!
where AT L is 0 × 0

whilem(AT L ) < m(A) do

 
AT L ATR

ABL ABR

!
→
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a
T

10
α11 a

T

12

A20 a21 A22

™ÆÆÆ̈ where α11 is 1 × 1

a21 := a21/α11

A22 := A22 − a21a
T

12

 
AT L ATR

ABL ABR

!
←

©≠≠≠́
A00 a01 A02

a
T

10
α11 a

T

12

A20 a21 A22

™ÆÆÆ̈
endwhile

f u n c t i o n [ A_out ] = LU_unb_var5 ( A )

[ ATL , ATR , . . .
ABL , ABR ] = FLA_Part_2x2 ( A , . . .

0 , 0 , ' FLA_TL ' ) ;
wh i l e ( s i z e ( ATL , 1 ) < s i z e ( A , 1 ) )

[ A00 , a01 , A02 , . . .
a10 t , a lpha11 , a12 t , . . .
A20 , a21 , A22 ] = . . .
FLA_Repar t_2x2_to_3x3 ( ATL , ATR , . . .

ABL , ABR , 1 , 1 , ' FLA_BR ' ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
l a f f _ i n v s c a l ( a lpha11 , a21 ) ;
l a f f _ g e r ( 1 . 0 , a21 , a12 t , A22 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
[ ATL , ATR , . . .

ABL , ABR ] = . . .
FLA_Cont_with_3x3_to_2x2 ( A00 , a01 , A02 , . . .

a10 t , a lpha11 , a12 t , . . .
A20 , a21 , A22 , . . .
' FLA_TL ' ) ;

end
A_out = [ ATL , ATR

ABL , ABR ] ;
end

Figure 1: Left: “Right-looking” algorithm (unblocked Invariant 5) for overwriting A with its LU factorization. Right: Corre-

sponding code using the FLAME@lab API for MATLAB.

structured as it would be coded in a higher performing language

like C [3].

The students internalize these abstractions in the �rst �veWeeks,

duringwhich they are exposed to the fundamental vector operations

(scaling, dot product, “axpy”). In Week 2, linear transformations are

introduced, which are then linked to linear combinations of vectors

and ultimately to matrix-vector multiplication. Along the way, the

layering in these mathematical operations is linked to the layering

in the implementation: matrix-vector multiplication in terms of dot

products of rows with the vector and in terms of axpy operations

with the columns of the matrix.

Composition of linear transformations is linked to matrix-matrix

multiplication. By Weeks 4 and 5, the learner discovers how this

operations, C = AB can be expressed as multiple matrix-vector

multiplications (one per column ofC and B) or a sequence of rank-1

updates. How this is linked to the Basic Linear Algebra Subpro-

grams (BLAS) interface [9, 10, 17] and impacts performance is the

topic of various enrichments in those weeks. This part of the course

�nishes with an important enrichment on the basic principles be-

hind high-performance implementation of matrix-matrix multipli-

cation, previewing a major topic of the third MOOC discussed in

Section 3.3.

A typical introduction to linear algebra starts with solving linear

systems. In this course, we reach this topic byWeek 6. Vector spaces,

low rank approximation and eigenvalue problems (diagonalization)

are some of the topics that round out the course. Having instilled the

ability to think in terms of submatrices and subvectors, the learner is

quickly led from concrete examples to abstract thinking in terms of

Gauss transforms, and eventually to LU factorization. Importantly,

they are introduced to the algorithm in Figure 1(left) and implement

it as in Figure 1(right). Notice again that the algorithm is expressed

in terms of basic linear algebra operations: scaling of a vector (a21 :=

a21/α11) and rank-1 update (A22 := A22 − a21a
T

12
. A discussion

of a high-performance blocked version of the algorithm is in the

enrichment of that week.

The point: within the �rst six weeks of a �rst course on linear al-

gebra, the learner is already exposed to abstraction, implementation,

and HPC issues.

3.2 LAFF-On: Programming for Correctness

Correctness is of fundamental importance to programming. Many

who develop software approach correctness instinctually, building

on experience and ironing out the kinks by “debugging”. As Dijkstra

pointed out in his Turing Award lecture [8]:

“The only e�ective way to raise the con�dence level of

a program signi�cantly is to give a convincing proof

of its correctness. But one should not �rst make the

program and then prove its correctness, because then

the requirement of providing the proof would only

increase the poor programmer’s burden. On the con-

trary: the programmer should let correctness proof

and program grow hand in hand.”

This raises a number of questions: How does one prove a program

correct and, more importantly, how does one derive a program

hand in hand with its correctness?

For many HPC applications, including dense matrix computa-

tions, implementations of key operations are loop-based. Classic

techniques developed in the 1960s by Dijkstra and his contempo-

raries use the concept of a loop invariant to prove a loop correct

using the Principle of Mathematical Induction (PMI). “LAFF-On Pro-

gramming for Correctness” [22] was developed to teach this and

illustrate its importance to programming in general and HPC in

particular.

3.2.1 Basic idea. The key to proving a loop-based program cor-

rect is the loop invariant. It is a condition that must hold before and
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Step Algorithm: A := LU_���_���5(A)

1a A = bA
4 A →

 
AT L ATR

ABL ABR

!
where AT L is 0 × 0

2
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!
=
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3 whilem(AT L ) < m(A) do

2,3
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{L\U }T L UTR

LBL bABR − LBLUTR

!

∧

LT LUT L = bAT L LT LUTR = bATR
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endwhile

2,3

 
AT L ATR

ABL ABR

!
=

 
{L\U }T L UTR

LBL bABR − LBLUTR

!

∧

LT LUT L = bAT L LT LUTR = bATR
LBLUT L = bABL

∧¬(m(AT L ) < m(A))

1b A = L\U ∧ LU = bA
Figure 4: Derivation of unblocked Variant 5.

Now, the algorithm can be systematically derived from the loop

invariant, �lling in the “worksheet” in Figure 4 in the order indicated

in the column labeled “Step”. Better yet: the loop invariant can

be systematically derived from the speci�cation of the operation

(details in [23]). Best yet: One can systematically derive a number

of loop invariants for a given operation, which then yield a family

of algorithms. For example, the loop invariant

©≠́ AT L ATR

ABL ABR

™Æ̈ = ©≠́ {L\U }T L bATR
LBL

bABR

™Æ̈

∧

bAT L = LT LUT LbABL = LBLUT L

yields the so-called left-looking blocked algorithm in Figure 2(left).

Thus we achieve Dijkstra’s goal of deriving the algorithm hand-in-

hand with its proof of correctness.

As in LAFF, we use the API for MATLAB3 illustrated in Fig-

ures 1(right) and Figure 2(right) so that the correctness of the algo-

rithm implies the correctness of the implementation.

3.2.2 Links to HPC. E�ective mapping of algorithms to archi-

tectures starts with choosing or discovering an algorithm that maps

well to the given architecture. For dense linear algebra, how much

data movement between memory layers is incurred by an algorithm

and howmuch parallelism it exhibits are key to its ability to achieve

high performance.

With this in mind, the key insights to which learners are brought

to light by this MOOC are:

• For those who have not yet gained experience, it exposes the

system behind algorithm development and programming.

• Experienced software developers for HPC often code based

on experience (intuition) rather than formal training. The

MOOC exposes such people to the formal thinking that un-

derlies their intuition.

• Optimizing for a new architecture often starts with a given

implementation. A search for an entirely new algorithm

then only commenses when the given implementation can-

not be easily “morphed” into one that maps well to the ar-

chitecture. Formal derivation yields families of algorithms

from which the most suited can be chosen. For example,

a blocked version of the algorithm in Figure 1(left) maps

well to distributed memory architectures [5, 24, 34]. The one

given in Figure 2(left) is well-suited for out-of-core com-

putation, where the data resides in a very slow layer of

memory [14, 16, 28, 29, 32].

• Abstraction is the key to keeping algorithm development

and coding manageable.

• While the course uses MATLAB to illustrate how algorithms

can be translated into code, a similar style of coding can

target the C programming language (as we do in practice

for our lib�ame dense linear algebra library [3, 36, 37]), as is

discussed in enrichments in the course.

3.3 Programming for HPC

Online resources for HPC are an attractive way of scaling up tuto-

rials given by, for example, supercomputing centers. There are free

online materials available, including articles [7, 11, 15, 38, 39, 41],

wikis [18, 35], free electronic books [40], and MOOCs. Some target

foundational topics on HPC [2, 19, 42] while others target HPC for

speci�c domains [26].

We are in the process of designing a third MOOC that exposes

the learner to issues that were crucial to our own success in HPC.

We envision using a simple example, matrix-matrix multiplication,

to illustrate fundamental concerns when optimizing and/or paral-

lelizing scienti�c computing applications. In addition to the skills

that are of importance to HPC that can be demonstrated through

such a study, what we hope the learner will take away is a deep

understanding of the fact that success in HPC depends on deriving

3 MathWorks gives learners access to a license to MATLAB Online for the duration of
this course as well.
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an entire space of solutions for computing a given operation so

that a member in that space that has desirable (performance and/or

space and/or power) properties can be chosen. This is captured by

a quote attributed to Dijkstra:

“Always design your program as a member of a whole

family of programs, including those that are likely to

succeed it.”

3.3.1 The basic idea. Optimization for HPC platforms starts

with optimization for a single core and multicore processor. Multi-

core processors may be the end target, or they form the building

blocks for nodes of a distributed memory architecture when that is

the ultimate goal.

A vehicle that is often used to illustrate the basic ideas behind

optimizing for a core and multiprocessor is matrix-matrix mul-

tiplication (����) [4, 7, 41]. On the other end of the spectrum,

parallelizing for a distributed memory architecture is also often

illustrated with matrix-matrix multiplication. At all levels, it is how

to reduce data movement between memory layers and between

nodes that is key to performance.

3.3.2 What we envision. We envision three parts for the pro-

posed MOOC.

• The �rst part will build on our research on refactoring the

GotoBLAS approach to optimizing gemm (published in [11],

itself a paper that is often used in the classroom), which

has yielded the BLAS-like Library Instantiation Software

(BLIS) framework [38, 39]. The learner will gain insight into

how to optimize for a single core and how to parallelize

such an implementation with OpenMP [30]. Related to this,

we already support two pedagogical exercises: the “how-

to-optimize-gemm” wiki [35]and a sandbox for optimizing

���� that we call BLISlab [15]. Others have build similar

exercises upon the same insights [18]

• Practical distributed memory parallel implementations of

���� tend to be variants on the Scalable University Matrix

MultiplicationAlgorithm (SUMMA) [1, 33]. It casts communi-

cation between nodes in terms of collective communication

operations and local computation in terms of a multicore

���� operation. The second part of the MOOC introduces

concepts related to communication on distributed memory

architectures: message passing; collective communication

operations, algorithms, and cost; the Message-Passing Inter-

face [12, 31] and how to implement collective communica-

tion in terms of individual messages. Here we build upon

the paper “Collective communication: theory, practice, and

experience” [6].

• With how to optimize for an individual node and how to com-

munication between nodes as tools, how to map a SUMMA-

like algorithm to a distributed memory architecture is the

topic of the third part of the MOOC. That part builds on a

recent paper “Parallel Matrix Multiplication: A Systematic

Journey” [27].

It is our experience that a remarkable number of issues related to

HPC can be demonstrated with this material. Because the example

is simple, it is accessible to a broad audience. Importantly, this

simple example gives rise to a surprisingly large design space of

solutions.

3.3.3 Links to HPC. The links to HPC are self-evident.

3.3.4 Soliciting your input. We have described one possible vi-

sion. However, as of the writing of this paper, we are still in the

design stage and plan to solicit input from the community regarding

both the overall focus of the course as well as speci�cs.

4 CONCLUSION

As science embraces computation as a third pillar of research, join-

ing theory and experimentation, the democratization of HPC be-

comes more urgent. There must be materials for professional de-

velopment that target domain experts who need to acquire deeper

knowledge and skills for computing as well as self-taught scienti�c

software developers who have experience but may lack some of the

formal foundations. By making materials accessible and interesting

at multiple levels, we can target not only that demographic, but

also entice novices into the �eld. MOOCs are an attractive means

by which to achieve this because they are �exible (the learner can

choose the breadth and depth of knowledge he/she desires to ac-

quire) and they scale to the world. They are a means by which HPC

scholars can share his/her experiences with a broad audience.
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