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ABSTRACT

In this paper, we describe a trilogy of Massive Open Online Courses
(MOOC:s) that together expose knowledge and skills of fundamental
importance to HPC. Linear Algebra: Foundations to Frontiers (LAFF)
covers topics found in an introductory undergraduate course on
linear algebra. It links abstraction in mathematics to abstraction in
programming, with many enrichments that connect to HPC. LAFF-
On Programming for Correctness introduces how to systematically
derive programs to be correct. Of importance to HPC is that this
methodology yields families of algorithms so that the best one for a
given situation can be chosen. Programming for HPC (working title)
is in the design stage. We envision using a very simple example,
matrix-matrix multiplication, to illustrate how to achieve perfor-
mance on a single core, on multicore and many-core architectures,
and on distributed memory computers. These materials lower bar-
riers into HPC by presenting insights, supports, and challenges to
novices and HPC experts while scaling access to the world.
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1 INTRODUCTION

When distributed memory parallel computers first became the
fastest supercomputers in the world, almost every effort to par-
allelize and optimize a computational application was a “one-off”
customization. These were the early days of exploration to gain the
insight that underlies what we call the Science of High-Performance
Computing. Eventually, this exposed patterns and those patterns
then led to conjectures about general principles. Once these princi-
ples were further tested, what was an art became a science. Thus,
science organized knowledge into a systematic approach. By shar-
ing the method behind the mystique, we can increase the accessi-
bility of the field. Massive Open Online Courses (MOOCs) provide
a vehicle to make the world our audience.

Our expertise is in the area of high-performance dense linear
algebra software development. In the early 1990s, we made con-
tributions to the distributed memory parallelization of individual
operations in this domain. Often, others would approach us with
an algorithm that needed to be parallelized and eventually pat-
terns emerged behind the solutions that we found. Some of the key
insights gained are:

e When presenting algorithms, abstract away from the de-
tails regarding data storage and mapping of data to pro-
cessing nodes. This led to a new notation for expressing
dense linear algebra algorithms that we call the FLAME no-
tation [13, 20, 25], illustrated for LU factorization algorithms
in Figure 1(left) and 2(left).

e When representing algorithms in code, use Application Pro-
gramming Interfaces (APIs) - what we now would call do-
main specific languages, to implement libraries in an exist-
ing language. The API should closely mirror the notation
with which algorithms are presented, hiding details of data
storage and/or distribution, as illustrated in Figures 1(right)
and 2(right).

e When optimizing and/or parallelizing, don’t automatically

start with the legacy solution, which may or may not suit the

target situation well. Instead, derive families of algorithms
from the specification of the operation and choose the “best”

(by some measure) as your point of departure.

When implementing your software, layer carefully. Leverage

abstractions and isolate architecture-specific optimizations.

When sharing gained insight, use the simplest example that

illustrates it. This broadens the audience and helps draw

novices into the field.
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The first bullets help make knowledge systematic. The last is our
guiding principle when sharing the resulting science.

By making HPC accessible, we can open the field so that its
practice is not restricted to the “high priests of high performance.”
MOOC:s help draw a broad audience into HPC.

2 THE FLAME NOTATION

Dense linear algebra algorithms are traditionally presented as op-
erations performed on the elements of the arrays that store vectors
and matrices. Mapping algorithms to distributed memory architec-
tures added the need to describe the mapping of array elements
and operations to processors. These details quickly get in the way
of high level thinking, and stand in the way of democratizing HPC.
The solution? An alternative notation that abstracts away from
these details by closely mirroring how algorithms are naturally
explained on, for example, a chalkboard.

Let us examine a concrete example. In a linear algebra course, a
student will be taught Gaussian elimination and how it relates to LU
factorization. This is typically achieved by linking systems of linear
equations to matrices and then to the operations performed with
individual entries in those matrices. In a numerical linear algebra
course, algorithms for LU factorization are explained by starting
with the specification: A = LU. Partitioning these matrices yields

T T
a1 ‘ a, | 1 ‘ 0 U11 ‘ Ugy
az ‘ Az Iy ‘ Lo 0 ‘ Us
T
U11 ‘ Uiy

T
vi1la1 ‘ Liuj, + LaaUz

This then leads to the observation that

e v11 and usz respectively equal a11 and alTZ;

e ly1 := az1/a11 can overwrite asy;

e Ay, can be updated with the rank-1 update Azy — l21uf2; and
e Ly; and Upy are computed as the LU factorization of Ajj.

The explanation is in terms of submatrices instead of individual
entries. On a chalkboard this is accompanied by drawing a square
that represents the matrix, and lines that partition this matrix into
submatrices.

While this is how the algorithm is elegantly explained, a typi-
cal numerical linear algebra text then presents the algorithm by
translating the submatrices into index ranges for the parts of the
array where the submatrices are stored: Agp — a21a1TZ in “MATLAB
notation” becomes

AC j+1:n, j+1:n ) - AC j*1:n, 3 ) * AC 3, j*+1:n ),
where j is the index of the “current column” in the matrix. We
argue that there is a disconnect between the notation used to explain
how to obtain the algorithm and the notation used to express the
algorithm. This disconnect is much more pronounced for so-called
blocked algorithms that can attain high performance.

The algorithm, expressed with the FLAME notation that was
developed in our research and is used in our teaching, is given
in Figure 1. This notation is meant to capture how the algorithm
progresses through the matrix. We effectively used this notation to
bring freshman with no background in linear algebra up to a level
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where they could get involved in our research on high-performance
linear algebra software development. Thus, the notation is valu-
able when introducing more advanced topics to those who have
experience with linear algebra and it can be used to first introduce
the subject. It becomes core to how our MOOCs enable abstract
thinking of value to HPC.

3 A TRILOGY OF MOOCS

We now describe a trilogy of MOOCs, two of which are currently
offered on the edX platform and a third one that is in the plan-
ning stages. The courses are by no means a sequence: They can
be taken individually and/or in any order. Someone with no or
limited background in linear algebra would want to start with the
first. What all three have in common is that they use linear algebra
(matrix computations) as a means by which to illustrate topics of
importance to HPC, thus providing an entry path into HPC.

3.1 Linear Algebra: Foundations to Frontiers

Linear Algebra - Foundations to Frontiers (LAFF) [21] is a MOOC
that has been offered regularly on the edX platform starting in
Spring 2014. It is a fifteen week course with a content and level that
falls somewhere between a first course on matrix computations
(what we would consider a "how to" course) and a first course on the
theory of linear algebra (which is often a first exposure to proofs in
a math department). What is different is that it links abstraction in
mathematics (notation and proofs) to abstraction in programming
(APIs). It includes enrichments related to HPC, which makes the
course of interest to learners with varying levels of background,
ranging form high school students to Ph.D.s in related fields. Many
use it to review.

3.1.1 Basic idea. The class focuses on linking the mathematics
with algorithms and their instantiation in code. Effective reasoning
about algorithms requires abstraction. For this reason, the course
is structured, and the materials scaffolded, to efficiently lead the
learner from the concrete stage of learning to the more abstract
stage of learning. Towards this purpose, the layering in the mathe-
matical theory is linked to the layering in the implementation. The
notation described in Section 2 supports this.

3.1.2  Linksto HPC. Starting in the first week, the course stresses
thinking of vectors and matrices in terms of subvectors and sub-
matrices. This is accomplished by carefully scaffolding exercises to
lead the learner from concrete examples to abstract notation and
thinking. Operations with vector and matrix elements are linked
to algorithms cast in terms of subvectors and submatrices, using
the notation illustrated in Figure 1(left). This is further reinforced
by having the learners implement various operations using the
API illustrated in Figure 1(right), with MATLAB Online!. The rigid
structure of the algorithms and their implementation allows a code
skeleton to be generated from a webpage? menu illustrated in Fig-
ure 3. The code implemented by the learner, written in MATLAB,
inherently does not attain high performance. However, the code is

!MathWorks gives learners access to a license to MATLAB Online for the duration of
the course.
2 http://www.cs.utexas.edu/users/flame/Spark/
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Algorithm: [A] := LU_UNB_vAR5(A)
Arr | Arr

A—

where Arrp is0X0
ApL | ABr

while m(Arr) < m(A) do

Ao | ao | Ao

At | Arr
ApL | ABr

where aj;is1Xx1

Az | az1 | Az

az = ay/an

- T
Az = Ap — anayg,

Ao | a1 | Aoz

ArL I ATR
alTo 11 a1T2
ABL | ABR
Az | an | Az
endwhile
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function [ A_out ] = LU_unb_var5( A )

[ ATL, ATR, ...
ABL, ABR ] = FLA_Part_2x2( A, ...
0, 0, 'FLA_TL' );
while ( size( ATL, 1 ) < size( A, 1) )

[ A00, ao01, A02,
al0t, alphall, ail2t,
A20, a21, A22 ] = ...

FLA_Repart_2x2_to_3x3( ATL, ATR, .

ABL, ABR, 1, 1, 'FLA_BR' );

Jo o
laff_invscal( alphall, a21 );

laff_ger( 1.0, a21, al2t, A22 );

[ ATL, ATR, ...
ABL, ABR ] = ...
FLA_Cont_with_3x3_to_2x2( A00, a0l, A02,
al0Ot, alphall, a1l2t,
A20, a21, A22,
'FLA_TL"' );
end
A_out = [ ATL, ATR
ABL, ABR ];
end

Figure 1: Left: “Right-looking” algorithm (unblocked Invariant 5) for overwriting A with its LU factorization. Right: Corre-

sponding code using the FLAME@lab API for MATLAB.

structured as it would be coded in a higher performing language
like C [3].

The students internalize these abstractions in the first five Weeks,
during which they are exposed to the fundamental vector operations
(scaling, dot product, “axpy”). In Week 2, linear transformations are
introduced, which are then linked to linear combinations of vectors
and ultimately to matrix-vector multiplication. Along the way, the
layering in these mathematical operations is linked to the layering
in the implementation: matrix-vector multiplication in terms of dot
products of rows with the vector and in terms of axpy operations
with the columns of the matrix.

Composition of linear transformations is linked to matrix-matrix
multiplication. By Weeks 4 and 5, the learner discovers how this
operations, C = AB can be expressed as multiple matrix-vector
multiplications (one per column of C and B) or a sequence of rank-1
updates. How this is linked to the Basic Linear Algebra Subpro-
grams (BLAS) interface [9, 10, 17] and impacts performance is the
topic of various enrichments in those weeks. This part of the course
finishes with an important enrichment on the basic principles be-
hind high-performance implementation of matrix-matrix multipli-
cation, previewing a major topic of the third MOOC discussed in
Section 3.3.

A typical introduction to linear algebra starts with solving linear
systems. In this course, we reach this topic by Week 6. Vector spaces,
low rank approximation and eigenvalue problems (diagonalization)
are some of the topics that round out the course. Having instilled the
ability to think in terms of submatrices and subvectors, the learner is
quickly led from concrete examples to abstract thinking in terms of
Gauss transforms, and eventually to LU factorization. Importantly,
they are introduced to the algorithm in Figure 1(left) and implement
it as in Figure 1(right). Notice again that the algorithm is expressed
in terms of basic linear algebra operations: scaling of a vector (a2 :=
az1/a11) and rank-1 update (Azy = Agp — aglalTZ. A discussion

of a high-performance blocked version of the algorithm is in the
enrichment of that week.

The point: within the first six weeks of a first course on linear al-
gebra, the learner is already exposed to abstraction, implementation,
and HPC issues.

3.2 LAFF-On: Programming for Correctness

Correctness is of fundamental importance to programming. Many
who develop software approach correctness instinctually, building
on experience and ironing out the kinks by “debugging”. As Dijkstra
pointed out in his Turing Award lecture [8]:

“The only effective way to raise the confidence level of
a program significantly is to give a convincing proof
of its correctness. But one should not first make the
program and then prove its correctness, because then
the requirement of providing the proof would only
increase the poor programmer’s burden. On the con-
trary: the programmer should let correctness proof
and program grow hand in hand”

This raises a number of questions: How does one prove a program
correct and, more importantly, how does one derive a program
hand in hand with its correctness?

For many HPC applications, including dense matrix computa-
tions, implementations of key operations are loop-based. Classic
techniques developed in the 1960s by Dijkstra and his contempo-
raries use the concept of a loop invariant to prove a loop correct
using the Principle of Mathematical Induction (PMI). “LAFF-On Pro-
gramming for Correctness” [22] was developed to teach this and
illustrate its importance to programming in general and HPC in
particular.

3.2.1 Basic idea. The key to proving a loop-based program cor-
rect is the loop invariant. It is a condition that must hold before and
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Algorithm: [A] := LU_BLK_VAR2(A)

Arr | Arr
ApL | ABR
while m(Arp) < m(A) do

A—

where A7y is0X0

Ao | Ao | Aoz
| A | Au | Ar
Az | Az | Az

At | ATR

where A isbxb
ApL | ABR

At = Lyl Agy

An = An - AAn

Ajp := LU_UNB_VAR5(A1;)
Az = Az — Az Aot

Az = AnUj!

Ao | Ao | Aoz

Arr | ATr

ApL | ABr

endwhile
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int LU_blk_var2( FLA_Obj A, int nb_alg )

FLA_Obj ATL, ATR, A00, A01, AO02,
ABL, ABR, Al0, Al11, A12,
A20, A21, A22;
int b;
FLA_Part_2x2( A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLALTL );

while ( FLA_Obj_length( ATL ) < FLA_Obj length( A ) ){
b = min( FLA_Obj_length( ABR ), nb_alg );
FLA_Repart_2x2_to_3x3(
ATL, /««/ ATR, &A00, /++/ &AO01, &A02,

[x kkkkkkk ok ok k ok x] % ek kkkkkEk A A A Ak kR KR x ]
&A10, /+»/ &All, &Al2,
&A20, /«x/ &A21, &A22,

b, b, FLA_BR );

ABL, /«x/ ABR,

FLA_Trsm( FLA_SIDE_LEFT, FLA_LOWER_TRIANGULAR,
FLA_NO_TRANSPOSE, FLA_UNIT _DIAG,
FLA_ONE, A00, AO01 );

FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
FLA_MINUS ONE, A10, A01, FLA ONE, All );

LU_unb_var5( A1l );

FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
FLA_MINUS_ONE, A20, A01, FLA ONE, A21 );

FLA_Trsm( FLA_SIDE_LEFT, FLA_UPPER_TRIANGULAR,
FLA_NO_TRANSPOSE, FLA_NONUNIT DIAG,
FLA_ONE, Al1, A21 );

FLA_Cont_with_3x3_to_2x2(

&ATL, /++/ &ATR, A00, AO1, /«+/ A02,
A10, All, /++/ Al2,
Y S T
&ABL, /++/ &ABR, A20, A21, /«+/ A22,
FLA_TL );

}
return FLA_SUCCESS;
}

Figure 2: Left: “Left-looking” blocked algorithm for LU factorization. This algorithm casts most computation in terms of
matrix-matrix multiplication (for high performance). It is a good choice for out-of-core computation (where the data resides
on disk or some other slow layer of memory.) Right: Its implementation using the FLAME/C API for the C programming

language.
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Figure 3: Spark webpage that generates code skeletons (on
right) from a menu (on left).

after each iteration of the loop. The fact that it holds before the loop
starts is the base case for mathematical induction. If the fact that it
holds before any arbitrary iteration implies that it holds after that

same iteration can be shown, this corresponds to the inductive in a
proof by induction. The PMI then tells us it holds before and after
all iterations of the loop. If the loop completes, the loop invariant
holds after the loop. If this implies that the desired operation has
been computed, the loop is correct.

In the example in Section 2, the loop invariant is given by

{L\U}rL | Urr

Lpr | Apr - LLUTR

At | ATR
ABL | ABR

A Arp = LrLUrp | ATR = L7LUTR

Apr =LpLUrL |

where the A indicates the logical and operator, {L\U}7[ indicates
that unit lower triangular matrix L7 and upper triangular matrix
Ut overwrite Ay, and A denotes the original content of A. With
this, the correctness proof for algorithm in Figure 1(left) is given
in Figure 4. Assertions about the state of the variables are given in
the highlighted boxes. Notice that the loop invariant is true at all
four places indicated by “Step 4” (details in [23]).
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Step | Algorithm: A := LU_UNB_VAR5(A)
la A=A
4 A—> (iAi where A7pis0X0
AL | ABR
At | Arr ) _ ( {L\U}rL Urr )
Apr | ABRr B Lpr Apr — LrLUrR
5 Lt UrL = {TL LrrUrg = Arr
LprLUrL = ABL
3 while m(Arr) < m(A) do
2,3 Arr | Arr | _ ( {L\U}rL Urr )
Apr | Asr |~ Lpr Apg - LrUrr
A Ly UrL = liTL LrLUrr = ATR A m(Arp) < m(A)
LprUrL = ApL
5a ars | A Ao | ao | Aoz
———| —> “1T0 an asz where a;is1x1
AprL | ABr
Az | axz | Az
6 Ao | @01 | Aoz {L\U }oo uo1 Unz
a% an asz = llTO an - l£u01 EITZ - ZITOUOZ Ao
Az | az1 | Az Lo @1 — Laguor | Az — LagUp:
8 az = az/on
Az = Az — azal
5b A | ao1 | Aoz
ArL I ATR T T
<1 4 | %u )
ApL | ABR
Az | an | Az
7 Ago | ao1 | Aoz {L\U }oo | o1 Uoz
aﬂ) an asz = llT0 U1 ulj; A
Ao | az1 | A2z Lo Ly | Az — LUy — Lyul,
2 Arr | Arr | _ ( {L\U}rL Urr
Apr | Asr |~ LpL Apr - LpLUrR
A Lt UrL = A:TL LrpUrg = AT
LprUrr = ApL
endwhile
Arr | Arr ) _ ( {L\U}rL Urr )
Apr | Asr |~ Lpr Apr — LpLUrR
2z | a Lt UrL = {TL LrpUrg = A7 A(m(AzL) < m(4))
LprUrL = ABL
b | A=L\UALU = A

Figure 4: Derivation of unblocked Variant 5.

Now, the algorithm can be systematically derived from the loop
invariant, filling in the “worksheet” in Figure 4 in the order indicated
in the column labeled “Step”. Better yet: the loop invariant can
be systematically derived from the specification of the operation
(details in [23]). Best yet: One can systematically derive a number
of loop invariants for a given operation, which then yield a family
of algorithms. For example, the loop invariant

ArL | ATR {L\U}rL | Arg
ABL | ABR Lgr, | ABR

N Arr = LriUr |

Apr = LpLUrt |
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yields the so-called left-looking blocked algorithm in Figure 2(left).
Thus we achieve Dijkstra’s goal of deriving the algorithm hand-in-
hand with its proof of correctness.

As in LAFF, we use the API for MATLAB? illustrated in Fig-
ures 1(right) and Figure 2(right) so that the correctness of the algo-
rithm implies the correctness of the implementation.

3.2.2 Links to HPC. Effective mapping of algorithms to archi-
tectures starts with choosing or discovering an algorithm that maps
well to the given architecture. For dense linear algebra, how much
data movement between memory layers is incurred by an algorithm
and how much parallelism it exhibits are key to its ability to achieve
high performance.

With this in mind, the key insights to which learners are brought
to light by this MOOC are:

e For those who have not yet gained experience, it exposes the
system behind algorithm development and programming.

o Experienced software developers for HPC often code based
on experience (intuition) rather than formal training. The
MOOC exposes such people to the formal thinking that un-
derlies their intuition.

e Optimizing for a new architecture often starts with a given
implementation. A search for an entirely new algorithm
then only commenses when the given implementation can-
not be easily “morphed” into one that maps well to the ar-
chitecture. Formal derivation yields families of algorithms
from which the most suited can be chosen. For example,
a blocked version of the algorithm in Figure 1(left) maps
well to distributed memory architectures [5, 24, 34]. The one
given in Figure 2(left) is well-suited for out-of-core com-
putation, where the data resides in a very slow layer of
memory [14, 16, 28, 29, 32].

e Abstraction is the key to keeping algorithm development
and coding manageable.

e While the course uses MATLAB to illustrate how algorithms
can be translated into code, a similar style of coding can
target the C programming language (as we do in practice
for our libflame dense linear algebra library [3, 36, 37]), as is
discussed in enrichments in the course.

3.3 Programming for HPC

Online resources for HPC are an attractive way of scaling up tuto-
rials given by, for example, supercomputing centers. There are free
online materials available, including articles [7, 11, 15, 38, 39, 41],
wikis [18, 35], free electronic books [40], and MOOCs. Some target
foundational topics on HPC [2, 19, 42] while others target HPC for
specific domains [26].

We are in the process of designing a third MOOC that exposes
the learner to issues that were crucial to our own success in HPC.
We envision using a simple example, matrix-matrix multiplication,
to illustrate fundamental concerns when optimizing and/or paral-
lelizing scientific computing applications. In addition to the skills
that are of importance to HPC that can be demonstrated through
such a study, what we hope the learner will take away is a deep
understanding of the fact that success in HPC depends on deriving

3 MathWorks gives learners access to a license to MATLAB Online for the duration of
this course as well.
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an entire space of solutions for computing a given operation so
that a member in that space that has desirable (performance and/or
space and/or power) properties can be chosen. This is captured by
a quote attributed to Dijkstra:

“Always design your program as a member of a whole
family of programs, including those that are likely to
succeed it”

3.3.1 The basic idea. Optimization for HPC platforms starts
with optimization for a single core and multicore processor. Multi-
core processors may be the end target, or they form the building
blocks for nodes of a distributed memory architecture when that is
the ultimate goal.

A vehicle that is often used to illustrate the basic ideas behind
optimizing for a core and multiprocessor is matrix-matrix mul-
tiplication (GEmM) [4, 7, 41]. On the other end of the spectrum,
parallelizing for a distributed memory architecture is also often
illustrated with matrix-matrix multiplication. At all levels, it is how
to reduce data movement between memory layers and between
nodes that is key to performance.

3.3.2  What we envision. We envision three parts for the pro-
posed MOOC.

o The first part will build on our research on refactoring the
GotoBLAS approach to optimizing gemm (published in [11],
itself a paper that is often used in the classroom), which
has yielded the BLAS-like Library Instantiation Software
(BLIS) framework [38, 39]. The learner will gain insight into
how to optimize for a single core and how to parallelize
such an implementation with OpenMP [30]. Related to this,
we already support two pedagogical exercises: the “how-
to-optimize-gemm” wiki [35]and a sandbox for optimizing
GEMM that we call BLISlab [15]. Others have build similar
exercises upon the same insights [18]

e Practical distributed memory parallel implementations of
GEMM tend to be variants on the Scalable University Matrix
Multiplication Algorithm (SUMMA) [1, 33]. It casts communi-
cation between nodes in terms of collective communication
operations and local computation in terms of a multicore
GEMM operation. The second part of the MOOC introduces
concepts related to communication on distributed memory
architectures: message passing; collective communication
operations, algorithms, and cost; the Message-Passing Inter-
face [12, 31] and how to implement collective communica-
tion in terms of individual messages. Here we build upon
the paper “Collective communication: theory, practice, and
experience” [6].

o With how to optimize for an individual node and how to com-
munication between nodes as tools, how to map a SUMMA-
like algorithm to a distributed memory architecture is the
topic of the third part of the MOOC. That part builds on a
recent paper “Parallel Matrix Multiplication: A Systematic
Journey” [27].

It is our experience that a remarkable number of issues related to
HPC can be demonstrated with this material. Because the example
is simple, it is accessible to a broad audience. Importantly, this
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simple example gives rise to a surprisingly large design space of
solutions.

3.3.3 Links to HPC. The links to HPC are self-evident.

3.3.4 Soliciting your input. We have described one possible vi-
sion. However, as of the writing of this paper, we are still in the
design stage and plan to solicit input from the community regarding
both the overall focus of the course as well as specifics.

4 CONCLUSION

As science embraces computation as a third pillar of research, join-
ing theory and experimentation, the democratization of HPC be-
comes more urgent. There must be materials for professional de-
velopment that target domain experts who need to acquire deeper
knowledge and skills for computing as well as self-taught scientific
software developers who have experience but may lack some of the
formal foundations. By making materials accessible and interesting
at multiple levels, we can target not only that demographic, but
also entice novices into the field. MOOCs are an attractive means
by which to achieve this because they are flexible (the learner can
choose the breadth and depth of knowledge he/she desires to ac-
quire) and they scale to the world. They are a means by which HPC
scholars can share his/her experiences with a broad audience.
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