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ABSTRACT
Endmember extraction plays a prominent role in a variety of
data analysis problems as endmembers often correspond to
data representing the purest or best representative of some
feature. Identifying endmembers then can be useful for fur-
ther identification and classification tasks. In settings with
high-dimensional data, such as hyperspectral imagery, it can
be useful to consider endmembers that are subspaces as they
are capable of capturing a wider range of variations of a signa-
ture. The endmember extraction problem in this setting thus
translates to finding the vertices of the convex hull of a set
of points on a Grassmannian. In the presence of noise, it can
be less clear whether a point should be considered a vertex.
In this paper, we propose an algorithm to extract endmembers
on a Grassmannian, identify subspaces of interest that lie near
the boundary of a convex hull, and demonstrate the use of the
algorithm on a synthetic example and on the 220 spectral band
AVIRIS Indian Pines hyperspectral image.

Index Terms— Endmember, Grassmannian, convex hull,
hyperspectral imagery

1. INTRODUCTION

There is increasing evidence that for certain types of high-
dimensional data, particularly when the data contains sam-
ples of similar objects in a variety of state, it is advantageous
to work with subspaces of the ambient data space rather than
individual points. Examples of this include improved classi-
fication of signals in hyperspectral images [1, 2] and iden-
tification of ultra-low resolution grayscale face images via
illumination spaces [3]. In these examples, the underlying
geometric framework is that of Grassmann manifolds. The
real Grassmann manifold Gr(k, n) is a topological manifold
whose points parameterize all possible k-dimensional sub-
spaces of Rn. There are many distinct ways to impose a
geometric structure on Gr(k, n). The most commonly used
include geometries imposed by the geodesic, chordal, and
Fubini-Study metrics. Each of these geometries has its own
distinct characteristics and its own distinct advantages and
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disadvantages. Although the geometry of the Grassmannian,
with respect to each of these various metrics, is well under-
stood from a theoretical perspective, many of the standard
methods for studying data in Euclidean space do not yet have
analogues on the Grassmannian. In this paper we will de-
scribe a method for computing endmembers and other points
of interest within a collection of points on the Grassmann
manifold Gr(k, n).

Given a set of data points X in Rn, one can consider the
convex hull C of X, which is defined as the smallest convex
set containing X . If X is finite then C will be a convex poly-
tope and one can ask for the vertices x1, x2, . . . , x` of this
polytope. The vertices x1, x2, . . . , x` are sometimes known
as endmembers. Interest in endmembers stems from their re-
lationship to extrema of linear functionals on X and thus end-
member identification exposes extremal elements in X . Note
that for any datapoint y lying in the convex hull of X we can
express y as a convex combination of its endmembers, i.e.
there exists an expression

y =
∑̀
i=1

wixi (1)

where wi ≥ 0 and w1 + · · · + w` = 1. Thus, in some
sense, the endmembers of X represent the most novel sig-
nals in X and every other point in X can be recognized as
a convex combination of these fundamental elements. The
coefficients w1, w2, . . . , w` are known as the fractional abun-
dances of x1, . . . , x` in y. The determination of endmembers
of a hyperspectral image is a particularly well-studied prob-
lem which is a key step of the more general problem of de-
composing each pixel into its pure signals, also known as the
spectral unmixing problem [4]. There are a significant num-
ber of algorithms for endmember extraction. These include
the pixel purity index (PPI) [5], N-FINDR [6], optical real-
time adaptive spectral identification system (ORASIS) [7], it-
erative error analysis (IEA) [8], convex cone analysis (CCA)
[9], vertex component analysis [10], orthogonal subspace pro-
jection (OSP) technique [11], automated morphological end-
member extraction (AMEE) [12], and simulated annealing al-
gorithm (SAA) [13]. We note in particular that the algorithm
presented in this paper can be seen to address some of the



same challenges that the SAA algorithm recognizes; namely
those of endmember variability.

While the algorithm described in this paper might be ac-
curately described as non-linear endmember extraction, the
framework is different from other established methods falling
under this designation [14]. Motivating the latter is the ob-
servation that under certain circumstances, the spectral inter-
actions between endmembers in hyperspectral images can be
non-linear. In other words, the data is sometimes better mod-
eled as living on a non-linear submanifold (unknown before-
hand) which is embedded in Rn. In our case, the non-linearity
arises from the fact that we take subspaces of Rn rather than
single points. We consider these as points on a Grassman-
nian, thus giving rise to an immediate non-linear framework
(irrespective of the particularities of the data).

2. ENDMEMBER EXTRACTION ALGORITHM

We design our endmember extraction algorithm around the
exploitation of an isometric embedding of a Grassmannian
manifold into Euclidean space followed by a projection into
a lower dimensional Euclidean space. Once in this setting,
we can utilize known algorithms for discovering vertices of
a convex hull. Consider a set of points X = {xi}i∈I on the
GrassmannianGr(k, n).We define vertices of the convex hull
ofX onGr(k, n) to be those points inX with indices I ′ ⊂ I
obtained in the following way.

1. Construct a distance matrix D for X using chordal dis-
tance on Gr(k, n) (the projection Frobenius norm).

2. Use Multidimensional Scaling (MDS) to find an em-
bedding E for D that is an isometry.

3. Apply the Convex Hull Stratification Algorithm (CHSA)
to identify the indices I ′ of the vertices of the convex
hull in Euclidean space.

4. Via the bijection between X and E, the indices I ′ are
precisely the indices for points in X that are vertices of
the convex hull of X on Gr(k, n).

To be precise, we elaborate on these steps here. Chordal
distance is defined as follows. If xi, xj ∈ Gr(k, n), then
xi, xj correspond to two k-dimensional subspaces of Rn. The
chordal distance d is defined as

d(xi, xj) =

√√√√ k∑
m=1

sin2 θm,

where θ1, . . . , θk are the principal angles between the sub-
spaces xi and xj . For convenience, one may compute chordal
distance in the following way. If S, T are orthonormal bases
for two k-dimensional subspaces xi and xj in Rn, then

d(xi, xj) =
√
k − ‖STT‖2F ,

where ‖ · ‖F is the Frobenius matrix norm. For more con-
text on the chordal distance metric, see, e.g., [15, 16]. The
choice of chordal distance as a metric on the Grassmannian is
notable; as shown in [15], the Grassmannian can be isometri-
cally embedded when this metric is used.

Multidimensional scaling provides a means of defining a
collection of points in Euclidean space whose pairwise dis-
tances are as faithful as possible to their original distances on
some manifold. See [17, 18, 19, 20, 21, 22] for full details.
The procedure is described briefly below. Given a p × p dis-
tance matrix D, compute matrices A and B, where Aij =
− 1

2D
2
ij , and B is the result of double-centering A. That is, if

H = Ip − 1
p11

T , then B = HAH. The MDS embedding is
provided via the eigenvectors and eigenvalues of B. Specif-
ically, if V ΛV −1 is the eigendecomposition of B, then the
rows of the matrix E =

[√
λ1v1

√
λ2v2 · · ·

√
λqvq

]
give a

collection of p points in Rq whose pairwise distances come
as close as possible to D provided each λ1, . . . , λq > 0.

The Convex Hull Stratification Algorithm proposed in
[23] and [24] utilizes an optimization problem that attempts
to represent each point in a data set as a convex combination
of its N nearest neighbors. Note that vertices of the convex
hull cannot be represented as a convex combination of its N
nearest neighbors for any N . Those points whose coefficient
vectors require at least one negative component are deemed
to be points of interest and include the vertices of the con-
vex hull. Further, the norm of the coefficient vector can be
used to stratify the points by their proximity to the boundary
of the convex hull. Specifically, one solves the following
optimization problem for each x in the data set:

min
w

γ‖w‖22 + λ‖w‖1 +

∥∥∥∥∥∥x−
∑
j∈N

wjxj

∥∥∥∥∥∥
2

2

subject to
∑

j∈N wj = 1, where the set {xj}j∈N is the set
of N nearest neighbors to x in the data set. Those vectors x
with an associated vector w for which at least one component
of w is less than zero necessarily contain the vertices of the
convex hull. Additionally, a measure of boundary-proximity
is provided by the `2-norm of the associated vectors w.

To summarize, our algorithm exploits an isometric em-
bedding of the Grassmannian into Euclidean space, where
well-known convex hull algorithms may be applied. Thus it is
computationally manageable and serves as a useful technique
in applied settings where a “pure representative” for a feature
may be better represented as a span of several realizations of
the “pure representative.”

The computational complexity of the Grassmann End-
member Extraction Algorithm is dominated by the com-
plexity of MDS and CHSA as well as that of constructing
a distance matrix for points on Gr(k, n). Classical MDS is
known to be O(n3) but faster versions exist (see, e.g. [25]).
For details on the complexity of CHSA, see [23]. A chordal



distance matrix can be computed in polynomial time. Com-
bining these three complexities, we conclude that the Grass-
mann Endmember Extraction Algorithm is a polynomial time
algorithm.

3. APPLICATION: SIMPLEX EMBEDDING

Given a set of subspaces A1, A2, . . . , Ar of Rn, a Singular
Value Decomposition (SVD) based algorithm can be used to
compute a weighted flag mean of the set of Ai [26]. The
underlying theory for the construction of the flag mean is
based on the chordal metric as this allows for the very direct
(and fast) SVD-based algorithm. The input for the algorithm
consists of orthonormal bases for each of A1, A2, . . . , Ar to-
gether with real-valued weights a1, a2, . . . , ar. The output
of the flag mean algorithm consists of an ordered sequence
u1, u2, . . . , ul of orthonormal vectors (defined only up to sign
where l is the dimension of the span of all of the Ai con-
sidered together). From the ui one can construct a full flag
of nested vector spaces V1 ⊂ V2 ⊂ · · · ⊂ Vl by defining
Vi = span{u1, u2, . . . , ui}.

If we restrict A1, A2, . . . , Ar to all have the same dimen-
sion k then for each choice of weights we can consider the
k-dimensional component of the flag Vk. In this manner, we
can think of Vk, as determined by the weighted flag mean, as
representing a kind of convex combination of theAi as points
on the Grassmann manifold Gr(k, n).

In the following example, we consider 3 random points
A1, A2, A3 ∈ Gr(3, 10); then we determine 4997 random
weighted flag means of these points, for a total of 5000 points.
We use Grassmann endmember extraction to recover the three
3-dimensional subspaces of R10 that were used to construct
the data set.

In Figure 1, we show the results of the MDS mapping
of the set of points on Gr(3, 10) described above to its
best 3-dimensional space. Note that the mapping appears to
faithfully represent the geometry and distance relationships
present in the original points on the Grassmannian.

After applying our algorithm to this data set, we threshold
by the norm of the weight vector and display those points
that are thus identified as endmembers on the Grassmannian
(Figure 1). The algorithm successfully identified the vertices
that generated the data set, providing a proof of concept of the
algorithm.

4. APPLICATION: INDIAN PINES
HYPERSPECTRAL IMAGERY

We apply our algorithm to the Indian Pines data set and
present a visualization of the extracted endmembers in that
context.

The Indian Pines data set consists of 220 spectral bands at
a resolution of 145 × 145 pixels. We use a corrected data set
that has bands from the region of water absorption removed,

Fig. 1. MDS Embedding: Simplex. Points with largest `2-
norm of the coefficient vector are marked with a blue circle.
Note that the three vertices on the Grassmannian that were
used to generate the data on the manifold are detected as end-
members in the embedding.

resulting in 200 remaining spectral bands.1 The data was col-
lected with an Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) at the Indian Pines test site in Indiana [27]. The
scene contains various classes, such as woods, grass, corn,
alfalfa, and buildings.

We begin by obtaining points on the Grassmannian by col-
lecting local patches of spectral data. We choose to take re-
gions of size 3× 3 pixels. The span of the 9 vectors in a fixed
region determine a point in Gr(9, 200). Define this set to be
L ⊂ Gr(9, 200). We compute pairwise chordal distances be-
tween elements of L on Gr(9, 200) and define a distance ma-
trix D. The corresponding MDS embedding into R3 is shown
in Figure 3.

For comparison, consider the embedding shown in Figure
2. Here, we define points onGr(9, 200) by taking spectral in-
formation from random collections of pixel locations, where
each draw is made without replacement from a set of pixels
that has been manually identified to consist of a particular
class (e.g. corn, alfalfa). Call this set C. In Figure 2, an ef-
fort has been made to color embedded points by class in such
a way that the classes are visually distinguishable. Notably,
points within the same class tend to cluster together. Thus,
it is reasonable to expect that endmembers extracted from
the embedding of spectral information from local patches are
likely to correspond to pure forms of various classes.

In Figure 3, we show the embedding of L into R3. We
note that by varying parameters in the application of CHSA,
one may obtain varying numbers of identified vertices. Thus,
depending on the application, one may choose to identify all
points that are ‘near’ the boundary or to identify only those

1The data is available at http://www.ehu.eus/ccwintco/index.php/ Hyper-
spectral Remote Sensing Scenes.



Fig. 2. MDS Embedding: 16 Classes in Indian Pines Scene.
The colors correspond to various substances in the scene, such
as corn, alfalfa, and buildings. For visibility, colors are used
for more than one substance but are chosen to make different
classes visually distinguishable. Importantly, this embedding
of the points on the Grassmannian demonstrates that appro-
priate manifold distances and embeddings have the potential
to separate classes.

vertices that are minimally necessary to define a convex hull.
In our setting, we choose to define the number of nearest
neighbors to be 7, the `2-norm parameter γ to be 10−10 and
the `1-norm parameter λ to be 10−5.

We can gain some insight into the meaning of the ex-
tracted endmembers by visualizing the locations of the local
patches that gave rise to those points on the Grassmannian.
In Figure 4, we show the local patches whose correspond-
ing subspaces are vertices. We conjecture that these locations
carry valuable information about various substance classes.

5. CONCLUSION

The convex hull of a set of data points in the manifold setting
has significant meaning for a variety of applications. We pro-
pose a method that incorporates manifold geometry appropri-
ately in the setting where data naturally lives on a Grassmann
manifold. Our method employs an approximately isometric
embedding in Euclidean space to identify vertices of the con-
vex hull of a set of points on the Grassmannian. We provide
a proof-of-concept of the algorithm in a synthetic example,
where we successfully extract the vertices used to generate
a convex collection of points on a Grassmannian. We fur-
ther demonstrate the potential usefulness of the algorithm via
an example with hyperspectral imagery, where the identified
points on the Grassmannian correspond to meaningful loca-
tions in the Indian Pines scene.
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