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Abstract—Afundamental questionin many data analysis
settingsistheproblemofdiscerningthe“natural”dimension
of a dataset. Thatis, when a datasetis drawnfrom a
manifold(possiblywithnoise),a meaningfulaspectofthedata
isthe dimensionofthat manifold. Variousapproachesexist
forestimatingthisdimension,suchasthe methodofSecant-
AvoidanceProjection(SAP).Intuitively,theSAPalgorithmseeks
todetermineaprojectionwhichbestpreservesthelengthsofall
secantsbetweenpointsinadataset;byapplyingthealgorithmto
findthebestprojectionstovectorspacesofvariousdimensions,
one mayinferthedimensionofthe manifoldoforigination.
Thatis,one maylearnthedimensionatwhichitispossibleto
constructadiffeomorphiccopyofthedatainalower-dimensional
Euclideanspace. Using Whitney’sembeddingtheorem, wecan
relatethisinformationtothenaturaldimensionofthedata.
AdrawbackoftheSAPalgorithmisthatadataset with n
pointshasn(n 1)/2secants, makingthecomputationand
storageofallsecantsinfeasibleforverylargedatasets.Inthis
paper, weproposeanovelalgorithmthatgeneralizestheSAP
algorithm withanemphasisonaddressingthisissue. Thatis,
weproposeahierarchicalsecant-baseddimensionality-reduction
method, whichcanbeemployedfordatasets whereexplicitly
calculatingallsecantsisnotfeasible.

IndexTerms—Secantsets,dimensionalityreduction,bigdata

I.INTRODUCTION

Determiningthedimensionofadatasetisabasicfirststep
towarda meaningfulunderstandingofthedataaswellasa
foundationalpartofanyrelateddataanalysis.Thisisespe-
ciallytrueforhigh-dimensionaldatasetswherecalculatingthe
“inherent”dimensioncanpointtowardhugeefficiencygains
viadimensionalityreduction.Thedeterminationoftopological
dimensionisacentralquestionintheareaofgeometricdata
analysis[1]andtherelatedfieldofmanifoldlearning[2],[3].
Thispaperpresentsasubspace-secantalgorithmforcomputing
projectionsofdatawhichpreservesboththetopologicaland
Hausdorfdimensionofadataset.Abyproductofthecom-
putationisanestimateofthedimensionandanestimateof
thesmoothness,andhencestability,ofthenonlinearmapping
thatreconstructsthedata.

In[4]theauthorsdescribedtheSAP(Secant-Avoidance
Projection)algorithm. Thisalgorithmisbasedinparton
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thecommonsensenotionthatagooddimensionality-reduction
algorithmshouldstrivetobedistancepreserving.Thatis,if
twodatapointsareinitiallyfarapart,thenwhenwemapthem
intoareducedspacetheyshouldremainfarapart.Thiscan
berephrasedtosaythatadimensionality-reductionalgorithm
shouldpreservethelengthsofthesecantsbetweenpointsin
thedataset.TheSAPalgorithmtakesasinputthesecantset
SofadatasetinRn andaninteger0<k<nandproduces
aprojectionP :Rn → Rk,which maximizesthelengthof
thesmallestprojectedsecantamongallnearbyprojections.
Furthermore,bystudyingthequalityofprojectionsproduced
bySAPoverarangeofprojectiondimensionswecan make
afairlyspecificguessaboutthedimensionofourdata.

OnelimitationoftheSAPalgorithmisthatitdoesnot
scale welltolargedatasetsbecausethenumberofsecants
correspondingtoadatasetofsizen isn(n− 1)/2. The
motivationforthispaperistoproposeageneralizationof
theSAPalgorithm, which wecallthe HSAP(Hierarchical
Secant-AvoidanceProjection)algorithm,whichaddressesthis
limitation.TheunderlyingideaoftheHSAPalgorithmisto
usethehierarchyofstructurepresentinadatasetinorderto
reducethenumberofsecantsrequiredtoobtainagoodsecant
preservingprojection.Inthiscasethis meansfirstclustering
thedatasetandtheneitherusingalinearapproximationof
eachclusterorasampleofsecantsfromeachclustertocapture
thesecantstructureatthelocallevel.Atthesametimewealso
sampleafairlysmallnumberofsecantsbetweenclustersto
capturethespatialrelationsbetweenclusters.Roughlythen,
theHSAPalgorithmgeneratesaprojectionthatneithermaps
thepointsofasingleclusterontoeachothernor mapsone
clusterontoanother.

Theoutlineofthepaperisasfollows:inSectionII we
reviewsomeofthe mathematicalframeworkthatunderlies
thispaperincludingthegeometryofGrassmannmanifoldsand
dimensionestimation.InSectionIIIwedescribetwoversions
oftheHSAPalgorithmandremarkonvariousaspectsofit.
FinallyinSectionIV wedescribetheresultofrunningthe
HSAPalgorithmonbothasmall-dimensionalsyntheticdata
setandalsoahyperspectraldataset.



II. BACKGROUND

Finding compact representations for complicated objects,
such as data clouds or high-dimensional arrays, has been an
indispensable tool for knowledge discovery within massive
data sets. For instance, if a cloud of points cluster along a k-
dimensional linear space within a vector space, then for many
purposes it is natural to represent the cloud with its linear
approximation. If a more refined representation is desired then
one approach is to consider the linear space that captures a pre-
specified percentage of the energy in the cluster together with a
sparse sampling of the points within the cluster which captures
some essence of the distribution of the data. The Grassmannian
Gr(k, n) is a manifold whose points parametrize the k-
dimensional subspaces of a fixed n-dimensional vector space.
Using this manifold, the cluster can be represented by a point
on Gr(k, n) together with the sparse sampling representing
the distribution. Suppose now that one would like to condense
the information within a very large data cloud residing in a
high-dimensional vector space. In many applications, such a
data cloud can be hierarchically partitioned into a collection
of smaller clusters with each representing some feature of
interest. By compactly representing the points in each cluster
and the relationships between the clusters, one can hope to
better understand the data cloud as a whole. In the sections
that follow, we utilize Grassmann manifolds as organizing
structures to condense and capture much of the information
in a very large data cloud and use this compact representation
of the data cloud to drive algorithms towards locally optimal,
dimensionality-reducing, structure-preserving projections.

An important feature of Grassmannians, in the context of
knowledge discovery in data, is that they can be given the
structure of a differentiable manifold. One would like to
determine the proximity of various points on a Grassmannian
and this is typically carried out by first determining principal
angles between the corresponding vector spaces. This derives
from the fact that every orthogonally invariant metric on a
Grassmann manifold can be described in terms of principal
angles. Furthermore, principal angles between vector spaces
are readily computable through a singular value computation.
In order to understand this statement, we first describe princi-
pal angles in the context of an optimization procedure.

Consider the subspaces U and V of a vector space Rn and
let q = min {dimU,dimV }. The principal angles between
U and V are the angles θ1, θ2, . . . θq ∈ [0, π2 ] between pairs
of principal vectors {uk, vk} with u1, . . . , uq a distinguished
orthonormal set of vector in U and v1, . . . , vq a distinguished
set of orthonormal vectors in V . These vectors are obtained
recursively, for each 1 ≤ k ≤ q, by defining

cos θk = max
u∈U,v∈V

uT v = uTk vk

subject to

• ||u||2 = ||v||2 = 1
• uTui = 0 and vT vi = 0 for i = 1, 2, . . . , k − 1.

The key point is that any orthogonally invariant measure of
similarity between U and V can be determined as a function
of the principal angles.

The principal angles and principal vectors between U and
V can be determined from orthonormal bases for U and V
as follows. Suppose A (respectively B) are matrices whose
columns form orthonormal bases for U (respectively V ). From
the singular value decomposition we have a factorization
ATB = Y ΣZT . If yi (respectively zi) denotes the ith column
of Y (respectively Z) then the ith singular vector pair can
be computed as ui = Ayi and vi = Bzi. Furthermore, the
singular values of ATB are equal to cos θ1, cos θ2, . . . , cos θq,
where the sequence is assumed to be monotonically decreas-
ing.

A. Dimension Estimation

The estimation of dimension from data has been addressed
by numerous authors including, e.g., [5]–[10].

There is a useful theoretical result for characterizing
dimension-preserving transformations. It revolves around the
definition of a bi-Lipschitz function. A function f(x) is said
to be bi-Lipschitz on S if for all x, y ∈ S it holds that

a‖x− y‖`2 ≤ ‖f(x)− f(y)‖`2 ≤ b‖x− y‖`2 .

The constant a restricts pairs of points from collapsing on top
of each other while b restricts pairs of points from blowing
apart. In the context of projection, as we consider in the
algorithm of the next section, we can restrict to the case b = 1.
A key feature of bi-Lipshitz functions is:

if f : S → T is bi− Lipschitz, then dim(S) = dim(T )

where the dimension can be taken as the topological dimen-
sion, or the Hausdorf dimension; see [11] for details. Thus
we see a link between dimension preservation and projections
that avoid collapsing secants. Projection based algorithms that
maximally avoid decreasing the length of secants are, in some
sense, optimally dimension preserving and form the theoretical
motivation for the algorithm presented here. An additional
argument for this approach, based on invoking Whitney’s easy
embedding theorem, is made in [12].

III. THE ALGORITHM

We begin this section by noting two different methods of
representing the secant set of a cluster: either by a linear
approximation (Section III-A) or by a sampling of secants
(Secant III-B). We then go on to describe the HSAP algorithm
proper (Section III-C).

A. Approximation by linear subspaces

Let D be a set of points in Rn. Using a clustering algorithm
one can partition D into N disjoint subsets D1, D2, . . . , DN

(see Section III-D for a discussion of clustering methods). To
each Dj for 1 ≤ j ≤ N we construct a kj-dimensional linear
approximation. That is, to each of these N linear approxima-
tions, we associate an n×kj matrix Vj = [v

(j)
1 , v

(j)
2 , . . . , v

(j)
kj

]
whose columns form an orthonormal basis for the linear



approximation subspace. In particular each Vj also approx-
imates the secant set for points in Dj . We suggest mean-
centering each cluster Dj and using Principal Component
Analysis ([13], [14]) to determine a good Vj , and we note that
this approach is appropriate precisely when the cluster and
consequently the secant set are well approximated as linear
spaces.

In Algorithm 1, we present this version of the HSAP
algorithm, which is the more involved of the two. The mod-
ifications to Algorithm 1 required for the version described
below in Section III-B should be clear from the context.

B. Approximation by sampled secants

In the case where clusters are expected to be highly non-
linear in structure, it makes sense to take an approach which
takes this into account. Therefore in the second version of our
algorithm, instead of approximating our clusters D1, . . . , DN

by linear spaces, we instead approximate the secant set of each
of these clusters by a subset of its secant set. For cluster Dj

let Sj be the corresponding secant set, and include each Sj in
the matrix S defined below.

C. The HSAP Algorithm

In order to encode the relations between different clusters,
we also sample a small selection of points Aj from Dj for
1 ≤ j ≤ N . There are different strategies for doing this, e.g.
one might collect a random sample from Dj or one might
select extremal points of Dj . We calculate all secants between
points in Ai and points in Aj for 1 ≤ i < j ≤ N and
form a matrix S whose columns are the secants formed in this
process. Finally, we choose an initial k-dimensional projection
with a corresponding n × k matrix P (0) whose orthonormal
columns span the projection subspace. We propose an ini-
tialization P (0) defined as the first k columns of Y, where
the data matrix has been decomposed via the singular value
decomposition as Y ΣZT .

In order to obtain a projection P (i+1) that better preserves
secants or their approximations, at the ith iteration we shift
our current projection P (i) toward the secant (or corresponding
approximation) which is currently the worst preserved by P (i).
We call this vector the “shortest representative vector” and
denote it by wi (note that it can come from either a linear
approximation of a secant set or a genuine secant sampled
between clusters). We will also use the projection (which we
denote by w

(p)
i ) of this shortest representative vector onto

the subspace corresponding to P (i). In order to find which
representative vector is worst preserved,
• calculate the singular values σ(j)

1 , . . . , σ
(j)
kj

of (P (i))TVj
for each 1 ≤ j ≤ N ,

• calculate the length ||(P (i))T s||`2 for each s ∈ S.
Note that σ(j)

1 , . . . , σ
(j)
kj

correspond to the cosine function
applied to the principal angles between the subspaces corre-
sponding to P (i) and Vj . This is a natural higher-dimensional
generalization of the process of measuring the length of a unit
vector projected onto a subspace (this is one sense in which
the HSAP algorithm is a generalization of the SAP algorithm).

• If the smallest element is σ(j)
kj
, let y(j)kj and z

(j)
kj

be the
corresponding left and right singular vectors respectively.
Then w

(p)
i = P (i)y

(j)
kj

and wi = Vjz
(j)
kj

. Note that we
assume that the singular values of (P (i))TVj are ordered
from largest to smallest as in the standard singular value
decomposition. In this case we only have to calculate the
last singular value for the comparison step.

• If ||(P (i))T s||`2 is the smallest element, then wi = s and
w

(p)
i = P (j)(P (j))T s.

Finally, we construct P (i+1) from P (i) by first finding the
column P (i)

t of P (i) such that |(P (i)
q )T s∗| is maximized over

all columns P (i)
q . Assume that max

P
(i)
q
|(P (i)

q )T s∗| > 0 (we
will treat the special case where ||(P (i))Twi|| = 0 below).
We then remove the t-th column of P (i), shift all columns
with index strictly less than t forward and add w

(p)
i as the

first column. We run the Gram-Schmidt algorithm on this new
matrix to obtain a matrix P̂ (i) whose columns are orthonormal.
Note that by construction P (i) and P̂ (i) project to the same
subspace. P (i+1) is then the matrix obtained by replacing the
first column P̂ (1)

1 by the normalization of (1−α)P̂
(1)
1 +α(wi−

P̂
(1)
1 ) where α ∈ [0, 1] is small.
In the case where ||(P (i))Twi|| = 0, we replace the first

column P
(i)
1 of P (i) with (1 − α)P

(i)
1 + αwi and run the

Gram-Schmidt algorithm on the resulting matrix. The result is
P (i+1).

D. Remarks on the HSAP algorithm

There are a number of decisions which must be made when
applying the HSAP algorithm to a data set.

A choice of parameter α must be made, which controls the
extent to which the projection shifts at each step. In practice
we have found that when the algorithm is run using α values
between .01 and .05, convergence occurs reasonably quickly
but still reliably.

The HSAP algorithm takes as input clusters
D1, D2, . . . , DN for a data set D. Thus a fundamental
step in the application of the HSAP algorithm is clustering
data. In certain examples, one may have knowledge of
clusters withing the data a priori; in general, we must expect
that it will be necessary to apply an algorithm that attempts
to cluster the data in an optimal way. In light of the fact that
the HSAP algorithm is designed to succeed in a scenario in
which the data set D is very large, we note that there are
many relevant clustering algorithms that are designed for the
big data setting. For example, in [15], the authors propose
extensions to fuzzy and probabilistic clustering for big data
settings. Many authors have suggested implementations
of k-means clustering that utilize graphics processors for
efficiency, e.g. [16]–[21]. See [22], [23] for reviews of
clustering methods for big data. We choose to use a k-means
algorithm in the work we present in this paper; we leave it
to the reader to select an appropriate clustering algorithm for
the particular data setting of interest.

There are several options for the initial projection matrix
P (0). An efficient choice would be to define P (0) to be a



Algorithm 1 Hierarchical Secant-Avoidance Projection
1: inputs Matrices Vj for 1 ≤ j ≤ N, whose orthonormal

columns
{
v
(j)
i

}kj
i=1

form bases for the linear approxima-
tions to clusters D1, D2, . . . , DN that partition a data set
D; small subsets A1, A2, . . . , AN of D1, D2, . . . , DN , re-
spectively; an initial projection P (0) into Rk, max number
of steps (Iterations) or alternative stopping criterion; and
shift parameter α.

2: Calculate all secants between points in Ai and Aj for all
1 ≤ i < j ≤ N . Concatenate all these secants as column
vectors in a matrix S.

3: for i ≤ Iterations do
4: Calculate the singular values σ

(j)
1 , . . . , σ

(j)
kj

for
(P (i))TVj for each 1 ≤ j ≤ N .

5: Calculate the length of (P (i))T s for each s ∈ S.
6: Choose the smallest value among σ(j)

1 , . . . , σ
(j)
kj

for 1 ≤
j ≤ N and ||(P (i))T s||`2 for all s ∈ S in steps 4-5
above.

7: Calculate wi and w(p)
i as in Section III-C.

8: if w(p)
i = 0 then

9: Replace the first column P
(i)
1 of P (i) by (1 −

α)P
(i)
1 + αwi, run the Gram-Schmidt algorithm on

the resulting matrix and set the result equal to P (i+1).
10: else
11: Set t = arg max1≤q≤k |(P

(i)
q )Twi|.

12: Apply the modified Gram-Schmidt algorithm to
w

(p)
i , P

(i)
1 , . . . , P

(i)
t−1, P

(i)
t+1, . . . , P

(i)
k to obtain a new

orthonormal projection P̂ (i).
13: Replace the first column of P̂ (i) with the normaliza-

tion (1− α)P̂
(i)
1 + α(w − P̂ (i)

1 ).
14: i+ 1← i
15: end if
16: end for
17: return

random matrix with orthonormal columns. In practice, this
seems to suffice, though convergence often requires more
iterations when compared with our proposed initialization (the
truncated PCA basis for the column space of the data matrix).

In Step 6 of the HSAP algorithm, it is necessary to compare
the smallest singular values for each Vi against other scalars.
We note that it is possible to compute only the smallest
singular value as a means of added computational efficiency.
There are several articles containing algorithms to do this
(e.g. [24]–[26]) and there are implementations in popular
programming languages, such as MATLAB® [27], which relies
on [28] and [29].

IV. EXAMPLES

A. A synthetic example

We construct a data set Dsyn in R3 consisting of the union
of 100 points sampled from two different lines and 500 points

Fig. 1. The synthetic dataset Dsyn in R3. We construct it to have three natural
clusters; the HSAP algorithm should prevent the clusters from collapsing onto
each other while simultaneously seeking to preserve the data within each
cluster in the projection.

sampled from a plane. Specifically we sample points from

f1(t) =
〈
t,−t, 1

〉
f2(t) =

〈
t, t, 4

〉
f3(t, s) =

〈 t
2
− s, s, t− s− 3

〉
.

(see Figure 1). Note that in this case Dsyn is naturally clus-
tered as subspaces of varying dimensions (this is an artificial
situation but serves well as a first illustration of the algorithm).

We ran 80 iterations of the linear approximation version of
on the HSAP algorithm on Dsyn to obtain a projection P (80)

that maps from R3 into R2. Each sample of points from within
a cluster was chosen randomly and had a size of 20 (i.e. |Aj | =
20 for j = 1, 2, 3). We also set α = .01.

In Figure 2 we plot the norm of the projection of the shortest
representative vector as a function of iteration. As can be
seen, the projection improves fairly quickly over the course of
approximately 70 iterations but then stalls in what is probably
a local minimum.

We see the results of the HSAP projection of Dsyn into
R2 in Figure 3. Note that the algorithm has successfully
projected the natural clusters in the data into distinct locations
in R2 while also preserving the within-cluster spacing to a
reasonable extent.

B. The Indian Pines data set

As a real-world example we apply the HSAP algorithm to
the Indian Pines hyperspectral data set (some bands covering
the region of water absorption are removed) [30]. The data
cube is 145×145×200; that is, there are 200 bands, each with
spatial resolution of 145×145. We define a data set D ⊂ R200

to be the collection of vectors of spectral information taken
across all pixel locations. We then have |D| = 21, 025. There
are consequently over 221 million secants for this data set.
What is more, one would expect that the Indian Pines data set



Fig. 2. A plot of the convergence of the linear approximation version of
the HSAP algorithm run on the Dsyn data set. The iteration is given on the
x-axis, while the y-axis gives the smallest singular value of (P (i))TVj or
the smallest representative vector length.

Fig. 3. The projection of the dataset Dsyn using the output projection P (80)

of an application of the linear approximation version of the HSAP algorithm.

has a naturally clustered structure, where clusters correspond
to materials with different absorbency in the scene. These two
qualities make the Indian Pines data an ideal candidate for the
HSAP algorithm.

The manually-labeled ground truth available for the Indian
Pines data set is displayed in Figure 4. There are 16 labeled
categories (e.g. alfalfa, oats, woods, and buildings-grass-trees-
drives) and a 17th category of unclassified pixels.

In Figure, 6, we see the result of projecting the Indian Pines
data with the result of the HSAP algorithm. In this example,
we project into R3, and we choose to approximate the clusters
with linear spaces (see Section III-A). In order to define the
input clusters D1, D2, . . . , DN , we apply the k-means cluster-
ing algorithm with cosine distance to get approximations of
the naturally occurring clusters in the data. Note that cosine
distance d is defined to be d(u, v) = 1−cos(θ), where θ is the
angle between the two input vectors u and v. See Figure 5 for
the visualization of the result of this application of k-means. In

Fig. 4. The manually-defined ground truth labels for the Indian Pines
hyperspectral data set. There are 16 labeled categories, including, e.g. alfalfa,
corn, oats, woods, and stone-steel-towers. There is also a 17th category of
unclassified pixels.

Fig. 5. The 13 clusters defined by an application of the k-means algorithm
to the Indian Pines hyperspectral data using cosine distance. We note that this
clustering visually appears to have captured some of the relevant structure in
the data set.

Figure 6, the individual clusters are assigned different display
colors (with some repetition of colors due to limited display
options). Note that the projection appears to do a very good
job of preventing these clusters from being collapsed together
while also maintaining some spread among the points within
clusters.

V. CONCLUSION

In this paper, we proposed a novel generalization of the
Secant-Avoidance Projection (SAP) algorithm that is particu-
larly relevant to very large data sets. The Hierarchical Secant-
Avoidance Projection (HSAP) algorithm uses a structured ap-



Fig. 6. The projection into R3 defined by the HSAP algorithm when applied
to the 13 data clusters of Indian Pines hyperspectral data shown in Figure
5. Note that the HSAP algorithm appears to have successfully preserved the
clusters in the provided projection.

proach to selecting appropriate subsets and approximations to
the full secant set in order to guide an iterative algorithm. The
algorithm returns a projection, which seeks to best preserve
the secant set associated to a data set. This projection is useful
for both dimensionality reduction and for approximating the
dimension of the manifold from which the data was drawn
(see [4] for more on this), when such a setting exists. The
usefulness and relevance of the algorithm was demonstrated
in a synthetic example and in an application to Indian Pines
hyperspectral data.

Further research can be completed in the following areas.
• As we note in Section III-B, one may utilize a subset of

secants for a cluster. The optimal number of such secants
is unknown. What is more, while we propose drawing
such secants at random, it may be that more sophisticated
methods of selecting a subset of secants produce better
results.

• We proposed one hierarchical structure and provided
evidence that the algorithm performs well in certain
examples. There may be more efficient hierarchical struc-
tures that one could define or there may be structures that
are better suited to certain data settings.

• A GPU-inspired implementation could lead to a signifi-
cant increase in efficiency.

The HSAP algorithm is one avenue to adapting secant-based
dimensionality-reduction algorithms for use on large data sets,
yielding what we hope is another tool to help understand them.
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