Too many secants: a hierarchical approach to
secant-based dimensionality reduction on large data
sets

Henry Kvinge, Elin Farnell, Michael Kirby, and Chris Peterson
Department of Mathematics
Colorado State University
Fort Collins, CO 80523-1874

Abstract—A fundamental question in many data analysis
settings is the problem of discerning the “natural” dimension
of a data set. That is, when a data set is drawn from a
manifold (possibly with noise), a meaningful aspect of the data
is the dimension of that manifold. Various approaches exist
for estimating this dimension, such as the method of Secant-
Avoidance Projection (SAP). Intuitively, the SAP algorithm seeks
to determine a projection which best preserves the lengths of all
secants between points in a data set; by applying the algorithm to
find the best projections to vector spaces of various dimensions,
one may infer the dimension of the manifold of origination.
That is, one may learn the dimension at which it is possible to
construct a diffeomorphic copy of the data in a lower-dimensional
Euclidean space. Using Whitney’s embedding theorem, we can
relate this information to the natural dimension of the data.
A drawback of the SAP algorithm is that a data set with n
points has n(n 1)/2 secants, making the computation and
storage of all secants infeasible for very large data sets. In this
paper, we propose a novel algorithm that generalizes the SAP
algorithm with an emphasis on addressing this issue. That is,
we propose a hierarchical secant-based dimensionality-reduction
method, which can be employed for data sets where explicitly
calculating all secants is not feasible.

Index Terms—Secant sets, dimensionality reduction, big data

I. INTRODUCTION

Determining the dimension of a dataset is a basic first step
toward a meaningful understanding of the data as well as a
foundational part of any related data analysis. This is espe-
cially true for high-dimensional datasets where calculating the
“inherent” dimension can point toward huge efficiency gains
via dimensionality reduction. The determination of topological
dimension is a central question in the area of geometric data
analysis [1] and the related field of manifold learning [2], [3].
This paper presents a subspace-secant algorithm for computing
projections of data which preserves both the topological and
Hausdorf dimension of a data set. A byproduct of the com-
putation is an estimate of the dimension and an estimate of
the smoothness, and hence stability, of the nonlinear mapping
that reconstructs the data.

In [4] the authors described the SAP (Secant-Avoidance
Projection) algorithm. This algorithm is based in part on

This paper is based on research partially supported by the National Science
Foundation under Grants No. DMS-1513633, DMS-1322508, as well as
DARPA awards N66001-17-2-4020 and D17AP00004.

the commonsense notion that a good dimensionality-reduction
algorithm should strive to be distance preserving. That is, if
two data points are initially far apart, then when we map them
into a reduced space they should remain far apart. This can
be rephrased to say that a dimensionality-reduction algorithm
should preserve the lengths of the secants between points in
the data set. The SAP algorithm takes as input the secant set
S of a dataset in R™ and an integer 0 < k < n and produces
a projection P : R® — R¥, which maximizes the length of
the smallest projected secant among all nearby projections.
Furthermore, by studying the quality of projections produced
by SAP over a range of projection dimensions we can make
a fairly specific guess about the dimension of our data.

One limitation of the SAP algorithm is that it does not
scale well to large datasets because the number of secants
corresponding to a dataset of size n is n(n — 1)/2. The
motivation for this paper is to propose a generalization of
the SAP algorithm, which we call the HSAP (Hierarchical
Secant-Avoidance Projection) algorithm, which addresses this
limitation. The underlying idea of the HSAP algorithm is to
use the hierarchy of structure present in a data set in order to
reduce the number of secants required to obtain a good secant
preserving projection. In this case this means first clustering
the data set and then either using a linear approximation of
each cluster or a sample of secants from each cluster to capture
the secant structure at the local level. At the same time we also
sample a fairly small number of secants between clusters to
capture the spatial relations between clusters. Roughly then,
the HSAP algorithm generates a projection that neither maps
the points of a single cluster onto each other nor maps one
cluster onto another.

The outline of the paper is as follows: in Section II we
review some of the mathematical framework that underlies
this paper including the geometry of Grassmann manifolds and
dimension estimation. In Section III we describe two versions
of the HSAP algorithm and remark on various aspects of it.
Finally in Section IV we describe the result of running the
HSAP algorithm on both a small-dimensional synthetic data
set and also a hyperspectral data set.

II. BACKGROUND

Finding compact representations for complicated objects,
such as data clouds or high-dimensional arrays, has been an
indispensable tool for knowledge discovery within massive
data sets. For instance, if a cloud of points cluster along a k-
dimensional linear space within a vector space, then for many
purposes it is natural to represent the cloud with its linear
approximation. If a more refined representation is desired then
one approach is to consider the linear space that captures a pre-
specified percentage of the energy in the cluster together with a
sparse sampling of the points within the cluster which captures
some essence of the distribution of the data. The Grassmannian
Gr(k,n) is a manifold whose points parametrize the k-
dimensional subspaces of a fixed n-dimensional vector space.
Using this manifold, the cluster can be represented by a point
on Gr(k,n) together with the sparse sampling representing
the distribution. Suppose now that one would like to condense
the information within a very large data cloud residing in a
high-dimensional vector space. In many applications, such a
data cloud can be hierarchically partitioned into a collection
of smaller clusters with each representing some feature of
interest. By compactly representing the points in each cluster
and the relationships between the clusters, one can hope to
better understand the data cloud as a whole. In the sections
that follow, we utilize Grassmann manifolds as organizing
structures to condense and capture much of the information
in a very large data cloud and use this compact representation
of the data cloud to drive algorithms towards locally optimal,
dimensionality-reducing, structure-preserving projections.

An important feature of Grassmannians, in the context of
knowledge discovery in data, is that they can be given the
structure of a differentiable manifold. One would like to
determine the proximity of various points on a Grassmannian
and this is typically carried out by first determining principal
angles between the corresponding vector spaces. This derives
from the fact that every orthogonally invariant metric on a
Grassmann manifold can be described in terms of principal
angles. Furthermore, principal angles between vector spaces
are readily computable through a singular value computation.
In order to understand this statement, we first describe princi-
pal angles in the context of an optimization procedure.

Consider the subspaces U and V' of a vector space R™ and
let ¢ = min {dim U, dim V'}. The principal angles between
U and V are the angles 61,0s,...0, € [0,]] between pairs
of principal vectors {uy, v} with uq,...,u, a distinguished
orthonormal set of vector in U and vy, ..., v, a distinguished
set of orthonormal vectors in V. These vectors are obtained
recursively, for each 1 < k < ¢, by defining

max UT

v =ul v
uelUweV

cos by, =

subject to

o |lullz =1lv]2=1
o uluij=0and vTv;=0fori=1,2,...,k—1.

The key point is that any orthogonally invariant measure of
similarity between U and V' can be determined as a function
of the principal angles.

The principal angles and principal vectors between U and
V' can be determined from orthonormal bases for U and V
as follows. Suppose A (respectively B) are matrices whose
columns form orthonormal bases for U (respectively V). From
the singular value decomposition we have a factorization
ATB =YX ZT If y; (respectively z;) denotes the i** column
of Y (respectively Z) then the ‘" singular vector pair can
be computed as u; = Ay; and v; = Bz;. Furthermore, the
singular values of AT B are equal to cosf;,cosfs, ..., cos 04,
where the sequence is assumed to be monotonically decreas-
ing.

A. Dimension Estimation

The estimation of dimension from data has been addressed
by numerous authors including, e.g., [5]-[10].

There is a useful theoretical result for characterizing
dimension-preserving transformations. It revolves around the
definition of a bi-Lipschitz function. A function f(z) is said
to be bi-Lipschitz on S if for all z,y € S it holds that

allz —ylle, < 1f (@) = FW)lle, < bllz—ylle,-

The constant a restricts pairs of points from collapsing on top
of each other while b restricts pairs of points from blowing
apart. In the context of projection, as we consider in the
algorithm of the next section, we can restrict to the case b = 1.
A key feature of bi-Lipshitz functions is:

if f:S5 — T is bi — Lipschitz, then dim(S) = dim(7")

where the dimension can be taken as the topological dimen-
sion, or the Hausdorf dimension; see [11] for details. Thus
we see a link between dimension preservation and projections
that avoid collapsing secants. Projection based algorithms that
maximally avoid decreasing the length of secants are, in some
sense, optimally dimension preserving and form the theoretical
motivation for the algorithm presented here. An additional
argument for this approach, based on invoking Whitney’s easy
embedding theorem, is made in [12].

III. THE ALGORITHM

We begin this section by noting two different methods of
representing the secant set of a cluster: either by a linear
approximation (Section III-A) or by a sampling of secants
(Secant III-B). We then go on to describe the HSAP algorithm
proper (Section III-C).

A. Approximation by linear subspaces

Let D be a set of points in R™. Using a clustering algorithm
one can partition D into N disjoint subsets D1, Dy, ..., Dy
(see Section III-D for a discussion of clustering methods). To
each D; for 1 < j < N we construct a kj-dimensional linear
approximation. That is, to each of these N linear approxima-
tions, we associate an n x k; matrix V; = [v\?) 0§ 0]
whose columns form an orthonormal basis for the linear

approximation subspace. In particular each V; also approx-
imates the secant set for points in D;. We suggest mean-
centering each cluster D; and using Principal Component
Analysis ([13], [14]) to determine a good V};, and we note that
this approach is appropriate precisely when the cluster and
consequently the secant set are well approximated as linear
spaces.

In Algorithm 1, we present this version of the HSAP
algorithm, which is the more involved of the two. The mod-
ifications to Algorithm 1 required for the version described
below in Section III-B should be clear from the context.

B. Approximation by sampled secants

In the case where clusters are expected to be highly non-
linear in structure, it makes sense to take an approach which
takes this into account. Therefore in the second version of our
algorithm, instead of approximating our clusters D1,..., Dy
by linear spaces, we instead approximate the secant set of each
of these clusters by a subset of its secant set. For cluster D;
let S; be the corresponding secant set, and include each S; in
the matrix S' defined below.

C. The HSAP Algorithm

In order to encode the relations between different clusters,
we also sample a small selection of points A; from D; for
1 < j < N. There are different strategies for doing this, e.g.
one might collect a random sample from D; or one might
select extremal points of D;. We calculate all secants between
points in A; and points in A; for 1 < i < 7 < N and
form a matrix S whose columns are the secants formed in this
process. Finally, we choose an initial k-dimensional projection
with a corresponding n x k matrix P(®) whose orthonormal
columns span the projection subspace. We propose an ini-
tialization P(®) defined as the first & columns of Y, where
the data matrix has been decomposed via the singular value
decomposition as YX.ZT'.

In order to obtain a projection P(+1) that better preserves
secants or their approximations, at the ¢th iteration we shift
our current projection P(¥) toward the secant (or corresponding
approximation) which is currently the worst preserved by P,
We call this vector the “shortest representative vector” and
denote it by w; (note that it can come from either a linear
approximation of a secant set or a genuine secant sampled
between clusters). We will also use the projection (which we
denote by wfp)) of this shortest representative vector onto
the subspace corresponding to P(*). In order to find which
representative vector is worst preserved,

o calculate the singular values O'(J) ...7J,g) of (P)YTV;
foreach 1 < j <N,
« calculate the length ||(P(N7Ts||g, for each s € S.

Note that ai),...,a,(fj) correspond to the cosine function
applied to the principal angles between the subspaces corre-
sponding to P() and V;. This is a natural higher-dimensional
generalization of the process of measuring the length of a unit
vector projected onto a subspace (this is one sense in which
the HSAP algorithm is a generalization of the SAP algorithm).

o If the smallest element is a,(c) et y(7 and z(j) be the

corresponding left and right smgular vectors respectlvely
Then w” = Py i) and w; = Vz,g Note that we

assume that the singular values of (P))TVj are ordered
from largest to smallest as in the standard singular value
decomposition. In this case we only have to calculate the
last singular value for the comparison step.
o If [|(P)T5||4, is the smallest element, then w; = s and
w?) = pO)(PW)Tg
Finally, we construct P01 from P by first finding the
column P of P such that |(P{")Ts

| 1s max1mlzed over
all columns P(. Assume that max |()

*| > 0 (we
will treat the special case where H(P(NTw;|| = 0 below).
We then remove the t-th column of P(), shift all columns
with index strictly less than ¢ forward and add w(p) as the
first column. We run the Gram-Schmidt algorithm on this new
matrix to obtain a matrix P(9) whose columns are orthonormal.
Note that by construction P() and P® project to the same
subspace. PUt1) is then the matrix obtained by replacing the
first column [2’1(1) by the normalization of (l—a)ﬁl(l) +a(w;—
]51(1)) where « € [0, 1] is small.

In the case where ||(P™)Tw;|| = 0, we replace the first
column Pl(z) of P with (1 a)Pl(i) + aw; and run the
Gram-Schmidt algorithm on the resulting matrix. The result is
pli+1)

D. Remarks on the HSAP algorithm

There are a number of decisions which must be made when
applying the HSAP algorithm to a data set.

A choice of parameter o must be made, which controls the
extent to which the projection shifts at each step. In practice
we have found that when the algorithm is run using « values
between .01 and .05, convergence occurs reasonably quickly
but still reliably.

The HSAP algorithm takes as input clusters
Dy,Dy,...,Dy for a data set D. Thus a fundamental
step in the application of the HSAP algorithm is clustering
data. In certain examples, one may have knowledge of
clusters withing the data a priori; in general, we must expect
that it will be necessary to apply an algorithm that attempts
to cluster the data in an optimal way. In light of the fact that
the HSAP algorithm is designed to succeed in a scenario in
which the data set D is very large, we note that there are
many relevant clustering algorithms that are designed for the
big data setting. For example, in [15], the authors propose
extensions to fuzzy and probabilistic clustering for big data
settings. Many authors have suggested implementations
of k-means clustering that utilize graphics processors for
efficiency, e.g. [16]-[21]. See [22], [23] for reviews of
clustering methods for big data. We choose to use a k-means
algorithm in the work we present in this paper; we leave it
to the reader to select an appropriate clustering algorithm for
the particular data setting of interest.

There are several options for the initial projection matrix
PO An efficient choice would be to define P(*) to be a

Algorithm 1 Hierarchical Secant-Avoidance Projection
1: inputs Matrices V; for 1 < j < N, whose orthonormal

columns {vi(j)

form bases for the linear approxima-

tions to clusters iﬁll, D,, ..., Dy that partition a data set
D; small subsets Ay, As,..., Ay of D1, Ds,..., Dy, re-
spectively; an initial projection P(®) into R¥, max number
of steps (Iterations) or alternative stopping criterion; and
shift parameter a.

2: Calculate all secants between points in A; and A; for all
1 <4 < j < N. Concatenate all these secants as column
vectors in a matrix S.

3: for ¢ < Iterations do

Calculate the singular values
(PO)YTV; for each 1 < j < N.
5: Calculate the length of (P(™)T's for each s € S.

(4) (4)

o175 0 for

6: Choose the smallest value among 05‘7), ceey ‘71(5? for1 <
j < N and ||(P)Ts||y, for all s € S in steps 4-5
above.

7. Calculate w; and wgp) as in Section TII-C.

8. if w”) =0 then

9: Replace the first column P of PO by (1 —
a)Pli) + aw;, run the Gram-Schmidt algorithm on
the resulting matrix and set the result equal to PCU+1),

10: else

11 Set t = argmax; <<y, |(Pq(i))Tw7;\.

12: A]é)ply the modified Gram-Schmidt algorithm to
wip), Pl(l)7 ... aPt(i)uPt(jr)u . P,gl) to obtain a new
orthonormal projection PO,

13: Replace the first column of p‘(i) with the normaliza-
tion (1 —)P + a(w — PY).

14: i+ 1+1

15: end if

16: end for

17: return

random matrix with orthonormal columns. In practice, this
seems to suffice, though convergence often requires more
iterations when compared with our proposed initialization (the
truncated PCA basis for the column space of the data matrix).

In Step 6 of the HSAP algorithm, it is necessary to compare
the smallest singular values for each V; against other scalars.
We note that it is possible to compute only the smallest
singular value as a means of added computational efficiency.
There are several articles containing algorithms to do this
(e.g. [24]-[26]) and there are implementations in popular
programming languages, such as MATLAB® [27], which relies
on [28] and [29].

IV. EXAMPLES

A. A synthetic example

We construct a data set Dgy, in R? consisting of the union
of 100 points sampled from two different lines and 500 points

Synthetic Data Example

Fig. 1. The synthetic dataset Dyy, in R3. We construct it to have three natural
clusters; the HSAP algorithm should prevent the clusters from collapsing onto
each other while simultaneously seeking to preserve the data within each
cluster in the projection.

sampled from a plane. Specifically we sample points from
At = (t,~t.1)
() = (t.t,4)
fa(t,s) = <% —5,8,t—8— 3>.

(see Figure 1). Note that in this case Dy, is naturally clus-
tered as subspaces of varying dimensions (this is an artificial
situation but serves well as a first illustration of the algorithm).

We ran 80 iterations of the linear approximation version of
on the HSAP algorithm on Dy, to obtain a projection P(5?)
that maps from R? into R2. Each sample of points from within
a cluster was chosen randomly and had a size of 20 (i.e. |[4,| =
20 for 5 = 1,2,3). We also set o = .01.

In Figure 2 we plot the norm of the projection of the shortest
representative vector as a function of iteration. As can be
seen, the projection improves fairly quickly over the course of
approximately 70 iterations but then stalls in what is probably
a local minimum.

We see the results of the HSAP projection of Dgy, into
R? in Figure 3. Note that the algorithm has successfully
projected the natural clusters in the data into distinct locations
in R? while also preserving the within-cluster spacing to a
reasonable extent.

B. The Indian Pines data set

As a real-world example we apply the HSAP algorithm to
the Indian Pines hyperspectral data set (some bands covering
the region of water absorption are removed) [30]. The data
cube is 145 x 145 x 200; that is, there are 200 bands, each with
spatial resolution of 145 x 145. We define a data set D C R2%0
to be the collection of vectors of spectral information taken
across all pixel locations. We then have |D| = 21,025. There
are consequently over 221 million secants for this data set.
What is more, one would expect that the Indian Pines data set

Norm of Shortest Representative Vector

I I

o o ~

(9] ~ (9]
: ‘

Euclidean Norm
o
(o))
;

2

I
[0,
~

40 60 80
Iteration

e

S

v
o
N
o

Fig. 2. A plot of the convergence of the linear approximation version of
the HSAP algorithm run on the Dsy, data set. The iteration is given on the
x-axis, while the y-axis gives the smallest singular value of (P(i))T‘/j or
the smallest representative vector length.

HSAP Projection of Synthetic Data

Fig. 3. The projection of the dataset Dsyn using the output projection p(80)

of an application of the linear approximation version of the HSAP algorithm.

has a naturally clustered structure, where clusters correspond
to materials with different absorbency in the scene. These two
qualities make the Indian Pines data an ideal candidate for the
HSAP algorithm.

The manually-labeled ground truth available for the Indian
Pines data set is displayed in Figure 4. There are 16 labeled
categories (e.g. alfalfa, oats, woods, and buildings-grass-trees-
drives) and a 17th category of unclassified pixels.

In Figure, 6, we see the result of projecting the Indian Pines
data with the result of the HSAP algorithm. In this example,
we project into R?, and we choose to approximate the clusters
with linear spaces (see Section III-A). In order to define the
input clusters Dy, Do, ..., Dy, we apply the k-means cluster-
ing algorithm with cosine distance to get approximations of
the naturally occurring clusters in the data. Note that cosine
distance d is defined to be d(u,v) = 1—cos(f), where 6 is the
angle between the two input vectors u and v. See Figure 5 for
the visualization of the result of this application of k-means. In

Fig. 4. The manually-defined ground truth labels for the Indian Pines
hyperspectral data set. There are 16 labeled categories, including, e.g. alfalfa,
corn, oats, woods, and stone-steel-towers. There is also a 17th category of
unclassified pixels.

Fig. 5. The 13 clusters defined by an application of the k-means algorithm
to the Indian Pines hyperspectral data using cosine distance. We note that this
clustering visually appears to have captured some of the relevant structure in
the data set.

Figure 6, the individual clusters are assigned different display
colors (with some repetition of colors due to limited display
options). Note that the projection appears to do a very good
job of preventing these clusters from being collapsed together
while also maintaining some spread among the points within
clusters.

V. CONCLUSION

In this paper, we proposed a novel generalization of the
Secant-Avoidance Projection (SAP) algorithm that is particu-
larly relevant to very large data sets. The Hierarchical Secant-
Avoidance Projection (HSAP) algorithm uses a structured ap-

HSAP Projection of Indian Pines Data

15000

N 10000

5000
15000
10000
4
y 0 -0.5 x10

Fig. 6. The projection into R® defined by the HSAP algorithm when applied
to the 13 data clusters of Indian Pines hyperspectral data shown in Figure
5. Note that the HSAP algorithm appears to have successfully preserved the
clusters in the provided projection.

proach to selecting appropriate subsets and approximations to
the full secant set in order to guide an iterative algorithm. The
algorithm returns a projection, which seeks to best preserve
the secant set associated to a data set. This projection is useful
for both dimensionality reduction and for approximating the
dimension of the manifold from which the data was drawn
(see [4] for more on this), when such a setting exists. The
usefulness and relevance of the algorithm was demonstrated
in a synthetic example and in an application to Indian Pines
hyperspectral data.
Further research can be completed in the following areas.

e As we note in Section III-B, one may utilize a subset of
secants for a cluster. The optimal number of such secants
is unknown. What is more, while we propose drawing
such secants at random, it may be that more sophisticated
methods of selecting a subset of secants produce better
results.

e« We proposed one hierarchical structure and provided
evidence that the algorithm performs well in certain
examples. There may be more efficient hierarchical struc-
tures that one could define or there may be structures that
are better suited to certain data settings.

e A GPU-inspired implementation could lead to a signifi-
cant increase in efficiency.

The HSAP algorithm is one avenue to adapting secant-based
dimensionality-reduction algorithms for use on large data sets,
yielding what we hope is another tool to help understand them.

REFERENCES

[11 M. Kirby, Geometric Data Analysis: An Empirical Approach to Dimen-
sionality Reduction and the Study of Patterns. Wiley, 2001.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,” Science,
vol. 290, no. 5500, pp. 2319-2323, 2000. [Online]. Available:
http://science.sciencemag.org/content/290/5500/2319

S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, pp. 2323-2326, 2000.

H. Kvinge, E. Farnell, M. Kirby, and C. Peterson, “A gpu-oriented
algorithm design for secant-based dimensionality reduction,” in The 17th
IEEE International Symposium on Parallel and Distributed Computing.
IEEE, 2007, to appear.

D. S. Broomhead, R. Jones, and G. P. King, “Topological dimension
and local coordinates from time series data,” J. Phys. A: Math. Gen,
vol. 20, pp. L563-L569, 1987.

M. Anderle, D. Hundley, and M. Kirby, “The bilipschitz criterion for
mapping design in data analysis,” Intelligent Data Analysis, vol. 6, no. 1,
pp. 85-104, 2002.

D. Hundley and M. Kirby, “Estimation of topological dimension,”
in Proceedings of the Third SIAM International Conference on Data
Mining, San Fransico, 2001, pp. 194-202.

J. A. Costa and A. O. Hero, “Determining intrinsic dimension and
entropy of high-dimensional shape spaces,” in Statistics and Analysis
of Shapes. Springer, 2006, pp. 231-252.

K. Fukunaga and D. R. Olsen, “An algorithm for finding intrinsic
dimensionality of data,” IEEE Transactions on Computers, vol. 100,
no. 2, pp. 176-183, 1971.

D. S. Broomhead and M. J. Kirby, “Dimensionality reduction using
secant-based projection methods: The induced dynamics in projected
systems,” Nonlinear Dynamics, vol. 41, no. 1, pp. 47-67, Aug 2005.
[Online]. Available: https://doi.org/10.1007/s11071-005-2792- 1

K. Falconer, Fractal geometry, 2nd ed. John Wiley & Sons,
Inc., Hoboken, NJ, 2003, mathematical foundations and applications.
[Online]. Available: https://doi.org/10.1002/0470013850

D. Broomhead and M. Kirby, “A new approach for dimensionality
reduction: Theory and algorithms,” SIAM J. of Applied Mathematics,
vol. 60, no. 6, pp. 2114-2142, 2000.

H. Hotelling, “Analysis of a complex of statistical variables into principal
components.” Journal of educational psychology, vol. 24, no. 6, p. 417,
1933.

I. T. Jolliffe, “Principal component analysis and factor analysis,” in
Principal component analysis. Springer, 1986, pp. 115-128.

R. J. Hathaway and J. C. Bezdek, “Extending fuzzy and probabilistic
clustering to very large data sets,” Computational Statistics & Data
Analysis, vol. 51, no. 1, pp. 215-234, 2006.

F. Cao, A. K. Tung, and A. Zhou, “Scalable clustering using graphics
processors,” in International Conference on Web-Age Information Man-
agement. Springer, 2006, pp. 372-384.

R. Wu, B. Zhang, and M. Hsu, “Clustering billions of data points using
GPUS,” in Proceedings of the combined workshops on UnConventional
high performance computing workshop plus memory access workshop.
ACM, 2009, pp. 1-6.

Y. Li, K. Zhao, X. Chu, and J. Liu, “Speeding up k-means algorithm by
GPUs,” Journal of Computer and System Sciences, vol. 79, no. 2, pp.
216-229, 2013.

B. Hong-Tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and L. He, “K-means
on commodity gpus with cuda,” in Computer Science and Information
Engineering, 2009 WRI World Congress on, vol. 3. 1IEEE, 2009, pp.
651-655.

S. A. Shalom, M. Dash, and M. Tue, “Efficient k-means clustering using
accelerated graphics processors,” in International conference on data
warehousing and knowledge discovery. Springer, 2008, pp. 166—175.
R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell, “A parallel
implementation of k-means clustering on gpus.” in Pdpta, vol. 13, no. 2,
2008, pp. 212-312.

A. S. Shirkhorshidi, S. Aghabozorgi, T. Y. Wah, and T. Herawan, “Big
data clustering: a review,” in International Conference on Computational
Science and Its Applications. Springer, 2014, pp. 707-720.

A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya,
S. Foufou, and A. Bouras, “A survey of clustering algorithms for big
data: Taxonomy and empirical analysis,” IEEE transactions on emerging
topics in computing, vol. 2, no. 3, pp. 267-279, 2014.

H. Schwetlick and U. Schnabel, “Iterative computation of the smallest
singular value and the corresponding singular vectors of a matrix,”
Linear algebra and its applications, vol. 371, pp. 1-30, 2003.

[25]

[26]

[27]

(28]

[29]

(30]

G. Hongbin, “Irr: An algorithm for computing the smallest singular
value of large scale matrices,” International Journal of Computer
Mathematics, vol. 77, no. 1, pp. 89-104, 2001.

N. Lee and A. Cichocki, “Estimating a few extreme singular values and
vectors for large-scale matrices in tensor train format,” SIAM Journal on
Matrix Analysis and Applications, vol. 36, no. 3, pp. 994-1014, 2015.
“Matlab and statistics toolbox release,” 2018, the MathWorks, Natick,
MA, USA.

J. Baglama and L. Reichel, “Augmented implicitly restarted lanczos
bidiagonalization methods,” SIAM Journal on Scientific Computing,
vol. 27, no. 1, pp. 19-42, 2005.

R. M. Larsen, “Lanczos bidiagonalization with partial reorthogonaliza-
tion,” DAIMI Report Series, vol. 27, no. 537, 1998.

Grupo de Inteligencia Computacional, “Hyperspectral remote sensing
scenes,” 2014, http://www.ehu.eus/ccwintco/index.php/Hyperspectral _
Remote_Sensing_Scenes, Last accessed on 2018-4-30.

