
SLATE and the Mobility of Capability

Robert Gardner*, University of Chicago; Joseph Breen, University of Utah; Lincoln Bryant,
University of Chicago; and Shawn McKee, University of Michigan

*Corresponding author address: Computation Institute, University of Chicago, Chicago, IL,
60637, USA; email: rwg@uchicago.edu

Abstract: SLATE (Services Layer at the Edge) is

a new project that, when complete, will implement
“cyberinfrastructure as code” by augmenting the
canonical Science DMZ pattern with a generic,
programmable, secure and trusted underlayment
platform. This platform will host advanced
container-centric services needed for higher-level
capabilities such as data transfer nodes, software
and data caches, workflow services and science
gateway components. SLATE will use best-of-breed
data center virtualization components, and where
available, software defined networking, to enable
distributed automation of deployment and service
lifecycle management tasks by domain experts. As
such it will simplify creation of scalable platforms
that connect research teams, institutions and
resources to accelerate science while reducing
operational costs and development cycle times.
Since SLATE will be designed to require only
commodity components for its functional layers, its
potential for building distributed systems should
extend across all data center types and scales, thus
enabling creation of ubiquitous, science-driven
cyberinfrastructure. By providing automation and
programmatic interfaces to distributed HPC back-
ends and other cyberinfrastructure resources,
SLATE will amplify the reach of science gateways
and therefore the domain communities they
support.

1. Introduction
Much of science today is propelled by multi-

institutional research collaborations that require
platforms connecting experiment facilities,
computational resources, and data distributed
among laboratories, research computing centers,
and in some cases commercial cloud providers. The
scale of the data and complexity of the science drive
this diversity. In this context, research computing

Proceedings of Gateways 2017, University of Michigan,
Ann Arbor, MI; October 23-25, 2017.
https://gateways2017.figshare.com/.

teams strive to empower their universities with
emergent technologies which bring new and more
powerful computational and data capabilities that
foster multi-campus and multi-domain
collaborations to accelerate research. Recently,
many institutions invested in their campus network
infrastructure with these goals in mind. Yet even for
the most advanced, well-staffed, and well-equipped
campus research computing centers the task is
daunting. Acquiring and maintaining the full scope
of cyber-engineering expertise necessary to meet
the complex and expanding demands of data and
computationally driven science is too costly and
does not scale to the full spectrum of science
disciplines. The diversity of computation, data and
research modalities all but ensures that scientists
spend more time on computation and data
management related tasks than on their domain
science while research computing staff spend more
time integrating domain specific software stacks
with limited applicability and sustainability beyond
the immediate communities served. Capabilities
elsewhere are not available locally, and vice versa.
How should campus and HPC resource providers
evolve their cyberinfrastructure to more easily
incorporate data infrastructure building blocks
developed in other contexts?

2. Approach
We will address this challenge in complexity

and scaling by introducing a Services Layer At The
data center “Edge” (SLATE) which will enable
distributed automation, centralized delivery and
operation of data, software, gateway and workflow
infrastructure. Much as Google re-imagined the data
center [1] and initiated a wave of data center
virtualization development, we view advanced

“cyberinfrastructure as code” as an appropriate
metaphor for transforming the way advanced
science platforms are built and operated. SLATE
will augment the Science DMZ pattern [2] by
adding a secure and trusted “underlayment”
platform to host advanced data and software
services needed for higher-level, connective
functions between data centers. These connective
services could include, for example, a domain
specific content delivery network endpoint, a
collaboration data cache, a job (workflow)
scheduler, a service component of a distributed
science gateway, an http-based software cache, or a
resource discovery service (for higher level, meta
scheduling systems).

A major focus of SLATE will be development
of community accepted Science DMZ patterns
capable of supporting advanced and emerging

technologies. In this project, we are focusing on
production services for data mobility, management,
and access as driven by data-intensive science
domains. For operators of distributed data
management services, content delivery networks,
and science gateways SLATE will closely resemble
the NIST definition [3] of a PaaS (Platform-as-a-
Service) though the underlying infrastructure is not

limited to a cloud context. We are leveraging
experience and lessons learned in the deployment
and operation of data systems linking over 60 data
centers for the LHC computing grid. Figure 1 gives
a schematic of the SLATE concept in the local HPC
context.

 The SLATE concept should accommodate
large, well-equipped HPC centers as well as
research computing facilities at institutions with
fewer resources as well as commercial cloud
providers. Modern HPC centers which support data
intensive science typically have a Science DMZ
which hosts dedicated data transfer nodes,
perfSONAR [4, 5] measurement hosts, and security
and enforcement policies needed for high
performance, wide area applications. A dedicated
SLATE edge platform will augment the existing
Science DMZ by offering a platform capable of

hosting advanced, centrally managed research
computing edge services including, where the local
infrastructure permits it, the deployment of virtual
circuits and other software defined networking
constructs. For a small institution with limited
resources, the SLATE concept may provide a
complete Science DMZ infrastructure to more
quickly integrate these institutions into centrally

Fig 1: A SLATE edge platform within a campus Science DMZ hosts trusted services operated by a central team which
might be operating a network of such services across several campuses. Science “app” developers interact with the
SLATE platform service factory to define and launch elements of a science gateway, data cache, or local workflow
service.

managed research platforms. The SLATE concept
will allow local resource administrators the ability
to simply install the infrastructure while offering
central research groups the services needed for
management of software and science tools used on
the platform. Thus, a local researcher in a small
institution could focus on the science and
connecting any requisite science instrumentation,
while the local IT staff would not have the burden
of trying to understand the science requirements,
application software dependencies, data and
workflow particulars, etc. A good science use-case
comes from a medium sized collaboration to detect
dark matter.

3. A Platform for Dark Matter Searches
Observations of the cosmic microwave

background fluctuation, large-scale galaxy surveys,
and studies of large-scale
structure formation
indicate that a large
fraction of the matter in
the universe is not
visible. An exotic but as
yet undiscovered
elementary particle could
explain these
observations. Several
experiments have been
built in last two decades
to prove the existence of
such elusive particles but
their detection has
proved challenging as we
do not have yet a clear
picture of what they are
and if they really exist.

The XENON1T
experiment, a two-phase
xenon Time Projection Chamber has been built in
the Laboratori Nazionali del Gran Sasso (LNGS) in
Italy to study fundamental questions about the
existence and make-up of dark matter.
Commissioning began during the first few months
of 2016, with the first large scale science run
beginning in December 2016. Thanks to its one ton
fiducial mass and ultra-low background, the
XENON1T experiment will soon begin probing

properties of dark matter in yet unexplored regions.
A data processing and analysis hub is hosted by

the UChicago Research Computing Center (RCC)
to complement processing and analysis facilities in
Europe (Stockholm is the European analysis hub).
A distributed data management service for the
collaboration has been built so that experiment and
simulation data sets at various stages of processing
can be distributed and shared easily throughout the
22 member institutes. The XENON1T Rucio
service [6] is deployed in a network of five storage
endpoints (GridFTP-based data transfer nodes) in
Europe and the U.S providing a highly scalable
global namespace, a reliable and fast transfer
service, a subscription (“placement rules”) service,
and a deletion service for data lifecycle
management. The raw experimental data are
uploaded at LNGS and automatically replicated to

specific HPC centers for processing, and data
products from those systems are registered into the
system for distribution to the analysis hubs. The
Rucio client tools provide a uniform data access
model for end-user physicists.

Fig. 2: The XENON collaboration which requires a data management and processing
platform that stretches across the resources of its member institutes.

A major obstacle has been preparation of the
storage endpoints in the system which required
expertise and effort at each site. This preparation is
where a SLATE platform would have shined and
reduced a several months-long deployment and
validation process into a week or two: pre-
configured, containerized GridFTP servers
customized with checksum calculation, and system
registration plugin modules could have been
deployed by the central data manager rather than by
local systems administrators. In the future, SLATE
will streamline updates to the system including
Rucio client software and deployment of
monitoring sensors for system-wide analytics,
providing capabilities where needed.

4. Planned Components and
Capabilities
SLATE will leverage advances made by

previous testbeds [7-10] and similar platforms [11,
12] and will integrate best-of-breed data center
virtualization and service orchestration
technologies from the open source community.
With the explosion of IaaS (Infrastructure as a
Service) [13] offered through data center
virtualization software, container orchestration
engines, etc., the technical paths and best practices
are still being discovered and invented at a rapid
pace. We expect over the lifetime of this project to
see advances in infrastructure delivery and advances

at all layers in the
service stack. Our
challenge then is to
remain flexible
enough to shift
direction when the
advantages are clear.

The system
architecture diagram
of Figure 4 gives a
schematic picture of
the SLATE system in
our vision. The
SLATE Platform
Factory will provide
views for science
data operators as well
as for operators of the

underlying infrastructure at a local institution.
Health checking and alarming systems will be
implemented at all critical points in the platform.
The platform will bring distributed services from
multiple data centers logically into one system, and
like nodes in a virtual data center they can be
scheduled, monitored, terminated, etc. The SLATE
platform software we develop would be open
source, and independent groups would be able to
use it to build new forms of advanced
cyberinfrastructure for their communities. As an
example, we will use SLATE for widespread
deployment of a caching service like the XRootD
[14] system. The SLATE team will maintain a local
integration testbed and validation service for site
configurations. Containerized services will be
curated by the central group and be validated for
functionality, performance and security. Data
services at the site can manage data of a semi-
persistent type or purely ephemeral (caching) type.
Other obvious edge services would be a Globus
Connect [15] service or an HTTP web caching
service.

 The SLATE provisioning service, while
firstly targeting the (bare metal) SLATE edge
nodes, will have the ability to handle multiple
infrastructure types, including various public and
private cloud providers. In this context, we will not
re-invent the wheel but will leverage the plethora of
provisioning tools for cloud infrastructure,

Fig 3: The multi-institution data management platform for the XENON collaboration. A
central server for managed file transfer is hosted at Brookhaven National Laboratory, and
central file and dataset catalogs and service agents are hosted by the University of
Chicago. At each of the storage endpoints is a GridFTP service. Each of these services is
managed individually so that the platform itself requires efforts from 10 individual
administrators. With a SLATE hosted platform, the services, configuration, monitoring and
optimization could be managed by a single operator, requiring only basic server
management at the endpoints.

including, potentially, Terraform [16], Apache
libCloud [17], etc. when appropriate. The container
engine will likely be based on Docker [18] though
we have experimented with LXD [19] and found it
to be potentially better suited to the task. The
container scheduler service options are many,

though Kubernetes [20, 21] and Mesos [22] are
leading candidates.

By integrating best-of-breed tools in wide-scale
use in the cloud-native community, we minimize
software development while providing sustainable
flexibility. In summary, the components of SLATE

Fig 4: Overview of the planned SLATE edge management system which allows science domain managers to
implement building block services such as data management systems or caching networks. A SLATE Platform Service
Factory provides global provisioning, service orchestration, monitoring and analytics functions for deployed
applications. Shown are three different kinds of users: the SLATE Project Operators, Resource Provider Managers
and Science Domain Managers. Science Domain Managers use SLATE to define their applications and science
workflow. Site Resource Managers use SLATE to register, provision and enable access to their sites as well as set
up policies and quota for their supported science virtual organizations. The SLATE Project Operators use the central
services to monitor and maintain all SLATE services at all sites.

platform are expected to consist of the following:
• Controller/console for globally distributing

“applications”, the main interface for the
SLATE controller platform or directly to an
edge platform node

• Discovery service (local and multi-data center)
and a scheduling service (e.g. Mesos or
Kubernetes)

• Automated core provisioning service (e.g.
Ansible [23], Puppet [24])

• System monitoring and log aggregation (e.g.
Check_mk [25], Elastic Stack [26], OSSIM
[27])

1.1 SLATE Platform Node
A SLATE Platform Node (SPN) will be an

appliance-like device that sits within the Science
DMZ to provide a variety of local services to an
institution (Figure 5). The operating system for
SPNs will likely be based on CoreOS [28], with
additions and modifications as-needed. The base OS
will only run the container engine, SLATE-specific
orchestration and authentication services, and
necessary software to communicate to the
baseboard management controller. Updates to the
base OS image will be published and GPG-signed
on a regular basis.

Container services. The first container type
will be the “system” container, maintained by the
SLATE team, which will provide a number of back-
end services for the platform. As a matter of
principle, all system services that are feasible to be
containerized will be, so as to keep the base
operating system as lightweight as possible. Some
example system containers include:

● API: Provides an interface for both
command-line and web-based tools to schedule,
start, and stop containers on the service.

● Monitoring: Consumes data from services,
including performance statistics, logs, errors, etc.
and publishes to the central operations team and the
local site administrator.

● Admin UI: A web-based interface for
system operators to manage the local SPN and allow
local site administrators to view performance
metrics and logs, kill containers, reboot the
appliance, etc.

The second, more interesting container type

supported by the SPN will be the “application
container”. Application containers will be curated
by a team of operators.

Remote Administration: The SPN base OS
will have software installed to communicate with
the SPN baseboard management controller via IPMI
or vendor-specific tools (e.g., Dell OpenManage).
The central operations team will be able to monitor
for failed disks, fans, or other hardware, source
replacements and send them to the site, and report
this to the local site administrator for servicing.

Image Updater: As the platform grows, or as
vulnerabilities, bugs, or other deficiencies appear, it
will be necessary to patch the base operating system
from time to time. The SPN will have a daemon for
polling for system updates from the central
operations platform, and flag itself for a reboot once
the new OS image has been downloaded and
verified. OS images will be downloaded from a
secure (HTTPS) server and be GPG signed.

Disk Management: SPNs in our first testbed
will come with a reasonably large disk array (48TB
in the “A” model, 32TB in the “B” model) with a
variety of science users, so data management is a
necessary feature of the platform. Science domain
users of the SLATE platform will need to declare
the disk utilization and I/O requirements of their
application ahead of time, or run their application
through the SLATE integration and test framework

Fig 5: The planned SLATE service architecture on an
edge platform node.

to determine these values. Once determined, the
application can be deployed onto a SLATE node at
an institution. SLATE nodes will split their storage
between ephemeral storage - used opportunistically
by domain users with a fair-share policy and fast
expiry time, and persistent storage - space requested
specifically by the science domain user or gateway
developer.

perfSONAR: All sites will be equipped with
two perfSONAR nodes, each capable of bandwidth
and latency measurements using two of the on-
board NICs.

Network: The networking component of the
SLATE node will work with existing campus
networks and campus programmable Science DMZ
infrastructure to provide a layer 2 and/or layer 3
substrate for migrating large data sets between
resources. Two versions of the SLATE node will
be available, a “large site” node and a “small site”
node. The large SLATE node will provide an
OpenFlow capable switch capable of 10Gb/s or
greater switching speeds. The small SLATE node
will provide a single host with Open Virtual Switch
that will allow connectivity at 1Gb/s and 10Gb/s.
For the implementation, each campus will be able to
decide which style node it can support. The campus
will provide one management connection for the
platform host and one management connection for
each of the perfSONAR nodes. Management
connections will be specially routed via SDN to

secure access to only system managers and SLATE
personnel. For the data plane, the platform host or
the switch will require one or more data plane
connections, as negotiated with campus
administrators. The data plane connection(s) will,
ideally, exist on a campus programmable Science
DMZ infrastructure. For small campuses, this
connection may be a simple dedicated connection
that does not reside behind the campus firewall. For
large sites, the SLATE switch allows one or more
uplinks for the data plane and many access ports for
scaling additional nodes.

The networking component of the SLATE node
will provide OpenFlow [29] capabilities through the
provided switch or through Open Virtual Switch
(OVS). To effectively utilize the OpenFlow
capabilities to interconnect to partner institutions,
the campus will need to provision a path to
Internet2’s AL2S across its regional. Many
campuses have gone through this exercise
previously in order to support NSF funded GENI
racks [7, 10]. Implementations for GENI racks have
utilized dedicated circuits, dedicated VLANs, or
campus provided OpenFlow configurations. The
SLATE nodes would utilize similar configurations
when possible.

1.2 Planned Central Services
SLATE will provide a web-based interface that

will be used as a sort of concierge service for

Table 1: Example SLATE controller command line interface commands and function.

Command Function
$ slate deploy --site B [service ID] Deploy service ID to site B

$ slate start / stop --site B [service ID] Selectively control services

$ slate diag –-global [service ID] Retrieve system-wide diagnostic
reports for a service

$ slate update --global [service ID] Update a configuration globally

$ slate validate --group VO --cloud US,IT --all
Validate the all services on behalf
of a virtual organization over US
and Italy community clouds

$ slate replicate –-src A –-dest B,C [service ID] Copy a running service and data
from site A to sites B and C

$ slate migrate –-src A –-dest B [service ID] Move a running service and data
from site A to site B

matching resources to science domains. The portal
will have different views and options based on the
type of user. For example, local site administrators
and managers will be able to see the performance of
their SLATE appliance on-site, and utilization by
science domains. Science domain users will be able
to see throughput and disk utilization on a per site
basis. Users who aren’t logged in will be able to see
overall utilization of the SLATE platform and other
front-facing niceties.

1.3 SLATE Application Containers
All project software running on the SLATE

platform will need to run inside of an application
container. This allows great flexibility, as experts in
a particular domain can provide an operating system
image. All application containers will have to
declare a set of resource requirements. These
requirements may include disk utilization,
minimum throughput (MB/s), firewall ports,
memory and CPU. The SLATE platform will be
able to compare these resource declarations to the
available resources, and provide a candidate list of
resource targets for the application. The platform
may go further and suggest changes that could be
made to the application for greater proliferation.

1.4 SLATE Integration and Test Framework
Before deployment on production SPNs, any

applications that wish to run through the SLATE
platform will need to be run through an integration
and test framework on the SLATE development
environment. The integration framework will
provide feedback to the application developer, with
details about whether or not the application has run
successfully on the platform, and any relevant
performance metrics.

5. SLATE and Science Gateways
We view SLATE as a potential amplifier for

science gateway processing back-ends. The
platform will enable distributed automation and
centralized delivery and operational controls for
data, software, and workflow services. Thus, a
distributed “DevOps” model of programming and
development will be possible in a way that shortens
the development and testing timeline. The SLATE
team will partner with the Science Gateways
Community Institute (SGCI) to ensure that existing

expertise, lessons and preferred operational
modalities of science gateway back-ends are
leveraged. The SLATE project will collaborate
closely with the SGCI to assure that its platform will
be added in the Scientific Software Collaborative
(SSC).

In summary, we see SLATE offering a means to
more easily build science gateway back-ends,
therefore streamlining the development process,
while the SGCI provides a community for outreach
and adoption of SLATE among science
communities and university HPC resource
providers.

6. Conclusions and Outlook
At the time of this article the SLATE project has

just begun. Currently the focus is on establishing a
three-site testbed on which to evaluate local
container orchestration frameworks, the federation
of such service frameworks across multiple sites,
and the management of both stateless and stateful
services. The project welcomes contributions and
participation from groups and individuals focused
on building distributed research platforms and
gateway systems. Interested readers may follow
developments at http://slateci.io/.

7. Acknowledgments
SLATE is funded by NSF CIF21 DIBBs grant

award number 1724821. Collaborating institutions
are the University of Chicago, the University of
Michigan, the University of Utah, New Mexico
State University and Clemson University.

8. References
1. Barroso, L.A. and U. Hölzle, The Datacenter as

a Computer: An Introduction to the Design of
Warehouse-Scale Machines. Synthesis Lectures
on Computer Architecture, 2009. 4(1): p. 1-108.

2. Eli Dart, L.R., Brian Tierney, Mary Hester, and
Jason Zurawski, The Science DMZ: a network
design pattern for data-intensive science, in
Proceedings of the International Conference on
High Performance Computing, Networking,
Storage and Analysis. 2013, ACM: Denver,
Colorado. p. 1-10.

3. Fang Liu, J.T., Jian Mao, Robert Bohn, John
Messina, Lee Badger, Dawn Leaf NIST Cloud

Computing Reference Architecture, . National
Institute of Standards and Technology Special
Publication, 2011.

4. Hanemann, A., Boote, J. W., Boyd, E. L.,
Durand, J., Kudarimoti, L., Lapacz, R., Swany,
D. M., Zurawski, J., and Trocha, S.,
PerfSONAR: A Service Oriented Architecture
for Multi-Domain Network Monitoring, in
Third International Conference on Service
Oriented Computing. 2005, Springer Verlag:
Amsterdam, The Netherlands. p. 241-254.

5. PerfSonar-PS Publications. 2005-2009;
Available from:
http://www.perfsonar.net/publications.html.

6. Garonne, V. Rucio – The next generation of
large scale distributed system for ATLAS Data
Management. in CHEP2013. 2013.

7. GENI (Global Environment for Network
Innovations), a virtual laboratory for
networking and distributed systems research
and education. Available from:
https://www.geni.net/.

8. GENI Network Stitching Architecture. 2016;
Available from:
http://groups.geni.net/geni/wiki/GeniNetworkStitch
ing.

9. Ilia Baldine, Y.X., Anirban Mandal, Paul Ruth,
Chris Heerman and Jeff Chase, ExoGENI: A
Multi-domain Infrastructure-as-a-Service
Testbed, in Testbeds and Research
Infrastructure. Development of Networks and
Communities: 8th International ICST
Conference, TridentCom 2012, Thessanoliki,
Greece, June 11-13, 2012, Revised Selected
Papers, T. Korakis, M. Zink, and M. Ott,
Editors. 2012, Springer Berlin Heidelberg:
Berlin, Heidelberg. p. 97-113.

10. Mark Berman, J.C., Lawrence Landweber,
Akihiro Nakao, Max Ott, Dipankar
Raychaudhuri, Robert Ricci, and Ivan Seskar,
GENI: A federated testbed for innovative
network experiments. Computer Networks,
2014. 61: p. 5-23.

11. Cyverse life sciences platform. Available from:
http://www.cyverse.org/about.

12. The Pacific Research Platform. Available from:
http://prp.ucsd.edu/.

13. Mell, P. and T. Grance, The NIST Definition of
Cloud Computing. 2011, NIST Special
Publication 800-145, National Institute of
Standards and Technology.

14. The XRootD Project. Available from:
http://xrootd.org/.

15. Globus. Guide for Globus Resource Providers.
2016; Available from:
https://docs.globus.org/resource-provider-guide/.

16. HahsiCorp. Terraform: Infrastructure as Code.
2016; Available from: https://www.terraform.io/.

17. Apache libCloud: One Interface to Rule them
All. 2016; Available from:
https://libcloud.apache.org/about.html.

18. Docker - An open platform for distributed
applications for developers and sysadmins.
2015; Available from: https://www.docker.com/.

19. The Linux Container Hypervisor. 2016;
Available from:
http://www.ubuntu.com/cloud/lxd.

20. Google. Kubernetes: Production-Grade
Container Orchestration. 2016; Available
from: http://kubernetes.io/.

21. Brendan Burns, B.G., David Oppenheimer, Eric
Brewer, and John Wilkes, Borg, Omega, and
Kubernetes. Queue, 2016. 14(1): p. 70-93.

22. Benjamin Hindman, et al., Mesos: a platform
for fine-grained resource sharing in the data
center, in Proceedings of the 8th USENIX
conference on Networked systems design and
implementation. 2011, USENIX Association:
Boston, MA. p. 295-308.

23. Hall, D., Ansible Configuration Management.
2013: Packt Publishing. 92.

24. Loope, J., Managing Infrastructure with
Puppet. 2011: O'Reilly Media, Inc. 46.

25. Check_mk: The open source IT monitoring
solution in the tradition of Nagios. Available
from: http://mathias-kettner.com/check_mk.html.

26. Elastic Stack. 2016; Available from:
https://www.elastic.co/guide/index.html.

27. AlienVault OSSIM: The World’s Most Widely
Used Open Source SIEM. 2016; Available
from: https://www.alienvault.com/products/ossim.

28. CoreOS: Self-Driving Container Infrastructure.
Available from: https://coreos.com/.

29. N. McKeown, et al., OpenFlow: Enabling
Innovation in Campus Networks. ACM
SIGCOMM Computer Communication
Review, 2008. 38(2): p. 69-74.

