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Abstract: SLATE (Services Layer at the Edge) is 

a new project that, when complete, will implement 
“cyberinfrastructure as code” by augmenting the 
canonical Science DMZ pattern with a generic, 
programmable, secure and trusted underlayment 
platform. This platform will host advanced 
container-centric services needed for higher-level 
capabilities such as data transfer nodes, software 
and data caches, workflow services and science 
gateway components. SLATE will use best-of-breed 
data center virtualization components, and where 
available, software defined networking, to enable 
distributed automation of deployment and service 
lifecycle management tasks by domain experts. As 
such it will simplify creation of scalable platforms 
that connect research teams, institutions and 
resources to accelerate science while reducing 
operational costs and development cycle times. 
Since SLATE will be designed to require only 
commodity components for its functional layers, its 
potential for building distributed systems should 
extend across all data center types and scales, thus 
enabling creation of ubiquitous, science-driven 
cyberinfrastructure. By providing automation and 
programmatic interfaces to distributed HPC back-
ends and other cyberinfrastructure resources, 
SLATE will amplify the reach of science gateways 
and therefore the domain communities they 
support.  

1. Introduction 
Much of science today is propelled by multi-

institutional research collaborations that require 
platforms connecting experiment facilities, 
computational resources, and data distributed 
among laboratories, research computing centers, 
and in some cases commercial cloud providers. The 
scale of the data and complexity of the science drive 
this diversity.  In this context, research computing 
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teams strive to empower their universities with 
emergent technologies which bring new and more 
powerful computational and data capabilities that 
foster multi-campus and multi-domain 
collaborations to accelerate research. Recently, 
many institutions invested in their campus network 
infrastructure with these goals in mind. Yet even for 
the most advanced, well-staffed, and well-equipped 
campus research computing centers the task is 
daunting.  Acquiring and maintaining the full scope 
of cyber-engineering expertise necessary to meet 
the complex and expanding demands of data and 
computationally driven science is too costly and 
does not scale to the full spectrum of science 
disciplines.  The diversity of computation, data and 
research modalities all but ensures that scientists 
spend more time on computation and data 
management related tasks than on their domain 
science while research computing staff spend more 
time integrating domain specific software stacks 
with limited applicability and sustainability beyond 
the immediate communities served. Capabilities 
elsewhere are not available locally, and vice versa.  
How should campus and HPC resource providers 
evolve their cyberinfrastructure to more easily 
incorporate data infrastructure building blocks 
developed in other contexts?  

2. Approach 
We will address this challenge in complexity 

and scaling by introducing a Services Layer At The 
data center “Edge” (SLATE) which will enable 
distributed automation, centralized delivery and 
operation of data, software, gateway and workflow 
infrastructure. Much as Google re-imagined the data 
center [1] and initiated a wave of data center 
virtualization development, we view advanced 



“cyberinfrastructure as code” as an appropriate 
metaphor for transforming the way advanced 
science platforms are built and operated.  SLATE 
will augment the Science DMZ pattern [2] by 
adding a secure and trusted “underlayment” 
platform to host advanced data and software 
services needed for higher-level, connective 
functions between data centers. These connective 
services could include, for example, a domain 
specific content delivery network endpoint, a 
collaboration data cache, a job (workflow) 
scheduler, a service component of a distributed 
science gateway, an http-based software cache, or a 
resource discovery service (for higher level, meta 
scheduling systems). 

A major focus of SLATE will be development 
of community accepted Science DMZ patterns 
capable of supporting advanced and emerging 

technologies. In this project, we are focusing on 
production services for data mobility, management, 
and access as driven by data-intensive science 
domains.  For operators of distributed data 
management services, content delivery networks, 
and science gateways SLATE will closely resemble 
the NIST definition [3] of a PaaS (Platform-as-a-
Service) though the underlying infrastructure is not 

limited to a cloud context.  We are leveraging 
experience and lessons learned in the deployment 
and operation of data systems linking over 60 data 
centers for the LHC computing grid. Figure 1 gives 
a schematic of the SLATE concept in the local HPC 
context. 

   The SLATE concept should accommodate 
large, well-equipped HPC centers as well as 
research computing facilities at institutions with 
fewer resources as well as commercial cloud 
providers.  Modern HPC centers which support data 
intensive science typically have a Science DMZ 
which hosts dedicated data transfer nodes, 
perfSONAR [4, 5] measurement hosts, and security 
and enforcement policies needed for high 
performance, wide area applications.  A dedicated 
SLATE edge platform will augment the existing 
Science DMZ by offering a platform capable of 

hosting advanced, centrally managed research 
computing edge services including, where the local 
infrastructure permits it, the deployment of virtual 
circuits and other software defined networking 
constructs.  For a small institution with limited 
resources, the SLATE concept may provide a 
complete Science DMZ infrastructure to more 
quickly integrate these institutions into centrally 

 

 
 
 
Fig 1: A SLATE edge platform within a campus Science DMZ hosts trusted services operated by a central team which 
might be operating a network of such services across several campuses.  Science “app” developers interact with the 
SLATE platform service factory to define and launch elements of a science gateway, data cache, or local workflow 
service. 



managed research platforms.  The SLATE concept 
will allow local resource administrators the ability 
to simply install the infrastructure while offering 
central research groups the services needed for 
management of software and science tools used on 
the platform.  Thus, a local researcher in a small 
institution could focus on the science and 
connecting any requisite science instrumentation, 
while the local IT staff would not have the burden 
of trying to understand the science requirements, 
application software dependencies, data and 
workflow particulars, etc. A good science use-case 
comes from a medium sized collaboration to detect 
dark matter. 

3. A Platform for Dark Matter Searches  
Observations of the cosmic microwave 

background fluctuation, large-scale galaxy surveys, 
and studies of large-scale 
structure formation 
indicate that a large 
fraction of the matter in 
the universe is not 
visible. An exotic but as 
yet undiscovered 
elementary particle could 
explain these 
observations. Several 
experiments have been 
built in last two decades 
to prove the existence of 
such elusive particles but 
their detection has 
proved challenging as we 
do not have yet a clear 
picture of what they are 
and if they really exist.  

The XENON1T 
experiment, a two-phase 
xenon Time Projection Chamber has been built in 
the Laboratori Nazionali del Gran Sasso (LNGS) in 
Italy to study fundamental questions about the 
existence and make-up of dark matter.  
Commissioning began during the first few months 
of 2016, with the first large scale science run 
beginning in December 2016.  Thanks to its one ton 
fiducial mass and ultra-low background, the 
XENON1T experiment will soon begin probing 

properties of dark matter in yet unexplored regions. 
A data processing and analysis hub is hosted by 

the UChicago Research Computing Center (RCC) 
to complement processing and analysis facilities in 
Europe (Stockholm is the European analysis hub). 
A distributed data management service for the 
collaboration has been built so that experiment and 
simulation data sets at various stages of processing 
can be distributed and shared easily throughout the 
22 member institutes. The XENON1T Rucio 
service [6] is deployed in a network of five storage 
endpoints (GridFTP-based data transfer nodes) in 
Europe and the U.S providing a highly scalable 
global namespace, a reliable and fast transfer 
service, a subscription (“placement rules”) service, 
and a deletion service for data lifecycle 
management. The raw experimental data are 
uploaded at LNGS and automatically replicated to 

specific HPC centers for processing, and data 
products from those systems are registered into the 
system for distribution to the analysis hubs. The 
Rucio client tools provide a uniform data access 
model for end-user physicists.  

 
 
Fig. 2: The XENON collaboration which requires a data management and processing 
platform that stretches across the resources of its member institutes. 



A major obstacle has been preparation of the 
storage endpoints in the system which required 
expertise and effort at each site. This preparation is 
where a SLATE platform would have shined and 
reduced a several months-long deployment and 
validation process into a week or two: pre-
configured, containerized GridFTP servers 
customized with checksum calculation, and system 
registration plugin modules could have been 
deployed by the central data manager rather than by 
local systems administrators. In the future, SLATE 
will streamline updates to the system including 
Rucio client software and deployment of 
monitoring sensors for system-wide analytics, 
providing capabilities where needed.  

4. Planned Components and 
Capabilities  
SLATE will leverage advances made by 

previous testbeds [7-10] and similar platforms [11, 
12] and will integrate best-of-breed data center 
virtualization and service orchestration 
technologies from the open source community.  
With the explosion of IaaS (Infrastructure as a 
Service) [13] offered through data center 
virtualization software, container orchestration 
engines, etc., the technical paths and best practices 
are still being discovered and invented at a rapid 
pace.  We expect over the lifetime of this project to 
see advances in infrastructure delivery and advances 

at all layers in the 
service stack.  Our 
challenge then is to 
remain flexible 
enough to shift 
direction when the 
advantages are clear.   

The system 
architecture diagram 
of Figure 4 gives a 
schematic picture of 
the SLATE system in 
our vision.  The 
SLATE Platform 
Factory will provide 
views for science 
data operators as well 
as for operators of the 

underlying infrastructure at a local institution.  
Health checking and alarming systems will be 
implemented at all critical points in the platform.  
The platform will bring distributed services from 
multiple data centers logically into one system, and 
like nodes in a virtual data center they can be 
scheduled, monitored, terminated, etc. The SLATE 
platform software we develop would be open 
source, and independent groups would be able to 
use it to build new forms of advanced 
cyberinfrastructure for their communities.  As an 
example, we will use SLATE for widespread 
deployment of a caching service like the XRootD 
[14] system.  The SLATE team will maintain a local 
integration testbed and validation service for site 
configurations. Containerized services will be 
curated by the central group and be validated for 
functionality, performance and security. Data 
services at the site can manage data of a semi-
persistent type or purely ephemeral (caching) type.  
Other obvious edge services would be a Globus 
Connect [15] service or an HTTP web caching 
service.   

   The SLATE provisioning service, while 
firstly targeting the (bare metal) SLATE edge 
nodes, will have the ability to handle multiple 
infrastructure types, including various public and 
private cloud providers.  In this context, we will not 
re-invent the wheel but will leverage the plethora of 
provisioning tools for cloud infrastructure, 

 
 
Fig 3: The multi-institution data management platform for the XENON collaboration. A 
central server for managed file transfer is hosted at Brookhaven National Laboratory, and 
central file and dataset catalogs and service agents are hosted by the University of 
Chicago. At each of the storage endpoints is a GridFTP service. Each of these services is 
managed individually so that the platform itself requires efforts from 10 individual 
administrators. With a SLATE hosted platform, the services, configuration, monitoring and 
optimization could be managed by a single operator, requiring only basic server 
management at the endpoints.   



including, potentially, Terraform [16], Apache 
libCloud [17], etc. when appropriate. The container 
engine will likely be based on Docker [18] though 
we have experimented with LXD [19] and found it 
to be potentially better suited to the task. The 
container scheduler service options are many, 

though Kubernetes [20, 21] and Mesos [22] are 
leading candidates.  

By integrating best-of-breed tools in wide-scale 
use in the cloud-native community, we minimize 
software development while providing sustainable 
flexibility. In summary, the components of SLATE 

 

 
Fig 4: Overview of the planned SLATE edge management system which allows science domain managers to 
implement building block services such as data management systems or caching networks. A SLATE Platform Service 
Factory provides global provisioning, service orchestration, monitoring and analytics functions for deployed 
applications. Shown are three different kinds of users: the SLATE Project Operators, Resource Provider Managers 
and Science Domain Managers. Science Domain Managers use SLATE to define their applications and science 
workflow. Site Resource Managers use SLATE to register, provision and enable access to their sites as well as set 
up policies and quota for their supported science virtual organizations. The SLATE Project Operators use the central 
services to monitor and maintain all SLATE services at all sites. 



platform are expected to consist of the following: 
• Controller/console for globally distributing 

“applications”, the main interface for the 
SLATE controller platform or directly to an 
edge platform node 

• Discovery service (local and multi-data center) 
and a scheduling service (e.g. Mesos or 
Kubernetes)  

• Automated core provisioning service (e.g. 
Ansible [23], Puppet [24]) 

• System monitoring and log aggregation (e.g. 
Check_mk [25], Elastic Stack [26], OSSIM 
[27])  

1.1 SLATE Platform Node 
A SLATE Platform Node (SPN) will be an 

appliance-like device that sits within the Science 
DMZ to provide a variety of local services to an 
institution (Figure 5).  The operating system for 
SPNs will likely be based on CoreOS [28], with 
additions and modifications as-needed. The base OS 
will only run the container engine, SLATE-specific 
orchestration and authentication services, and 
necessary software to communicate to the 
baseboard management controller. Updates to the 
base OS image will be published and GPG-signed 
on a regular basis. 

Container services.  The first container type 
will be the “system” container, maintained by the 
SLATE team, which will provide a number of back-
end services for the platform. As a matter of 
principle, all system services that are feasible to be 
containerized will be, so as to keep the base 
operating system as lightweight as possible. Some 
example system containers include: 

● API: Provides an interface for both 
command-line and web-based tools to schedule, 
start, and stop containers on the service.  

● Monitoring: Consumes data from services, 
including performance statistics, logs, errors, etc. 
and publishes to the central operations team and the 
local site administrator.  

● Admin UI: A web-based interface for 
system operators to manage the local SPN and allow 
local site administrators to view performance 
metrics and logs, kill containers, reboot the 
appliance, etc.  

The second, more interesting container type 

supported by the SPN will be the “application 
container”. Application containers will be curated 
by a team of operators. 

Remote Administration: The SPN base OS 
will have software installed to communicate with 
the SPN baseboard management controller via IPMI 
or vendor-specific tools (e.g., Dell OpenManage). 
The central operations team will be able to monitor 
for failed disks, fans, or other hardware, source 
replacements and send them to the site, and report 
this to the local site administrator for servicing. 

Image Updater: As the platform grows, or as 
vulnerabilities, bugs, or other deficiencies appear, it 
will be necessary to patch the base operating system 
from time to time. The SPN will have a daemon for 
polling for system updates from the central 
operations platform, and flag itself for a reboot once 
the new OS image has been downloaded and 
verified.  OS images will be downloaded from a 
secure (HTTPS) server and be GPG signed.  

Disk Management: SPNs in our first testbed 
will come with a reasonably large disk array (48TB 
in the “A” model, 32TB in the “B” model) with a 
variety of science users, so data management is a 
necessary feature of the platform.  Science domain 
users of the SLATE platform will need to declare 
the disk utilization and I/O requirements of their 
application ahead of time, or run their application 
through the SLATE integration and test framework 

 
Fig 5: The planned SLATE service architecture on an 
edge platform node.  



to determine these values. Once determined, the 
application can be deployed onto a SLATE node at 
an institution. SLATE nodes will split their storage 
between ephemeral storage - used opportunistically 
by domain users with a fair-share policy and fast 
expiry time, and persistent storage - space requested 
specifically by the science domain user or gateway 
developer.  

perfSONAR: All sites will be equipped with 
two perfSONAR nodes, each capable of bandwidth 
and latency measurements using two of the on-
board NICs. 

Network: The networking component of the 
SLATE node will work with existing campus 
networks and campus programmable Science DMZ 
infrastructure to provide a layer 2 and/or layer 3 
substrate for migrating large data sets between 
resources.  Two versions of the SLATE node will 
be available, a “large site” node and a “small site” 
node.  The large SLATE node will provide an 
OpenFlow capable switch capable of 10Gb/s or 
greater switching speeds.  The small SLATE node 
will provide a single host with Open Virtual Switch 
that will allow connectivity at 1Gb/s and 10Gb/s.  
For the implementation, each campus will be able to 
decide which style node it can support.  The campus 
will provide one management connection for the 
platform host and one management connection for 
each of the perfSONAR nodes. Management 
connections will be specially routed via SDN to 

secure access to only system managers and SLATE 
personnel.  For the data plane, the platform host or 
the switch will require one or more data plane 
connections, as negotiated with campus 
administrators.  The data plane connection(s) will, 
ideally, exist on a campus programmable Science 
DMZ infrastructure.  For small campuses, this 
connection may be a simple dedicated connection 
that does not reside behind the campus firewall.  For 
large sites, the SLATE switch allows one or more 
uplinks for the data plane and many access ports for 
scaling additional nodes. 

The networking component of the SLATE node 
will provide OpenFlow [29] capabilities through the 
provided switch or through Open Virtual Switch 
(OVS).  To effectively utilize the OpenFlow 
capabilities to interconnect to partner institutions, 
the campus will need to provision a path to 
Internet2’s AL2S across its regional.  Many 
campuses have gone through this exercise 
previously in order to support NSF funded GENI 
racks [7, 10].  Implementations for GENI racks have 
utilized dedicated circuits, dedicated VLANs, or 
campus provided OpenFlow configurations.  The 
SLATE nodes would utilize similar configurations 
when possible. 

1.2 Planned Central Services 
SLATE will provide a web-based interface that 

will be used as a sort of concierge service for 

 
Table 1: Example SLATE controller command line interface commands and function. 
 

Command      Function 
$ slate deploy --site B [service ID] Deploy service ID to site B 

$ slate start / stop --site B [service ID] Selectively control services 

$ slate diag –-global [service ID] Retrieve system-wide diagnostic 
reports for a service 

$ slate update --global [service ID] Update a configuration globally 

$ slate validate --group VO --cloud US,IT --all 
Validate the all services on behalf 
of a virtual organization over US 
and Italy community clouds 

$ slate replicate –-src A –-dest B,C [service ID] Copy a running service and data 
from site A to sites B and C 

$ slate migrate –-src A –-dest B [service ID] Move a running service and data 
from site A to site B 

 



matching resources to science domains. The portal 
will have different views and options based on the 
type of user. For example, local site administrators 
and managers will be able to see the performance of 
their SLATE appliance on-site, and utilization by 
science domains. Science domain users will be able 
to see throughput and disk utilization on a per site 
basis. Users who aren’t logged in will be able to see 
overall utilization of the SLATE platform and other 
front-facing niceties.  

1.3 SLATE Application Containers  
All project software running on the SLATE 

platform will need to run inside of an application 
container. This allows great flexibility, as experts in 
a particular domain can provide an operating system 
image. All application containers will have to 
declare a set of resource requirements. These 
requirements may include disk utilization, 
minimum throughput (MB/s), firewall ports, 
memory and CPU.  The SLATE platform will be 
able to compare these resource declarations to the 
available resources, and provide a candidate list of 
resource targets for the application. The platform 
may go further and suggest changes that could be 
made to the application for greater proliferation.  

1.4 SLATE Integration and Test Framework  
Before deployment on production SPNs, any 

applications that wish to run through the SLATE 
platform will need to be run through an integration 
and test framework on the SLATE development 
environment. The integration framework will 
provide feedback to the application developer, with 
details about whether or not the application has run 
successfully on the platform, and any relevant 
performance metrics.  

5. SLATE and Science Gateways 
We view SLATE as a potential amplifier for 

science gateway processing back-ends. The 
platform will enable distributed automation and 
centralized delivery and operational controls for 
data, software, and workflow services. Thus, a 
distributed “DevOps” model of programming and 
development will be possible in a way that shortens 
the development and testing timeline. The SLATE 
team will partner with the Science Gateways 
Community Institute (SGCI) to ensure that existing 

expertise, lessons and preferred operational 
modalities of science gateway back-ends are 
leveraged. The SLATE project will collaborate 
closely with the SGCI to assure that its platform will 
be added in the Scientific Software Collaborative 
(SSC).   

In summary, we see SLATE offering a means to 
more easily build science gateway back-ends, 
therefore streamlining the development process, 
while the SGCI provides a community for outreach 
and adoption of SLATE among science 
communities and university HPC resource 
providers. 

6. Conclusions and Outlook 
At the time of this article the SLATE project has 

just begun. Currently the focus is on establishing a 
three-site testbed on which to evaluate local 
container orchestration frameworks, the federation 
of such service frameworks across multiple sites, 
and the management of both stateless and stateful 
services. The project welcomes contributions and 
participation from groups and individuals focused 
on building distributed research platforms and 
gateway systems. Interested readers may follow 
developments at http://slateci.io/.  
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