


guage model in speech recognition (Hannun et al., 2014;

Xiong et al., 2016), or with camera information for object

detection (Kendall & Cipolla, 2016).

In 2005, Niculescu-Mizil & Caruana (2005) showed that

neural networks typically produce well-calibrated proba-

bilities on binary classification tasks. While neural net-

works today are undoubtedly more accurate than they were

a decade ago, we discover with great surprise that mod-

ern neural networks are no longer well-calibrated. This

is visualized in Figure 1, which compares a 5-layer LeNet

(left) (LeCun et al., 1998) with a 110-layer ResNet (right)

(He et al., 2016) on the CIFAR-100 dataset. The top row

shows the distribution of prediction confidence (i.e. prob-

abilities associated with the predicted label) as histograms.

The average confidence of LeNet closely matches its accu-

racy, while the average confidence of the ResNet is substan-

tially higher than its accuracy. This is further illustrated in

the bottom row reliability diagrams (DeGroot & Fienberg,

1983; Niculescu-Mizil & Caruana, 2005), which show ac-

curacy as a function of confidence. We see that LeNet is

well-calibrated, as confidence closely approximates the ex-

pected accuracy (i.e. the bars align roughly along the diag-

onal). On the other hand, the ResNet’s accuracy is better,

but does not match its confidence.

Our goal is not only to understand why neural networks

have become miscalibrated, but also to identify what meth-

ods can alleviate this problem. In this paper, we demon-

strate on several computer vision and NLP tasks that neu-

ral networks produce confidences that do not represent true

probabilities. Additionally, we offer insight and intuition

into network training and architectural trends that may

cause miscalibration. Finally, we compare various post-

processing calibration methods on state-of-the-art neural

networks, and introduce several extensions of our own.

Surprisingly, we find that a single-parameter variant of Platt

scaling (Platt et al., 1999) – which we refer to as temper-

ature scaling – is often the most effective method at ob-

taining calibrated probabilities. Because this method is

straightforward to implement with existing deep learning

frameworks, it can be easily adopted in practical settings.

2. Definitions

The problem we address in this paper is supervised multi-

class classification with neural networks. The input X ∈ X
and label Y ∈ Y = {1, . . . ,K} are random variables

that follow a ground truth joint distribution π(X,Y ) =
π(Y |X)π(X). Let h be a neural network with h(X) =
(Ŷ , P̂ ), where Ŷ is a class prediction and P̂ is its associ-

ated confidence, i.e. probability of correctness. We would

like the confidence estimate P̂ to be calibrated, which in-

tuitively means that P̂ represents a true probability. For

example, given 100 predictions, each with confidence of

0.8, we expect that 80 should be correctly classified. More

formally, we define perfect calibration as

P

(

Ŷ = Y | P̂ = p
)

= p, ∀p ∈ [0, 1] (1)

where the probability is over the joint distribution. In all

practical settings, achieving perfect calibration is impos-

sible. Additionally, the probability in (1) cannot be com-

puted using finitely many samples since P̂ is a continuous

random variable. This motivates the need for empirical ap-

proximations that capture the essence of (1).

Reliability Diagrams (e.g. Figure 1 bottom) are a visual

representation of model calibration (DeGroot & Fienberg,

1983; Niculescu-Mizil & Caruana, 2005). These diagrams

plot expected sample accuracy as a function of confidence.

If the model is perfectly calibrated – i.e. if (1) holds – then

the diagram should plot the identity function. Any devia-

tion from a perfect diagonal represents miscalibration.

To estimate the expected accuracy from finite samples, we

group predictions into M interval bins (each of size 1/M )

and calculate the accuracy of each bin. Let Bm be the set

of indices of samples whose prediction confidence falls into

the interval Im = (m−1
M

, m
M
]. The accuracy of Bm is

acc(Bm) =
1

|Bm|

∑

i∈Bm

1(ŷi = yi),

where ŷi and yi are the predicted and true class labels for

sample i. Basic probability tells us that acc(Bm) is an un-

biased and consistent estimator of P(Ŷ = Y | P̂ ∈ Im).
We define the average confidence within bin Bm as

conf(Bm) =
1

|Bm|

∑

i∈Bm

p̂i,

where p̂i is the confidence for sample i. acc(Bm) and

conf(Bm) approximate the left-hand and right-hand sides

of (1) respectively for bin Bm. Therefore, a perfectly cal-

ibrated model will have acc(Bm) = conf(Bm) for all

m ∈ {1, . . . ,M}. Note that reliability diagrams do not dis-

play the proportion of samples in a given bin, and thus can-

not be used to estimate how many samples are calibrated.

Expected Calibration Error (ECE). While reliability

diagrams are useful visual tools, it is more convenient to

have a scalar summary statistic of calibration. Since statis-

tics comparing two distributions cannot be comprehensive,

previous works have proposed variants, each with a unique

emphasis. One notion of miscalibration is the difference in

expectation between confidence and accuracy, i.e.

E
P̂

[
∣

∣

∣P

(

Ŷ = Y | P̂ = p
)

− p
∣

∣

∣

]

(2)

Expected Calibration Error (Naeini et al., 2015) – or ECE

– approximates (2) by partitioning predictions into M
equally-spaced bins (similar to the reliability diagrams) and
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Figure 3. Test error and NLL of a 110-layer ResNet with stochas-

tic depth on CIFAR-100 during training. NLL is scaled by a con-

stant to fit in the figure. Learning rate drops by 10x at epochs 250

and 375. The shaded area marks between epochs at which the best

validation loss and best validation error are produced.

den layers. Recent research suggests that these normal-

ization techniques have enabled the development of very

deep architectures, such as ResNets (He et al., 2016) and

DenseNets (Huang et al., 2017). It has been shown that

Batch Normalization improves training time, reduces the

need for additional regularization, and can in some cases

improve the accuracy of networks.

While it is difficult to pinpoint exactly how Batch Normal-

ization affects the final predictions of a model, we do ob-

serve that models trained with Batch Normalization tend to

be more miscalibrated. In the middle right plot of Figure 2,

we see that a 6-layer ConvNet obtains worse calibration

when Batch Normalization is applied, even though classi-

fication accuracy improves slightly. We find that this result

holds regardless of the hyperparameters used on the Batch

Normalization model (i.e. low or high learning rate, etc.).

Weight decay, which used to be the predominant regu-

larization mechanism for neural networks, is decreasingly

utilized when training modern neural networks. Learning

theory suggests that regularization is necessary to prevent

overfitting, especially as model capacity increases (Vapnik,

1998). However, due to the apparent regularization effects

of Batch Normalization, recent research seems to suggest

that models with less L2 regularization tend to generalize

better (Ioffe & Szegedy, 2015). As a result, it is now com-

mon to train models with little weight decay, if any at all.

The top performing ImageNet models of 2015 all use an or-

der of magnitude less weight decay than models of previous

years (He et al., 2016; Simonyan & Zisserman, 2015).

We find that training with less weight decay has a negative

impact on calibration. The far right plot in Figure 2 dis-

plays training error and ECE for a 110-layer ResNet with

varying amounts of weight decay. The only other forms

of regularization are data augmentation and Batch Normal-

ization. We observe that calibration and accuracy are not

optimized by the same parameter setting. While the model

exhibits both over-regularization and under-regularization

with respect to classification error, it does not appear that

calibration is negatively impacted by having too much

weight decay. Model calibration continues to improve

when more regularization is added, well after the point of

achieving optimal accuracy. The slight uptick at the end of

the graph may be an artifact of using a weight decay factor

that impedes optimization.

NLL can be used to indirectly measure model calibra-

tion. In practice, we observe a disconnect between NLL

and accuracy, which may explain the miscalibration in Fig-

ure 2. This disconnect occurs because neural networks can

overfit to NLL without overfitting to the 0/1 loss. We ob-

serve this trend in the training curves of some miscalibrated

models. Figure 3 shows test error and NLL (rescaled to

match error) on CIFAR-100 as training progresses. Both

error and NLL immediately drop at epoch 250, when the

learning rate is dropped; however, NLL overfits during the

remainder of training. Surprisingly, overfitting to NLL is

beneficial to classification accuracy. On CIFAR-100, test

error drops from 29% to 27% in the region where NLL

overfits. This phenomenon renders a concrete explanation

of miscalibration: the network learns better classification

accuracy at the expense of well-modeled probabilities.

We can connect this finding to recent work examining the

generalization of large neural networks. Zhang et al. (2017)

observe that deep neural networks seemingly violate the

common understanding of learning theory that large mod-

els with little regularization will not generalize well. The

observed disconnect between NLL and 0/1 loss suggests

that these high capacity models are not necessarily immune

from overfitting, but rather, overfitting manifests in proba-

bilistic error rather than classification error.

4. Calibration Methods

In this section, we first review existing calibration meth-

ods, and introduce new variants of our own. All methods

are post-processing steps that produce (calibrated) proba-

bilities. Each method requires a hold-out validation set,

which in practice can be the same set used for hyperparam-

eter tuning. We assume that the training, validation, and

test sets are drawn from the same distribution.

4.1. Calibrating Binary Models

We first introduce calibration in the binary setting, i.e.

Y = {0, 1}. For simplicity, throughout this subsection,



we assume the model outputs only the confidence for the

positive class.1 Given a sample xi, we have access to p̂i –

the network’s predicted probability of yi = 1, as well as

zi ∈ R – which is the network’s non-probabilistic output,

or logit. The predicted probability p̂i is derived from zi us-

ing a sigmoid function σ; i.e. p̂i = σ(zi). Our goal is to

produce a calibrated probability q̂i based on yi, p̂i, and zi.

Histogram binning (Zadrozny & Elkan, 2001) is a sim-

ple non-parametric calibration method. In a nutshell, all

uncalibrated predictions p̂i are divided into mutually ex-

clusive bins B1, . . . , BM . Each bin is assigned a calibrated

score θm; i.e. if p̂i is assigned to bin Bm, then q̂i = θm. At

test time, if prediction p̂te falls into bin Bm, then the cali-

brated prediction q̂te is θm. More precisely, for a suitably

chosen M (usually small), we first define bin boundaries

0 = a1 ≤ a2 ≤ . . . ≤ aM+1 = 1, where the bin Bm

is defined by the interval (am, am+1]. Typically the bin

boundaries are either chosen to be equal length intervals or

to equalize the number of samples in each bin. The predic-

tions θi are chosen to minimize the bin-wise squared loss:

min
θ1,...,θM

M
∑

m=1

n
∑

i=1

1(am ≤ p̂i < am+1) (θm − yi)
2
, (7)

where 1 is the indicator function. Given fixed bins bound-

aries, the solution to (7) results in θm that correspond to the

average number of positive-class samples in bin Bm.

Isotonic regression (Zadrozny & Elkan, 2002), arguably

the most common non-parametric calibration method,

learns a piecewise constant function f to transform un-

calibrated outputs; i.e. q̂i = f(p̂i). Specifically, iso-

tonic regression produces f to minimize the square loss
∑n

i=1(f(p̂i) − yi)
2. Because f is constrained to be piece-

wise constant, we can write the optimization problem as:

min
M

θ1,...,θM
a1,...,aM+1

M
∑

m=1

n
∑

i=1

1(am ≤ p̂i < am+1) (θm − yi)
2

subject to 0 = a1 ≤ a2 ≤ . . . ≤ aM+1 = 1,

θ1 ≤ θ2 ≤ . . . ≤ θM .

where M is the number of intervals; a1, . . . , aM+1 are the

interval boundaries; and θ1, . . . , θM are the function val-

ues. Under this parameterization, isotonic regression is a

strict generalization of histogram binning in which the bin

boundaries and bin predictions are jointly optimized.

Bayesian Binning into Quantiles (BBQ) (Naeini et al.,

2015) is a extension of histogram binning using Bayesian

1 This is in contrast with the setting in Section 2, in which the
model produces both a class prediction and confidence.

model averaging. Essentially, BBQ marginalizes out all

possible binning schemes to produce q̂i. More formally, a

binning scheme s is a pair (M, I) where M is the number

of bins, and I is a corresponding partitioning of [0, 1] into

disjoint intervals (0 = a1 ≤ a2 ≤ . . . ≤ aM+1 = 1). The

parameters of a binning scheme are θ1, . . . , θM . Under this

framework, histogram binning and isotonic regression both

produce a single binning scheme, whereas BBQ considers

a space S of all possible binning schemes for the valida-

tion dataset D. BBQ performs Bayesian averaging of the

probabilities produced by each scheme:2

P(q̂te | p̂te, D) =
∑

s∈S

P(q̂te, S = s | p̂te, D)

=
∑

s∈S

P(q̂te | p̂te, S=s,D)P(S=s | D).

where P(q̂te | p̂te, S = s,D) is the calibrated probability

using binning scheme s. Using a uniform prior, the weight

P(S=s | D) can be derived using Bayes’ rule:

P(S=s | D) =
P(D | S=s)

∑

s′∈S P(D | S=s′)
.

The parameters θ1, . . . , θM can be viewed as parameters of

M independent binomial distributions. Hence, by placing

a Beta prior on θ1, . . . , θM , we can obtain a closed form

expression for the marginal likelihood P(D | S= s). This

allows us to compute P(q̂te | p̂te, D) for any test input.

Platt scaling (Platt et al., 1999) is a parametric approach

to calibration, unlike the other approaches. The non-

probabilistic predictions of a classifier are used as features

for a logistic regression model, which is trained on the val-

idation set to return probabilities. More specifically, in the

context of neural networks (Niculescu-Mizil & Caruana,

2005), Platt scaling learns scalar parameters a, b ∈ R and

outputs q̂i = σ(azi + b) as the calibrated probability. Pa-

rameters a and b can be optimized using the NLL loss over

the validation set. It is important to note that the neural

network’s parameters are fixed during this stage.

4.2. Extension to Multiclass Models

For classification problems involving K > 2 classes, we

return to the original problem formulation. The network

outputs a class prediction ŷi and confidence score p̂i for

each input xi. In this case, the network logits zi are vectors,

where ŷi = argmaxk z
(k)
i , and p̂i is typically derived using

the softmax function σSM:

σSM(zi)
(k) =

exp(z
(k)
i )

∑K

j=1 exp(z
(j)
i )

, p̂i = max
k

σSM(zi)
(k).

The goal is to produce a calibrated confidence q̂i and (pos-

sibly new) class prediction ŷ′i based on yi, ŷi, p̂i, and zi.

2 Because the validation dataset is finite, S is as well.



Dataset Model Uncalibrated Hist. Binning Isotonic BBQ Temp. Scaling Vector Scaling Matrix Scaling

Birds ResNet 50 9.19% 4.34% 5.22% 4.12% 1.85% 3.0% 21.13%

Cars ResNet 50 4.3% 1.74% 4.29% 1.84% 2.35% 2.37% 10.5%

CIFAR-10 ResNet 110 4.6% 0.58% 0.81% 0.54% 0.83% 0.88% 1.0%

CIFAR-10 ResNet 110 (SD) 4.12% 0.67% 1.11% 0.9% 0.6% 0.64% 0.72%

CIFAR-10 Wide ResNet 32 4.52% 0.72% 1.08% 0.74% 0.54% 0.6% 0.72%

CIFAR-10 DenseNet 40 3.28% 0.44% 0.61% 0.81% 0.33% 0.41% 0.41%

CIFAR-10 LeNet 5 3.02% 1.56% 1.85% 1.59% 0.93% 1.15% 1.16%

CIFAR-100 ResNet 110 16.53% 2.66% 4.99% 5.46% 1.26% 1.32% 25.49%

CIFAR-100 ResNet 110 (SD) 12.67% 2.46% 4.16% 3.58% 0.96% 0.9% 20.09%

CIFAR-100 Wide ResNet 32 15.0% 3.01% 5.85% 5.77% 2.32% 2.57% 24.44%

CIFAR-100 DenseNet 40 10.37% 2.68% 4.51% 3.59% 1.18% 1.09% 21.87%

CIFAR-100 LeNet 5 4.85% 6.48% 2.35% 3.77% 2.02% 2.09% 13.24%

ImageNet DenseNet 161 6.28% 4.52% 5.18% 3.51% 1.99% 2.24% -

ImageNet ResNet 152 5.48% 4.36% 4.77% 3.56% 1.86% 2.23% -

SVHN ResNet 152 (SD) 0.44% 0.14% 0.28% 0.22% 0.17% 0.27% 0.17%

20 News DAN 3 8.02% 3.6% 5.52% 4.98% 4.11% 4.61% 9.1%

Reuters DAN 3 0.85% 1.75% 1.15% 0.97% 0.91% 0.66% 1.58%

SST Binary TreeLSTM 6.63% 1.93% 1.65% 2.27% 1.84% 1.84% 1.84%

SST Fine Grained TreeLSTM 6.71% 2.09% 1.65% 2.61% 2.56% 2.98% 2.39%

Table 1. ECE (%) (with M = 15 bins) on standard vision and NLP datasets before calibration and with various calibration methods.

The number following a model’s name denotes the network depth.

Extension of binning methods. One common way of ex-

tending binary calibration methods to the multiclass setting

is by treating the problem as K one-versus-all problems

(Zadrozny & Elkan, 2002). For k = 1, . . . ,K, we form a

binary calibration problem where the label is 1(yi = k)
and the predicted probability is σSM(zi)

(k). This gives

us K calibration models, each for a particular class. At

test time, we obtain an unnormalized probability vector

[q̂
(1)
i , . . . , q̂

(K)
i ], where q̂

(k)
i is the calibrated probability for

class k. The new class prediction ŷ′i is the argmax of the

vector, and the new confidence q̂′i is the max of the vector

normalized by
∑K

k=1 q̂
(k)
i . This extension can be applied

to histogram binning, isotonic regression, and BBQ.

Matrix and vector scaling are two multi-class exten-

sions of Platt scaling. Let zi be the logits vector produced

before the softmax layer for input xi. Matrix scaling ap-

plies a linear transformation Wzi + b to the logits:

q̂i = max
k

σSM(Wzi + b)(k),

ŷ′i = argmax
k

(Wzi + b)(k).
(8)

The parameters W and b are optimized with respect to

NLL on the validation set. As the number of parameters

for matrix scaling grows quadratically with the number of

classes K, we define vector scaling as a variant where W

is restricted to be a diagonal matrix.

Temperature scaling, the simplest extension of Platt

scaling, uses a single scalar parameter T > 0 for all classes.

Given the logit vector zi, the new confidence prediction is

q̂i = max
k

σSM(zi/T )
(k). (9)

T is called the temperature, and it “softens” the softmax

(i.e. raises the output entropy) with T > 1. As T → ∞,

the probability q̂i approaches 1/K, which represents max-

imum uncertainty. With T = 1, we recover the original

probability p̂i. As T → 0, the probability collapses to a

point mass (i.e. q̂i = 1). T is optimized with respect to

NLL on the validation set. Because the parameter T does

not change the maximum of the softmax function, the class

prediction ŷ′i remains unchanged. In other words, temper-

ature scaling does not affect the model’s accuracy.

Temperature scaling is commonly used in settings such as

knowledge distillation (Hinton et al., 2015) and statistical

mechanics (Jaynes, 1957). To the best of our knowledge,

we are not aware of any prior use in the context of calibrat-

ing probabilistic models.3 The model is equivalent to max-

imizing the entropy of the output probability distribution

subject to certain constraints on the logits (see Section S2).

4.3. Other Related Works

Calibration and confidence scores have been studied in var-

ious contexts in recent years. Kuleshov & Ermon (2016)

study the problem of calibration in the online setting, where

the inputs can come from a potentially adversarial source.

Kuleshov & Liang (2015) investigate how to produce cal-

ibrated probabilities when the output space is a structured

object. Lakshminarayanan et al. (2016) use ensembles of

networks to obtain uncertainty estimates. Pereyra et al.

(2017) penalize overconfident predictions as a form of reg-

ularization. Hendrycks & Gimpel (2017) use confidence

3To highlight the connection with prior works we define tem-
perature scaling in terms of 1

T
instead of a multiplicative scalar.



scores to determine if samples are out-of-distribution.

Bayesian neural networks (Denker & Lecun, 1990;

MacKay, 1992) return a probability distribution over out-

puts as an alternative way to represent model uncertainty.

Gal & Ghahramani (2016) draw a connection between

Dropout (Srivastava et al., 2014) and model uncertainty,

claiming that sampling models with dropped nodes is a

way to estimate the probability distribution over all pos-

sible models for a given sample. Kendall & Gal (2017)

combine this approach with a model that outputs a predic-

tive mean and variance for each data point. This notion of

uncertainty is not restricted to classification problems. Ad-

ditionally, neural networks can be used in conjunction with

Bayesian models that output complete distributions. For

example, deep kernel learning (Wilson et al., 2016a;b; Al-

Shedivat et al., 2016) combines deep neural networks with

Gaussian processes on classification and regression prob-

lems. In contrast, our framework, which does not augment

the neural network model, returns a confidence score rather

than returning a distribution of possible outputs.

5. Results

We apply the calibration methods in Section 4 to image

classification and document classification neural networks.

For image classification we use 6 datasets:

1. Caltech-UCSD Birds (Welinder et al., 2010):

200 bird species. 5994/2897/2897 images for

train/validation/test sets.

2. Stanford Cars (Krause et al., 2013): 196 classes of

cars by make, model, and year. 8041/4020/4020 im-

ages for train/validation/test.

3. ImageNet 2012 (Deng et al., 2009): Natural scene im-

ages from 1000 classes. 1.3 million/25,000/25,000

images for train/validation/test.

4. CIFAR-10/CIFAR-100 (Krizhevsky & Hinton, 2009):

Color images (32 × 32) from 10/100 classes.

45,000/5,000/10,000 images for train/validation/test.

5. Street View House Numbers (SVHN) (Netzer et al.,

2011): 32 × 32 colored images of cropped

out house numbers from Google Street View.

598,388/6,000/26,032 images for train/validation/test.

We train state-of-the-art convolutional networks: ResNets

(He et al., 2016), ResNets with stochastic depth (SD)

(Huang et al., 2016), Wide ResNets (Zagoruyko & Ko-

modakis, 2016), and DenseNets (Huang et al., 2017). We

use the data preprocessing, training procedures, and hyper-

parameters as described in each paper. For Birds and Cars,

we fine-tune networks pretrained on ImageNet.

For document classification we experiment with 4 datasets:

1. 20 News: News articles, partitioned into 20 cate-

gories by content. 9034/2259/7528 documents for

train/validation/test.

2. Reuters: News articles, partitioned into 8 cate-

gories by topic. 4388/1097/2189 documents for

train/validation/test.

3. Stanford Sentiment Treebank (SST) (Socher et al.,

2013): Movie reviews, represented as sentence parse

trees that are annotated by sentiment. Each sample in-

cludes a coarse binary label and a fine grained 5-class

label. As described in (Tai et al., 2015), the train-

ing/validation/test sets contain 6920/872/1821 docu-

ments for binary, and 544/1101/2210 for fine-grained.

On 20 News and Reuters, we train Deep Averaging Net-

works (DANs) (Iyyer et al., 2015) with 3 feed-forward

layers and Batch Normalization. On SST, we train

TreeLSTMs (Long Short Term Memory) (Tai et al., 2015).

For both models we use the default hyperparmaeters sug-

gested by the authors.

Calibration Results. Table 1 displays model calibration,

as measured by ECE (with M = 15 bins), before and af-

ter applying the various methods (see Section S3 for MCE,

NLL, and error tables). It is worth noting that most datasets

and models experience some degree of miscalibration, with

ECE typically between 4 to 10%. This is not architecture

specific: we observe miscalibration on convolutional net-

works (with and without skip connections), recurrent net-

works, and deep averaging networks. The two notable ex-

ceptions are SVHN and Reuters, both of which experience

ECE values below 1%. Both of these datasets have very

low error (1.98% and 2.97%, respectively); and therefore

the ratio of ECE to error is comparable to other datasets.

Our most important discovery is the surprising effective-

ness of temperature scaling despite its remarkable simplic-

ity. Temperature scaling outperforms all other methods on

the vision tasks, and performs comparably to other methods

on the NLP datasets. What is perhaps even more surpris-

ing is that temperature scaling outperforms the vector and

matrix Platt scaling variants, which are strictly more gen-

eral methods. In fact, vector scaling recovers essentially

the same solution as temperature scaling – the learned vec-

tor has nearly constant entries, and therefore is no different

than a scalar transformation. In other words, network mis-

calibration is intrinsically low dimensional.

The only dataset that temperature scaling does not calibrate

is the Reuters dataset. In this instance, only one of the

above methods is able to improve calibration. Because this

dataset is well-calibrated to begin with (ECE ≤ 1%), there

is not much room for improvement with any method, and

post-processing may not even be necessary to begin with.

It is also possible that our measurements are affected by

dataset split or by the particular binning scheme.
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S1. Further Information on Calibration

Metrics

We can connect the ECE metric with our exact miscalibra-

tion definition, which is restated here:

E
P̂

[
∣

∣
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Ŷ = Y | P̂ = p
)

− p
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∣

]

Let F
P̂
(p) be the cumulative distribution function of P̂ so

that F
P̂
(b)− F

P̂
(a) = P(P̂ ∈ [a, b]). Using the Riemann-

Stieltjes integral we have
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is closely approximated

by |acc(Bm)− p̂(Bm)| for n large. Hence ECE using M
bins converges to the M -term Riemann-Stieltjes sum of

EP̂
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S2. Further Information on Temperature

Scaling

Here we derive the temperature scaling model using the en-

tropy maximization principle with an appropriate balanced

equation.

Claim 1. Given n samples’ logit vectors z1, . . . , zn and

class labels y1, . . . , yn, temperature scaling is the unique

solution q to the following entropy maximization problem:

max
q

−

n
∑

i=1

K
∑

k=1

q(zi)
(k) log q(zi)

(k)

subject to q(zi)
(k) ≥ 0 ∀i, k
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(k) = 1 ∀i

n
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z
(yi)
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K
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z
(k)
i q(zi)

(k).

The first two constraint ensure that q is a probability dis-

tribution, while the last constraint limits the scope of distri-

butions. Intuitively, the constraint specifies that the average

true class logit is equal to the average weighted logit.

Proof. We solve this constrained optimization problem us-

ing the Lagrangian. We first ignore the constraint q(zi)
(k)

and later show that the solution satisfies this condition. Let

λ, β1, . . . , βn ∈ R be the Lagrangian multipliers and define

L =−
n
∑

i=1

K
∑

k=1

q(zi)
(k) log q(zi)

(k)

+ λ
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(k) − 1).

Taking the derivative with respect to q(zi)
(k) gives

∂

∂q(zi)(k)
L = −nK − log q(zi)

(k) + λz
(k)
i + βi.

Setting the gradient of the Lagrangian L to 0 and rearrang-

ing gives

q(zi)
(k) = eλz

(k)
i

+βi−nK .

Since
∑K

k=1 q(zi)
(k) = 1 for all i, we must have

q(zi)
(k) =

eλz
(k)
i

∑K

j=1 e
λz

(j)
i

,

which recovers the temperature scaling model by setting

T = 1
λ

.

Figure S1 visualizes Claim 1. We see that, as training con-

tinues, the model begins to overfit with respect to NLL (red

line). This results in a low-entropy softmax distribution

over classes (blue line), which explains the model’s over-

confidence. Temperature scaling not only lowers the NLL

but also raises the entropy of the distribution (green line).

S3. Additional Tables

Tables S1, S2, and S3 display the MCE, test error, and NLL

for all the experimental settings outlined in Section 5.
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Figure S1. Entropy and NLL for CIFAR-100 before and after calibration. The optimal T selected by temperature scaling rises throughout

optimization, as the pre-calibration entropy decreases steadily. The post-calibration entropy and NLL on the validation set coincide

(which can be derived from the gradient optimality condition of T ).

Dataset Model Uncalibrated Hist. Binning Isotonic BBQ Temp. Scaling Vector Scaling Matrix Scaling

Birds ResNet 50 30.06% 25.35% 16.59% 11.72% 9.08% 9.81% 38.67%

Cars ResNet 50 41.55% 5.16% 15.23% 9.31% 20.23% 8.59% 29.65%

CIFAR-10 ResNet 110 33.78% 26.87% 7.8% 72.64% 8.56% 27.39% 22.89%

CIFAR-10 ResNet 110 (SD) 34.52% 17.0% 16.45% 19.26% 15.45% 15.55% 10.74%

CIFAR-10 Wide ResNet 32 27.97% 12.19% 6.19% 9.22% 9.11% 4.43% 9.65%

CIFAR-10 DenseNet 40 22.44% 7.77% 19.54% 14.57% 4.58% 3.17% 4.36%

CIFAR-10 LeNet 5 8.02% 16.49% 18.34% 82.35% 5.14% 19.39% 16.89%

CIFAR-100 ResNet 110 35.5% 7.03% 10.36% 10.9% 4.74% 2.5% 45.62%

CIFAR-100 ResNet 110 (SD) 26.42% 9.12% 10.95% 9.12% 8.85% 8.85% 35.6%

CIFAR-100 Wide ResNet 32 33.11% 6.22% 14.87% 11.88% 5.33% 6.31% 44.73%

CIFAR-100 DenseNet 40 21.52% 9.36% 10.59% 8.67% 19.4% 8.82% 38.64%

CIFAR-100 LeNet 5 10.25% 18.61% 3.64% 9.96% 5.22% 8.65% 18.77%

ImageNet DenseNet 161 14.07% 13.14% 11.57% 10.96% 12.29% 9.61% -

ImageNet ResNet 152 12.2% 14.57% 8.74% 8.85% 12.29% 9.61% -

SVHN ResNet 152 (SD) 19.36% 11.16% 18.67% 9.09% 18.05% 30.78% 18.76%

20 News DAN 3 17.03% 10.47% 9.13% 6.28% 8.21% 8.24% 17.43%

Reuters DAN 3 14.01% 16.78% 44.95% 36.18% 25.46% 18.88% 19.39%

SST Binary TreeLSTM 21.66% 3.22% 13.91% 36.43% 6.03% 6.03% 6.03%

SST Fine Grained TreeLSTM 27.85% 28.35% 19.0% 8.67% 44.75% 11.47% 11.78%

Table S1. MCE (%) (with M = 15 bins) on standard vision and NLP datasets before calibration and with various calibration methods.

The number following a model’s name denotes the network depth. MCE seems very sensitive to the binning scheme and is less suited

for small test sets.

S4. Additional Reliability Diagrams

We include reliability diagrams for additional datasets:

CIFAR-10 (Figure S2) and SST (Figure S3 and Figure S4).

Note that, as mentioned in Section 2, the reliability dia-

grams do not represent the proportion of predictions that

belong to a given bin.
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Dataset Model Uncalibrated Hist. Binning Isotonic BBQ Temp. Scaling Vector Scaling Matrix Scaling

Birds ResNet 50 22.54% 55.02% 23.37% 37.76% 22.54% 22.99% 29.51%

Cars ResNet 50 14.28% 16.24% 14.9% 19.25% 14.28% 14.15% 17.98%

CIFAR-10 ResNet 110 6.21% 6.45% 6.36% 6.25% 6.21% 6.37% 6.42%

CIFAR-10 ResNet 110 (SD) 5.64% 5.59% 5.62% 5.55% 5.64% 5.62% 5.69%

CIFAR-10 Wide ResNet 32 6.96% 7.3% 7.01% 7.35% 6.96% 7.1% 7.27%

CIFAR-10 DenseNet 40 5.91% 6.12% 5.96% 6.0% 5.91% 5.96% 6.0%

CIFAR-10 LeNet 5 15.57% 15.63% 15.69% 15.64% 15.57% 15.53% 15.81%

CIFAR-100 ResNet 110 27.83% 34.78% 28.41% 28.56% 27.83% 27.82% 38.77%

CIFAR-100 ResNet 110 (SD) 24.91% 33.78% 25.42% 25.17% 24.91% 24.99% 35.09%

CIFAR-100 Wide ResNet 32 28.0% 34.29% 28.61% 29.08% 28.0% 28.45% 37.4%

CIFAR-100 DenseNet 40 26.45% 34.78% 26.73% 26.4% 26.45% 26.25% 36.14%

CIFAR-100 LeNet 5 44.92% 54.06% 45.77% 46.82% 44.92% 45.53% 52.44%

ImageNet DenseNet 161 22.57% 48.32% 23.2% 47.58% 22.57% 22.54% -

ImageNet ResNet 152 22.31% 48.1% 22.94% 47.6% 22.31% 22.56% -

SVHN ResNet 152 (SD) 1.98% 2.06% 2.04% 2.04% 1.98% 2.0% 2.08%

20 News DAN 3 20.06% 25.12% 20.29% 20.81% 20.06% 19.89% 22.0%

Reuters DAN 3 2.97% 7.81% 3.52% 3.93% 2.97% 2.83% 3.52%

SST Binary TreeLSTM 11.81% 12.08% 11.75% 11.26% 11.81% 11.81% 11.81%

SST Fine Grained TreeLSTM 49.5% 49.91% 48.55% 49.86% 49.5% 49.77% 48.51%

Table S2. Test error (%) on standard vision and NLP datasets before calibration and with various calibration methods. The number

following a model’s name denotes the network depth. Error with temperature scaling is exactly the same as uncalibrated.

Dataset Model Uncalibrated Hist. Binning Isotonic BBQ Temp. Scaling Vector Scaling Matrix Scaling

Birds ResNet 50 0.9786 1.6226 1.4128 1.2539 0.8792 0.9021 2.334

Cars ResNet 50 0.5488 0.7977 0.8793 0.6986 0.5311 0.5299 1.0206

CIFAR-10 ResNet 110 0.3285 0.2532 0.2237 0.263 0.2102 0.2088 0.2048

CIFAR-10 ResNet 110 (SD) 0.2959 0.2027 0.1867 0.2159 0.1718 0.1709 0.1766

CIFAR-10 Wide ResNet 32 0.3293 0.2778 0.2428 0.2774 0.2283 0.2275 0.2229

CIFAR-10 DenseNet 40 0.2228 0.212 0.1969 0.2087 0.1750 0.1757 0.176

CIFAR-10 LeNet 5 0.4688 0.529 0.4757 0.4984 0.459 0.4568 0.4607

CIFAR-100 ResNet 110 1.4978 1.4379 1.207 1.5466 1.0442 1.0485 2.5637

CIFAR-100 ResNet 110 (SD) 1.1157 1.1985 1.0317 1.1982 0.8613 0.8655 1.8182

CIFAR-100 Wide ResNet 32 1.3434 1.4499 1.2086 1.459 1.0565 1.0648 2.5507

CIFAR-100 DenseNet 40 1.0134 1.2156 1.0615 1.1572 0.9026 0.9011 1.9639

CIFAR-100 LeNet 5 1.6639 2.2574 1.8173 1.9893 1.6560 1.6648 2.1405

ImageNet DenseNet 161 0.9338 1.4716 1.1912 1.4272 0.8885 0.8879 -

ImageNet ResNet 152 0.8961 1.4507 1.1859 1.3987 0.8657 0.8742 -

SVHN ResNet 152 (SD) 0.0842 0.1137 0.095 0.1062 0.0821 0.0844 0.0924

20 News DAN 3 0.7949 1.0499 0.8968 0.9519 0.7387 0.7296 0.9089

Reuters DAN 3 0.102 0.2403 0.1475 0.1167 0.0994 0.0990 0.1491

SST Binary TreeLSTM 0.3367 0.2842 0.2908 0.2778 0.2739 0.2739 0.2739

SST Fine Grained TreeLSTM 1.1475 1.1717 1.1661 1.149 1.1168 1.1085 1.1112

Table S3. NLL (%) on standard vision and NLP datasets before calibration and with various calibration methods. The number following

a model’s name denotes the network depth. To summarize, NLL roughly follows the trends of ECE.




