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Abstract—Cognitive Radio (CR) has garnered much attention
in the last decade, while the security issues are not fully studied
yet. Existing research on attacks and defenses in CR-based
networks focuses mostly on individual network layers, whereas
cross-layer attacks remain fortified against single-layer defenses.
In this paper, we shed light on a new vulnerability in cross-layer
routing protocols and demonstrate how a perpetrator can exploit
this vulnerability to manipulate traffic flow around it. We propose
this cross-layer attack in CR-based wireless mesh networks (CR-
WMNs), which we call off-sensing and route manipulation (OS-
RM) attack. In this cross-layer assault, off-sensing attack is
launched at the lower layers as the point of attack but the final
intention is to manipulate traffic flow around the perpetrator.
We also introduce a learning strategy for a perpetrator, so that
it can gather information from the collaboration with other
network entities and capitalize this information into knowledge to
accelerate its malice intentions. Simulation results show that this
attack is far more detrimental than what we have experienced
in the past and need to be addressed before commercialization
of CR-based networks.

I. INTRODUCTION

The pervasive adoption of unlicensed bands to provide

wireless broadband services has made it a bottleneck to meet

the ever-increasing demand of wireless bandwidth. Therefore,

the regulatory bodies and the research communities have come

forward to explore innovative ways to meet this demand. Ac-

cording to the Federal Communications Commission (FCC), a

significant portion of the radio spectrum remains highly under-

utilized whereas high volume of traffic appears in a small por-

tion of the spectrum. Thereby, FCC has proposed a new radio

spectrum utilization paradigm, where an unlicensed user (or

SU) can opportunistically access the licensed spectrum without

affecting the existing licensed users (or PUs). Cognitive Radio

(CR) appears to be a cornerstone to realize this paradigm and

enables opportunistic wireless access for unlicensed users.

One of the promising applications of the CR technology

is wireless mesh networks (WMNs) [1], [2], because WMNs

usually suffer from inter-flow interference [3] and insufficient

channels to mitigate it, whereas the CR technology offers an

intelligent solution to the interference problem in WMNs via

accessing licensed bands in an opportunistic manner. However,

since CRs adapt to the surrounding radio environment based

on sensing the radio channels around them and collaborations

with peer nodes, it is crucial that their belief of their own

surroundings is not compromised and diverted in a wrong

direction by a perpetrator.

This work was supported in part by the U.S. National Science Foundation
(NSF) under Grant No. 1343355, 1718666, and 1731675.

A CR-WMN consists of CR-enabled wireless mesh

routers/access points (CR-WMRs or SUs interchangeably),

mobile devices connected to the CR-WMRs, and a gateway

which is connected to the Internet. Internet traffic between

mobile devices and the gateway is carried by the CR-WMRs

and CR-WMRs can opportunistically access the spectrum

when no PUs are using it. In reality, the spectrum usage by

PUs varies over time and space. Thus, spectrum availability is

different to CR-WMRs depending on their locations. Hence,

due to the uncertainty of any single channel being available to

all SUs at all the time, it is very challenging to have a dedicated

common control channel (CCC) in the network. Therefore, two

CR-WMRs are blind to each other (i.e., they do not know any

information about each other) until they rendezvous [4] on a

common available channel. The state-of-the-art work usually

proposes that two SUs hop onto different channels from one

time slot to another until they meet on a common available

channel and then, they can exchange control information.

However, the policy of accessing licensed channels in a non-

interfering basis could make it a potential vulnerability. In

CR-based networks, an attack that exploits this vulnerability

is called Primary User Emulation (PUE) attack [5]. In this

attack, an attacker impersonates as a PU by mimicking PU

signal characteristics and transmitting on the licensed channel.

SUs falsely believe it as a benign PU transmission and abstain

from accessing the channel. To defend such attacks, numerous

solutions have been proposed based on spectrum sensing. Most

of the existing spectrum sensing approaches require that a SU

should sense the spectrum periodically for returning PUs. In

order to successfully detect returning PUs, the sensing period

has to be designed in a way that the sensing interval coincides

with the transmission of PUs. When the transmission from a

PU is not detected, a SU may end up interfering the PU’s

transmission. Consequently, it impacts the throughput of both

primary and secondary networks.

Moreover, this realistic way of PU misdetection can be

leveraged by an attacker for creating a new window of

vulnerability. An attack that exploits this vulnerability is called

off-sensing attack [6]. In this attack, a perpetrator interferes

a neighboring SU’s transmission only when the neighboring

SU is not sensing but transmitting. Using this strategy, the

perpetrator can interfere to corrupt the data transmission of

the victim SU and trick it into believing that the victim SU is

interfering a PU’s transmission. Since FCC regulations require

a SU to leave the channel within 2 seconds upon a PU’s arrival

[7], if the perpetrator corrupts the victim SU’s transmission
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long enough, the victim SU will leave the channel and hop to

the next available channel. It reduces the channel availability

experienced by the victim SU.

Furthermore, in CR-based networks, the cross-layer nature

of some networking protocols may create a new degree of

vulnerability, because the coupling of multiple layers entails

that the decisions made in one layer can be altered by changing

the dynamics of other layers. In this paper, we propose such

an attack under which an attacker can manipulate the routing

decisions in the network layer by employing off-sensing attack

as the front-end attack to change the channel availability in

lower layers. As a result, the attacker can influence the traffic

flow traversing around it and direct them to a target node (i.e.,

route manipulation). In particular, the perpetrator will create

a Denial-of-Service (DoS) situation for the victim SU node

and divert the traffic flow which initially should go through

the victim SU. We call it as off-sensing DoS (OS-DoS) attack.

With the careful selection of which neighboring SU to perform

the OS-DoS attack on, the perpetrator can direct the diverted

traffic flow to a designated target node. We name this off-
sensing and route manipulation (OS-RM) attack, a cross-layer

attack. To the best of our knowledge, no existing efforts have

been made to exploit the vulnerability in spectrum sensing

mechanisms and cross-layer routing protocols together in a

CR-based network in order to manipulate traffic flow.

In this paper, we study the effect of OS-RM attack in CR

enabled WMNs under different scenarios. The main contribu-

tions of this paper are summarized in the following:

1. We propose an off-sensing attack based cross-layer at-

tack, where the OS-DoS attack is used to exploit the

cross-layer dependency in the routing protocol. Here,

the perpetrator can influence a significant portion of

the network traffic flow around it and divert them to a

designated target node. To the best of our knowledge, this

work is the first to study a cross-layer route manipulation

attack in CR-based networks, without advertising false

routing updates.

2. We propose an intelligent attacker model where an at-

tacker will use the Hidden Markov Model (HMM) based

learning technique to learn channel parameters of PUs

and then apply the learned knowledge to strengthen its

malicious actions. To the best of our knowledge, even

though the concept of learning has been used widely in

defense techniques, it has never been considered in the

domain of CR based networks where an attacker can also

capitalize the knowledge around it.

Note that this paper focuses on the details and impact of

the OS-RM attack. Countermeasure of this attack is out of

this paper’s scope. The rest of this paper is organized as

follows. In Section II, conventional cross-layer attacks and

their defenses are reviewed briefly. Then in Section III, the

system model that is considered in this paper is explained. The

details of our proposed OS-RM attack are discussed in Section

IV. Simulation results are shown and discussed in Section V,

followed by the conclusions in Section VI.

II. RELATED WORK

The presence of a PUE attacker can harshly affect the op-

erations of a CR-based network. Numerous defense strategies

have been proposed [8]–[13] and all of them consider that the

SU would sense the PU’s transmission. However, a perpetrator

can ingeniously avoid the sensing interval of the victim SU

and attack by interfering the victim SU’s transmission in off-

sensing intervals [6]. We consider this scenario in our proposed

work.

In recent years, some cross-layer attacks have been proposed

in the CR based networks. Cross-layer attacks have proven to

be more detrimental than single-layer based attacks, due to

their immunity to the single-layer based defense strategies.

In [14], the coordination of two cross-layer attacks at the

PHY layer and MAC layer is studied. The use of PUE attack

as an auxiliary attack in order to degrade the throughput

performance of TCP has been studied in [15]. In [16], the

authors propose a MAC-TCP cross-layer attack where an

attacker periodically preempts itself to use the shared channel

and impacts the TCP performance by creating large variations

in round-trip-time (RTT). Though the study of cross-layer

attacks in terms of PHY-MAC-Transport layer has gained

significant attention, very few efforts have been focused on

security vulnerabilities in the network layer. A network layer

attack in CR-based networks named routing-toward-primary-

user (RPU) is proposed in [17], where a malicious node

intentionally directs a large amount of traffic toward the PUs,

aiming to cause interference to them. However, this is not a

cross-layer attack and the perpetrator is an active participant

in the attack, hence, less difficult to identify. In Hammer and

Anvil attack [18], a jamming aided cross-layer attack is pro-

posed in the multihop infrastructureless network. Nevertheless,

a CR-based network is inherently immune to jamming attacks

due to their ability to change operating channels dynamically.

Neither of the attacks mentioned above have considered

an intelligent attacker who can gather information and learn

about the whole network by leveraging the control information

flowing in the collaborative CR-based network. With this

knowledge, an attacker can conduct more sophisticated attacks

with less risk of being flagged.

III. SYSTEM MODEL

In this section, we provide an outline of the assumptions

made for the basic functionalities of the PHY, MAC, and

network layers in our considered CR-WMNs.

A. Primary User and Secondary User Model
We consider totally M homogeneous channels each with

a fixed bandwidth for the PUs and SUs in the network, and

N CR-WMRs trying to opportunistically access the channels.

Each PU randomly selects a channel to access. An SU is

allowed to access a channel when it senses no PU is using

it. During the transmission, if an SU senses the channel busy,

it stops transmitting on that channel and performs a spectrum

handoff. Each SU is equipped with only one radio for spectrum

sensing, control information exchange, and data transmission.

Each PU alternates between the ON and OFF state according
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Fig. 1: PU activity model. (a) Transition rate of the Markov chain;
(b) PU activity in the time line.
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Fig. 2: Network coordination scheme

to a continuous-time Markov process. In Fig. 1, let λ denote

the transition rate from the OFF to ON state, and let μ denote

the transition rate from the ON to OFF state. Thereby, the

mean sojourn time in the ON and OFF state is 1/μ and 1/λ,

respectively, and both follow the exponential distribution.

B. Network Coordination Scheme
Rendezvous is a pre-requisite step before two SUs can

communicate and exchange control information with each

other in the absence of a dedicated CCC. A successful ren-

dezvous happens when both transmitting and receiving SUs

are on the same channel and have completed a successful

handshake between them, e.g., a Request-to-Send/Clear-to-

Send (RTS/CTS) exchange.

We consider the common frequency-hopping as the network

coordination scheme [19], [20] which means that the channel

hopping pattern is the same for all SUs. Fig. 2 illustrates the

operation of the common frequency-hopping-based network

coordination. We consider a time-slotted system. Each time

slot consists of a sensing interval (sensing) and a contention

interval (CI) with the transmission of an RTS/CTS pair. When

there is no packet in the buffer of an SU, it keeps hopping

through the channels from one time slot to another based on

the predetermined common channel-hopping pattern.

We adopt the MAC model from [21], [22] for network

coordination. Whenever a SU has a packet to send, it first

senses the channel. If the channel is idle, the SU chooses a

random number between 0 and CW − 1 (in terms of mini-

slots) as its backoff time to avoid contention on the channel.

If it hears no RTS before the backoff time runs out, it sends

an RTS on the channel. Otherwise, it saves the remaining time

in the backoff timer and will try to resend the RTS in the next

time slot. After sending an RTS, the source SU waits for the

CTS from the intended SU receiver. If the RTS sender fails to

receive a CTS, it means the RTS/CTS exchange has failed in

this slot and the source SU will continue the same process in

the next time slot. After a successful RTS/CTS exchange, both

SUs stop channel-hopping and start the data transmission on

the same channel. After a successful transmission, both SUs

start channel-hopping again by following the common hopping

sequence. Meanwhile, all other SUs keep hopping through the
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Fig. 3: An illustration of the network coordination with an ON/OFF
PU model.
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Fig. 4: An illustration of a network graph.

channels. To better illustrate the activity of a SU under the

coordination scheme, we provide an example in Fig. 3. In this

example, we consider that the SU always has a packet in its

buffer, wins contentions and a SU packet length is two time

slot long.

C. Routing Scheme
Many routing protocols have been proposed for CR-based

networks [23]–[26]. In all these papers, spectrum availability

has been given the highest weight for routing decisions.

Therefore, it is clear that CR-based routing protocols consider

spectrum availability as a significant cost metric.

Our focus in this paper is not to propose a new routing

protocol. Instead, we adopt a link-state based routing protocol

with channel availability as the only cost metric for routing

decisions. Our goal is to show the impact of our proposed

attack on routing performance. In our CR-WMN, CR-WMRs

calculate their link cost periodically with a period of ‘Δ‘

and broadcast it. We also define an activity threshold τ (in

Δ interval) above which a PU will be considered busy and

hence the channel is not available. Along with cost, nodes also

share their available channel list (ACL). For the calculation

of the shortest path from a CR-WMR to the gateway, we

consider the CR-WMN as an undirected graph G = {V,E},

called a connectivity graph. Each node i ∈ V = {1, · · · , N}
represents a CR-WMR, which is characterized by a circular

transmission range and an interfering range. Each edge E
represents the connectivity between neighboring CR-WMRs

and the edge cost is characterized by the spectrum availability.

Fig. 4 illustrates a network graph with 9 nodes and a gateway

(Gn). Link cost between node i and j is defined as eij .
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IV. PROPOSED OFF-SENSING AND ROUTE MANIPULATION

(OS-RM) ATTACK MODEL

In reality, it is very unlikely for one to take control of a

significant portion of the CR-WMRs in a CR-WMN without

being flagged. However, under our proposed attack model,

without even compromising a significant amount of routers,

the perpetrator can still have the control over a significant por-

tion of traffic flow around him. This can be done by exploiting

and taking advantage of the many cross-layer routing protocols

in CR enabled networks, where affecting lower layers can

result in influencing decisions in the network layer.

Channel state 
prediction

HMM based 
parameter 
estimator

Periodic 
route updates

Best node to 
perform OS-
DoS attack

G= {V,E}

,  
Channel state

prediction

HMM based 
parameter 
estimator

G

, 

G= {V,E}

Attack model
OS-DoS 

attack node 
selection

Fig. 5: Proposed attack model.

The configuration of the proposed HMM-based system for

the OS-RM attack is shown in Fig. 5. Time is slotted into

a duration of routing updates Δ. Therefore, we consider a

discrete-time model, where the time variable takes values in

{0, 1, ..., T}. The attacker has a separate HMM block for

each channel. The input to the system at time t consists of the

routing updates received from the neighboring nodes.

The attacker model consists of three components: OS-DoS

attack node selection, channel state prediction, and HMM-

based channel parameter estimator. The OS-DoS attack node

selector chooses the best node as the victim node based on the

updated network graph G = {V,E}. The output of the system

consists of the best neighbor to perform the OS-DoS attack, in

order to divert traffic flow through the target node. The attacker

updates the network graph G depending on the adjacency list

(i.e., neighboring list of the SUs) and prediction of the future

state of the channels, and the HMM-based channel parameter

estimator facilitates to estimate the channel activity based on

the routing updates.

We consider the frequency of routing updates comparable

to the frequency of channel status change. Also, due to

computational and physical efforts by the attacker, we consider

a constant delay between when the routing update arrives

and the attacker conducts an OS-RM attack without learning.

We will see that this delay degrades the attack performance

and hence it indicates the importance of predicting network

conditions beforehand to counteract the effect of the delay.

A. OS-DoS Node Selection
The victim of the OS-DoS attack will be disconnected from

the network (or has a very high cost to use it) and traffic

flows that have been going through it, will switch to the next

best available route. The performance of the OS-RM attack

depends on the right neighbor node to perform the OS-DoS

attack on. Depending on the predicted network graph, the

attacker finds the neighboring node whose traffic flow is most

likely to traverse through the target node, if attacked. Here,

the attacker’s goal is to choose a neighbor in such a way that

the rebound effect will divert most traffic flows to the target

node.
The attacker will use a shortest-path algorithm (i.e., Dijk-

stra’s algorithm) to figure out the best route for each node in

the network to reach the gateway. At every step, the attacker

first calculates the number of routers choosing the target router

as a forwarder, under no attack (i.e., successor routers, πmax).

Then, it finds the best neighbor router to perform the OS-

DoS attack which will maximize its objective. It does it by

measuring what would happen if it attacks a neighbor. If there

is no neighbor that offers π > πmax, it will not conduct the

OS-DoS attack and wait for the next update to come. Here, π
is the number of successor nodes, under attack. Algorithm 1

and 2 show the pseudocode for calculating the successor CR-

WMRs of the target CR-WMR and OS-DoS node selection,

respectively. Next, we will discuss how an attacker can update

the network graph G. Here, the target node and the gateway

node are denoted as Tn and Gn, respectively.

Algorithm 1 Calculating the number of nodes that has the

target node in their forwarding set to the gateway

Input: G, Tn, Gn

Result: Tn’s successor node quantity φTn

function COMPUTESUCCESSORS(G, Tn, Gn)
φTn = 0;
for i = 1 : N do

Use Dijkstra’s algorithm to calculate the shortest path to the
gateway, Pi ={i,· · · forwarding nodes · · · , Gn}
if Tn ∈ Pi then

φTn = φTn + 1;
end

end
return φTn ;

Algorithm 2 Selecting the best node to perform OS-DoS

attack
Input: G, Tn, Gn

Result: OS-DoS node
πmax= ComputeSuccessors(G, Tn, Gn);
OS-DoS node = empty;
for i = 1 : all the neighbors do

Detach the neighbor i from G � i= neighbor index
Update network graph, G′ = {V ′, E′} � i /∈ V ′, (·, i) /∈ E′

π= ComputeSuccessors(G′, Tn, Gn);
if π > πmax then

πmax = π;
OS-DoS node = i;

end
end
if OS-DoS node �= empty then

Perform OS-RM attack
else

Wait for the next update
end

B. Channel State Prediction
Channel state predictor assists in updating the network

graph G in each period, based on routing updates. In this
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Fig. 6: The PU activity on channel i; Ni(t1) = 1.

section, we propose the prediction model to forecast future

channel activity to update the network graph.

By utilizing the periodic routing update, an attacker can

make predictions of the channel availability before the next

route update arrives. Based on the prediction results, an

attacker decides whether to change the link costs or not.

We propose two criteria for determining whether the channel

should be considered busy or idle: 1) the predicted probability

that the channel is busy or idle and 2) the expected length of

the activity or inactivity.

In Fig. 6, t0 represents the last moment PU becomes active,

t1 represents the last moment route update arrives, and t2
represents the expected moment of the next route update.

Fig. 6 shows the PU traffic activity on channel i, where Xk
i

represents the inter-arrival time of the kth packet. We denote

Y (t2) as the number of PU packets that arrive between t1 and

t2 and Ni(t2) as the status of the channel at time t2, which

is a binary variable between 0 and 1 representing the idle and

busy state, respectively.

In the following, we calculate the probability that the

channel state is active upon the next route update. All the

figures are normalized to routing update length Δ. As shown

in Fig. 6(a), where Ni(t1) = 1, the probability that the next

channel state will be active and no PU packet arrives between

t1 and t2 is

Pr{Ni(t2) = 1, Y (t2) = 0}
= Pr{X1

i > t2 − t0}Pr{α > τ}
= Pr{X1

i > t2 − t0}Pr{L0
i − (t1 − t0) > τ},

(1)

where Li(k) denotes the length of the kth new PU packet in

channel i and τ represents the activity threshold of PU. Xi(k)
and Li(k) depend on the channel parameters λi and μi.

As shown in Fig. 6(b), the probability that the channel state

will be active and only one PU packet arrives between t1 and

t1 t2
T

CH i
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L i
0 L i

1
X i

1

(a) Only one PU packet arrives between t1 and t2
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1
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2

(b) Two PU packets arrive between t1 and t2

Fig. 7: The PU activity on channel i; Ni(t1) = 0.

t2 is

Pr{Ni(t2) = 1, Y (t2) = 1}
= Pr{β < 1− τ}Pr{α+ L1

i > τ}
= Pr{X1

i − L0
i < 1− τ}Pr{α+ L1

i > τ}.
(2)

Similarly, in Fig. 6(c), the probability that channel i is active

and two packets come between t1 and t2 is,

Pr{Ni(t2) = 1, Y (t2) = 2}
= Pr{β1 + β2 < 1− τ}Pr{α+ (L1

i + L2
i ) > τ}

= Pr{X1
i +X2

i − (L0
i + L1

i ) < 1− τ}
Pr{α+ L1

i + L2
i > τ}.

(3)

Assume that U is the maximum number of PU packets that

could come between t1 and t2. Hence, the probability of

having the channel active and arriving h (h ∈ [1, U ]) PU

packets is

Pr{Ni(t2) = 1, Y (t2) = h}

= Pr{
h∑

k=1

βk < 1− τ}Pr{α+

h∑
k=1

Lk
i > τ}

= Pr{
h∑

k=1

Xk
i −

h−1∑
k=0

Lk
i < 1− τ}Pr{α+

h∑
k=1

Lk
i > τ}.

(4)
Therefore, the probability that channel i is active at time t2
can be obtained by,

Pr{Ni(t2) = 1|Ni(t1) = 1}
= Pr{X1

i > t2 − t0}Pr{L0
i − (t1 − t0) > τ}

+
U∑

h=1

[
Pr{

h∑
k=1

Xk
i −

h−1∑
k=0

Lk
i < 1− τ}Pr{α+

h∑
k=1

Lk
i > τ}

]
.

(5)

Likewise, in Fig. 7(a), where Ni(t1) = 0, the probability that

next channel status will be active and one PU packet arrives

between t1 and t2 is

Pr{Ni(t2) = 1, Y (t2) = 1}
= Pr{β < 1− τ}Pr{L1

i > τ}
= Pr{X1

i − L0
i − α < 1− τ}Pr{L1

i > τ}.
(6)
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Similarly, in Fig. 7(b), the probability that channel i is active
and two packets come between t1 and t2 is,

Pr{Ni(t2) = 1, Y (t2) = 2}
= Pr{β1 + β2 < 1− τ}Pr{(L1

i + L2
i ) > τ}

= Pr{X1
i +X2

i − (L0
i + L1

i )− α < 1− τ}
Pr{L1

i + L2
i > τ}.

(7)

Therefore the probability that channel i is active at time t2
can be obtained by,

Pr{Ni(t2) = 1|Ni(t1) = 0}
= Pr{X1

i − L0
i − α < 1− τ}Pr{L1

i > τ}

+
U∑

h=1

[
Pr{

h∑
k=1

Xk
i −

h−1∑
k=0

Lk
i − α < 1− τ}Pr{

h∑
k=1

Lk
i > τ}

]
.

(8)

Thus, if the channel statistics (e.g., λ and μ) are known,

the predicted probabilities can be calculated. Therefore, based

on the prediction, the policy that we consider the channel as

active, when
Pr{Ni(t2) = 1} > Γ, (9)

where Γ is the threshold above which the channel is considered

active by the predictor model. After making channel decisions,

the attacker will calculate the corresponding link costs.

However, learning the channel statistics requires significant

efforts and hence, we design and propose a HMM based

technique to estimate the channel parameters λ and μ.

C. HMM based Parameter Estimator
A slotted discrete-time model is used for the channel

activity. The decision on whether a channel is busy or not

is made based on the channel activity during the last period.

If the channel activity exceeds the given threshold τ , then it

is assumed to be in the ON state or otherwise OFF.

We first present the structure of the HMM and then we

give a brief introduction of the forward-backward procedure

in Baum-Welch (BW) algorithm [27]. Finally, by analyzing the

estimated parameters, we calculate the channel parameters.

1) Hidden Markov Model: A Hidden Markov process is

a Markov process consisting of two states, where X is

the hidden process that is never observable and Z is the

observation process that can be seen by the observers (i.e.,

the OS-RM attacker). Xt and Zt denote the hidden state and

observation state at time t, respectively. The hidden process

follows a Markov process with a finite number of states

and the observable process is another probabilistic function

which generates symbols based on the hidden states. The set

of symbols comes from a defined alphabet A. In our case,

A = {0, 1} (i.e., 0 = OFF and 1 = ON).

Xt-1 Xt Xt+1

Zt-1 Zt+1Zt

Hidden states

Observable states

Fig. 8: The Hidden Markov model.

The general concept of an HMM is illustrated in Fig.

8. A system of discrete time is changing randomly from

one state to another, within a finite state space S. In our

case, the finite space S = {0, 1}. The evolution of the

hidden sequence X1, X2, ..., XT is hidden, which represents

PU states. However, it can be expressed by a sequence of

observed symbols from the alphabet A (i.e., Zt ∈ A), which

represents routing updates. In order to model the HMM, it is

necessary to define the parameters first:

• Number of hidden states, s = 2
• Number of symbols, a = 2
• Initial state distribution, π = {πi}, where i = 0, · · · , s−1
• One-step state transition probabilities, P = pij , where

i, j = 0, · · · , s− 1
• Symbol emission probability, B = bj(k), where j =

0, · · · , s− 1 and k = 0, · · · , a− 1

Therefore, the one-step state transition probability is

Pr(Xt = j|Xt−1 = i,Xt−2 = it−2, · · · , X2 = i2, X1 = i1)

= Pr(Xt = j|Xt−1 = i)

= pij ,
(10)

where, i1, i2, .., it−2, i, j ∈ {0, 1} and t ≥ 2. And the emission

probability is

bj(k) = Pr(Zt = k|Xt = j). (11)

The BW algorithm is an iterative approach to estimate

the HMM parameters η = [π, P,B] such that the Pr(Z|η)
is maximized. To estimate the parameters, we define the

following parameters:
• Forward probability, αt(i) = Pr(Z1, Z2, · · · , Zt, Xt =

Si|η), for Si ∈ {0, 1}
• Backward probability, βt(i) =

Pr(Zt+1, Zt+2, · · · , ZT−1, ZT , Xt = Si|η), for

Si ∈ {0, 1}
• Estimate of state transitions, γt(i, j) = Pr(Xt =

Si, Xt+1 = Sj |Z, η), for Si, Sj ∈ {0, 1}. It represents

the probability of being in state Si at instant t and in

state Sj at instant t+ 1, given the observation sequence

Z and the model parameters η = [π, P,B]
• Estimate of the state at each observation, δt(i) =

Pr(Xt = Si|Z, η), for Si ∈ {0, 1}. It represents

the probability of being in state Si at instant t, given

the observation sequence Z and the model parameters

η = [π, P,B]

The estimation variables for the HMM parameters are

expressed in terms of γt(i, j) and δt(i) :

pij =

∑t=T−1
t=1 γt(i, j)∑t=T−1
t=1 δt(i)

. (12)

bj(k) =

∑t=T
t=1,Zt=k δt(j)∑t=T

t=1 δt(j)
. (13)

πi = δ1(i). (14)

In (12) the numerator represents the expected number of

transitions from state Si to state Sj over the interval T −
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1, while the denominator represents the expected number of

times a transition happens from state Si. The numerator in

(13) represents the expected number of transitions from state

Sj at which symbol k is observed. In (12)-(14), γt(i, j) and

δt(i) are calculated as follows:

γt(i, j) =
αt(i)pijbj(Zt+1)βt+1(j)

Pr(Z|η) . (15)

δt(i) =
∑

all Sj∈{0,1}
γt(i, j). (16)

The forward and backward probabilities in the above equa-

tions are calculated recursively as follows:

Initialization:

α1(i) = πibi(1), 0 ≤ i ≤ s− 1. (17)

βt(i) = 1, 0 ≤ i ≤ s− 1. (18)

Recursion:

αt+1(j) =

[
s−1∑
i=0

αt(i)pij

]
bj(Zt+1). (19)

βt(i) =

s−1∑
j=0

pijbj(Zt+1)βt+1(j). (20)

The recursion process terminates when Pr(Z|η) maximizes,

which is the probability of observing the sequence Z given the

parameter η = [π, P,B].

Pr(Z|η) =
s−1∑
i=0

T∏
t=1

αt(i). (21)

2) Analysis of PU Activity: In this section, we need to

extract the PU activity from the estimated HMM parameters

η = [π, P,B]. To do this, we first introduce a new set of

PU parameters, θ = [λ, μ], where λ means the traffic arrival

rate and μ means the traffic departure rate. From our network

model, the length of the ON and OFF state are exponentially

distributed. In [28], a useful method to compute the state

transition rate matrix from the state transition probability

matrix is provided. We denote the transition rate matrix as

Q and

Q =

( −λ λ
μ −μ

)
. (22)

As described in η, P is the one-step state transition probabil-

ity matrix. We know that P = exp(QΔ) and Q = log(P )/Δ,

where Δ is the route update period. However, the computa-

tional procedure is cumbersome and log(·) has a limitation

when P has a non-positive eigenvalue. Therefore, we adopt

the mapping approach introduced in [28], which provides an

easier computational approach and provides enough degree of

accuracy. If the two-dimensional transition rate matrix is the

form shown in (22), then the transition probability matrix is:

P =

(
p00 p01
p10 p11

)
=

(
exp−λΔ 1− exp−λΔ

1− exp−μΔ exp−μΔ

)
.

(23)

In (23), the relation between P and Q unfolds the relation-

ship between η and θ.

V. PERFORMANCE EVALUATION

We evaluate the impact of the OS-RM attack by conducting

simulations in Matlab. We consider a grid size distribution of

25 CR enabled nodes, with 24 being CR-WMRs and a gateway

(Fig. 9). The attacker and the target node are colored with red

and green color, respectively. The gateway has three neigh-

boring CR-WMRs via which other routers can communicate

with the gateway. In reality, traffic is not uniformly distributed

among these three CR-WMRs due to their different spectrum

availability. We consider a uniform distribution of PUs in the

network. Parameters of our simulations are listed in Table I.

TABLE I: Simulation Parameters

Simulation area 1000x1000
Simulation time 50 seconds
Training time 25 seconds
SU sensing range 200
The number of PUs 10
The number of SUs 25
Bandwidth 2 Mbps
The size of (RTS+CTS) 160 + 112 bits (802.11b/g)
Sensing duration 1 ms (802.22)
SU traffic ρ = λs/μs= 0.05 ∼ 0.25
SU packet size 750 bytes
Number of channels 10

Gateway

PU
Attacker Target node CR-WMR

PU
Attacker Target node CR-WMRR

Bidirectional 
link

Attacker s 
link

A

A

T

T

Fig. 9: Simulation scenario.

A. HMM Estimation
The performance of the OS-RM attack relies significantly

on how accurately HMM-based estimators can estimate the

parameters of PUs in the network. Furthermore, the length of a

training sample is instrumental to the learning performance. In

Fig. 10, we can observe the trend of estimation error over the

time for packet arrival rate (λ) and service rate (μ). Estimation

errors reduce to below 4% when the estimator is trained to 50

seconds.

In our simulations, we train the HMM estimator with 25

seconds of data and observe the impact of the attack for

the next 25 seconds without changing the PU activity rate.

Nevertheless, in reality, the PU activity rate is not going to be

constant all the time and the HMM estimator should reestimate

to track changes. The optimal training time length based on

the traffic change rate is out of this paper’s scope. In the future,

we plan to propose a strategy for the attacker in a time-varying

PU network.
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Fig. 10: HMM estimation performance.

Traffic intensity

(a) (b)

Fig. 11: Traffic heat map. (a) no attack; (b) OS-RM attack.

B. Impact on Traffic Flow
In Fig. 11 (color and number coded), we observe changes in

traffic flow due to the rebalancing effect caused by the OS-DoS

attack on the victim node. Without attack, two neighboring

CR-WMRs carry most of the traffic (Fig. 11(a)) except the

target node. However, with the OS-RM attack, we can see

that a portion of previous routes are disrupted (Fig. 11(b)).

As a result, traffic flows change directions and a few nodes

who were carrying less traffic are exposed to higher traffic load

now. Most significant change in traffic is observed in the target

node. This strategy works as the driving force to maneuver

traffic to any node an attacker wants. Though we discussed

only about diverting traffic towards a particular node, the same

kind of strategy can be employed to divert traffic from one.

C. Impact on Network Performance
We compare the impact of lower-layer attacks, e.g., con-

ventional jamming, random jamming, OS-RM attack without

learning, and OS-RM attack with learning, used as an auxiliary

attack in an effort to manipulate routes. In Fig. 12(a)-(d),

we compare the impact of these front-end attacks with an

increasing SU activity. From Fig. 12(a), we can observe the

increased number of traffic flows going through the target

node. Though the jamming attack can also influence traffic

flows, it is less significant as compared to the OS-RM attack.

In the jamming attack, all the nodes within the radio range

of the jammer get affected, hence, the traffic flows disperse

in the whole network. Moreover, it is inefficient to use the

jamming strategy due to the high energy required by the

jammer. Furthermore, as the attacker is an authorized network

entity and has the similar power requirement as other entities,

it is unrealistic to perform jamming. However, unlike the

0.05 0.1 0.15 0.2 0.25

SU activity rate

150

200

250

300

350

N
um

be
r o

f f
lo

w
s

No attack
OS-RM w/o-learning
Jamming
Random jamming
OS-RM Threshold-0.4
OS-RM Threshold-0.6
OS-RM Threshold-0.8

(a)

0.05 0.1 0.15 0.2 0.25

SU activity rate

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (p

kt
/s

ec
)

No attack
OS-RM w/o-learning
Jamming
Random jamming
OS-RM Threshold-0.4
OS-RM Threshold-0.6
OS-RM Threshold-0.8

(b)

0.05 0.1 0.15 0.2 0.25

SU activity rate

0.2

0.3

0.4

0.5

0.6

M
ea

n 
de

la
y 

(s
ec

)

No attack
OS-RM w/o-learning
Jamming
Random jamming
OS-RM Threshold-0.4
OS-RM Threshold-0.6
OS-RM Threshold-0.8

(c)

0.05 0.1 0.15 0.2 0.25

SU activity rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pa
ck

et
 d

ro
p 

ra
te

No attack
OS-RM w/o-learning
Jamming
Random jamming
OS-RM learning-0.4
OS-RM Threshold-0.6
OS-RM Threshold-0.8

(d)

Fig. 12: Impact of lower-layer attacks on route manipulation. (a)
Number of traffic flows; (b) Throughput; (c) Mean dealy (d) Packet
drop rate.

jamming attack, an OS-DoS attack can be performed on an

individual node of choice. Thus, we can observe more than

50% increase in traffic flows to the target node.

In Fig. 12(b)-(d), we can observe the change in key per-

formance metrics of the flows going through the target node

(i.e., throughput, delay, and packet drop). If the perpetrator’s

objective is to increase congestion at the target node, then from

Fig. 12(b)-(c), it is quite evidential that this attack reduces

throughput and increases delay experienced by the flows going

through the target node. The effect of delay stems from the

queuing delay in intermediate nodes. In addition, a virtual

blackhole creates in the network as more packets are being

dropped. The increase in packet drop stems from the packet

drop in intermediate nodes due to the timeout and blocking of

new sessions. From Fig. 12, we can observe the performance

improvement by implementing learning strategy of the attacker

when Γ ≥ 0.6.

D. Influence on Traffic vs. Distance
We also observe that the attacker is more influential when

it is situated higher up in the routing tree (gateway is the root

of the tree). In another word, the attacker is more influential

when more number of traffic flows go around it. In Fig. 13, we

can observe that the number of traffic flows actually increases

when the distance between the attacker and the target node

changes from 1-hop to 2-hop, which is counterintuitive to what

we just mentioned. However, when the attacker is a direct

neighbor to the target node, it cannot perform the OS-DoS

attack on the target node. Therefore, the attacker has one less

neighbor to maneuver the neighbor’s traffic flows and hence

the decrease in the number of flows. Therefore, we can deduce

that the attacker is more potent when it is 2-hop away from
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the target node.
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Fig. 13: Impact on traffic flows vs. distance between the attacker and
target node.

Depending on the end objective of the attacker, the impact

of the OS-RM attack can affect other network layers also. In

our proposed attack, the target node could be actually a pre-

compromised node to perform wormhole attacks, black-hole

attacks or perhaps a benign node to create network congestion.

From the above observations, one could imagine the atrocities

an attacker can perpetuate if it achieves a significant amount

of control over the traffic flow.

VI. CONCLUSION

In this paper, we proposed a cross-layer route manipulation

attack in CR-WMNs, namely OS-RM attack. In this attack,

we discussed how the off-sensing attack can be weaponized

as an aid to influence routing decisions in the network layer.

We considered the perpetrator as an intelligent entity and it

estimates necessary network information through learning.

We illustrated a general model of the attack and analyzed

through extensive simulations how to coordinate the OS-

RM attack in order to achieve the best-attacking result. Our

analysis and observations not only shed light on a new kind

of threats to the CR-based network, but also provide some

insightful findings on how to design cross-layer protocols.
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