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Abstract—Cognitive Radio (CR) has garnered much attention
in the last decade, while the security issues are not fully studied
yet. Existing research on attacks and defenses in CR-based
networks focuses mostly on individual network layers, whereas
cross-layer attacks remain fortified against single-layer defenses.
In this paper, we shed light on a new vulnerability in cross-layer
routing protocols and demonstrate how a perpetrator can exploit
this vulnerability to manipulate traffic flow around it. We propose
this cross-layer attack in CR-based wireless mesh networks (CR-
WMNs), which we call off-sensing and route manipulation (OS-
RM) attack. In this cross-layer assault, off-sensing attack is
launched at the lower layers as the point of attack but the final
intention is to manipulate traffic flow around the perpetrator.
We also introduce a learning strategy for a perpetrator, so that
it can gather information from the collaboration with other
network entities and capitalize this information into knowledge to
accelerate its malice intentions. Simulation results show that this
attack is far more detrimental than what we have experienced
in the past and need to be addressed before commercialization
of CR-based networks.

I. INTRODUCTION

The pervasive adoption of unlicensed bands to provide
wireless broadband services has made it a bottleneck to meet
the ever-increasing demand of wireless bandwidth. Therefore,
the regulatory bodies and the research communities have come
forward to explore innovative ways to meet this demand. Ac-
cording to the Federal Communications Commission (FCC), a
significant portion of the radio spectrum remains highly under-
utilized whereas high volume of traffic appears in a small por-
tion of the spectrum. Thereby, FCC has proposed a new radio
spectrum utilization paradigm, where an unlicensed user (or
SU) can opportunistically access the licensed spectrum without
affecting the existing licensed users (or PUs). Cognitive Radio
(CR) appears to be a cornerstone to realize this paradigm and
enables opportunistic wireless access for unlicensed users.

One of the promising applications of the CR technology
is wireless mesh networks (WMNSs) [1], [2], because WMNs
usually suffer from inter-flow interference [3] and insufficient
channels to mitigate it, whereas the CR technology offers an
intelligent solution to the interference problem in WMNs via
accessing licensed bands in an opportunistic manner. However,
since CRs adapt to the surrounding radio environment based
on sensing the radio channels around them and collaborations
with peer nodes, it is crucial that their belief of their own
surroundings is not compromised and diverted in a wrong
direction by a perpetrator.

This work was supported in part by the U.S. National Science Foundation
(NSF) under Grant No. 1343355, 1718666, and 1731675.

A CR-WMN consists of CR-enabled wireless mesh
routers/access points (CR-WMRs or SUs interchangeably),
mobile devices connected to the CR-WMRs, and a gateway
which is connected to the Internet. Internet traffic between
mobile devices and the gateway is carried by the CR-WMRs
and CR-WMRs can opportunistically access the spectrum
when no PUs are using it. In reality, the spectrum usage by
PUs varies over time and space. Thus, spectrum availability is
different to CR-WMRs depending on their locations. Hence,
due to the uncertainty of any single channel being available to
all SUs at all the time, it is very challenging to have a dedicated
common control channel (CCC) in the network. Therefore, two
CR-WMRs are blind to each other (i.e., they do not know any
information about each other) until they rendezvous [4] on a
common available channel. The state-of-the-art work usually
proposes that two SUs hop onto different channels from one
time slot to another until they meet on a common available
channel and then, they can exchange control information.

However, the policy of accessing licensed channels in a non-
interfering basis could make it a potential vulnerability. In
CR-based networks, an attack that exploits this vulnerability
is called Primary User Emulation (PUE) attack [5]. In this
attack, an attacker impersonates as a PU by mimicking PU
signal characteristics and transmitting on the licensed channel.
SUs falsely believe it as a benign PU transmission and abstain
from accessing the channel. To defend such attacks, numerous
solutions have been proposed based on spectrum sensing. Most
of the existing spectrum sensing approaches require that a SU
should sense the spectrum periodically for returning PUs. In
order to successfully detect returning PUs, the sensing period
has to be designed in a way that the sensing interval coincides
with the transmission of PUs. When the transmission from a
PU is not detected, a SU may end up interfering the PU’s
transmission. Consequently, it impacts the throughput of both
primary and secondary networks.

Moreover, this realistic way of PU misdetection can be
leveraged by an attacker for creating a new window of
vulnerability. An attack that exploits this vulnerability is called
off-sensing attack [6]. In this attack, a perpetrator interferes
a neighboring SU’s transmission only when the neighboring
SU is not sensing but transmitting. Using this strategy, the
perpetrator can interfere to corrupt the data transmission of
the victim SU and trick it into believing that the victim SU is
interfering a PU’s transmission. Since FCC regulations require
a SU to leave the channel within 2 seconds upon a PU’s arrival
[7], if the perpetrator corrupts the victim SU’s transmission
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long enough, the victim SU will leave the channel and hop to
the next available channel. It reduces the channel availability
experienced by the victim SU.

Furthermore, in CR-based networks, the cross-layer nature
of some networking protocols may create a new degree of
vulnerability, because the coupling of multiple layers entails
that the decisions made in one layer can be altered by changing
the dynamics of other layers. In this paper, we propose such
an attack under which an attacker can manipulate the routing
decisions in the network layer by employing off-sensing attack
as the front-end attack to change the channel availability in
lower layers. As a result, the attacker can influence the traffic
flow traversing around it and direct them to a target node (i.e.,
route manipulation). In particular, the perpetrator will create
a Denial-of-Service (DoS) situation for the victim SU node
and divert the traffic flow which initially should go through
the victim SU. We call it as off-sensing DoS (OS-DoS) attack.
With the careful selection of which neighboring SU to perform
the OS-DoS attack on, the perpetrator can direct the diverted
traffic flow to a designated target node. We name this off-
sensing and route manipulation (OS-RM) attack, a cross-layer
attack. To the best of our knowledge, no existing efforts have
been made to exploit the vulnerability in spectrum sensing
mechanisms and cross-layer routing protocols together in a
CR-based network in order to manipulate traffic flow.

In this paper, we study the effect of OS-RM attack in CR
enabled WMNs under different scenarios. The main contribu-
tions of this paper are summarized in the following:

1. We propose an off-sensing attack based cross-layer at-
tack, where the OS-DoS attack is used to exploit the
cross-layer dependency in the routing protocol. Here,
the perpetrator can influence a significant portion of
the network traffic flow around it and divert them to a
designated target node. To the best of our knowledge, this
work is the first to study a cross-layer route manipulation
attack in CR-based networks, without advertising false
routing updates.

2. We propose an intelligent attacker model where an at-
tacker will use the Hidden Markov Model (HMM) based
learning technique to learn channel parameters of PUs
and then apply the learned knowledge to strengthen its
malicious actions. To the best of our knowledge, even
though the concept of learning has been used widely in
defense techniques, it has never been considered in the
domain of CR based networks where an attacker can also
capitalize the knowledge around it.

Note that this paper focuses on the details and impact of
the OS-RM attack. Countermeasure of this attack is out of
this paper’s scope. The rest of this paper is organized as
follows. In Section II, conventional cross-layer attacks and
their defenses are reviewed briefly. Then in Section III, the
system model that is considered in this paper is explained. The
details of our proposed OS-RM attack are discussed in Section
IV. Simulation results are shown and discussed in Section V,
followed by the conclusions in Section VI.

II. RELATED WORK

The presence of a PUE attacker can harshly affect the op-
erations of a CR-based network. Numerous defense strategies
have been proposed [8]-[13] and all of them consider that the
SU would sense the PU’s transmission. However, a perpetrator
can ingeniously avoid the sensing interval of the victim SU
and attack by interfering the victim SU’s transmission in off-
sensing intervals [6]. We consider this scenario in our proposed
work.

In recent years, some cross-layer attacks have been proposed
in the CR based networks. Cross-layer attacks have proven to
be more detrimental than single-layer based attacks, due to
their immunity to the single-layer based defense strategies.
In [14], the coordination of two cross-layer attacks at the
PHY layer and MAC layer is studied. The use of PUE attack
as an auxiliary attack in order to degrade the throughput
performance of TCP has been studied in [15]. In [16], the
authors propose a MAC-TCP cross-layer attack where an
attacker periodically preempts itself to use the shared channel
and impacts the TCP performance by creating large variations
in round-trip-time (RTT). Though the study of cross-layer
attacks in terms of PHY-MAC-Transport layer has gained
significant attention, very few efforts have been focused on
security vulnerabilities in the network layer. A network layer
attack in CR-based networks named routing-toward-primary-
user (RPU) is proposed in [17], where a malicious node
intentionally directs a large amount of traffic toward the PUs,
aiming to cause interference to them. However, this is not a
cross-layer attack and the perpetrator is an active participant
in the attack, hence, less difficult to identify. In Hammer and
Anvil attack [18], a jamming aided cross-layer attack is pro-
posed in the multihop infrastructureless network. Nevertheless,
a CR-based network is inherently immune to jamming attacks
due to their ability to change operating channels dynamically.

Neither of the attacks mentioned above have considered
an intelligent attacker who can gather information and learn
about the whole network by leveraging the control information
flowing in the collaborative CR-based network. With this
knowledge, an attacker can conduct more sophisticated attacks
with less risk of being flagged.

ITII. SYSTEM MODEL
In this section, we provide an outline of the assumptions
made for the basic functionalities of the PHY, MAC, and
network layers in our considered CR-WMNs.

A. Primary User and Secondary User Model

We consider totally M homogeneous channels each with
a fixed bandwidth for the PUs and SUs in the network, and
N CR-WMRs trying to opportunistically access the channels.
Each PU randomly selects a channel to access. An SU is
allowed to access a channel when it senses no PU is using
it. During the transmission, if an SU senses the channel busy,
it stops transmitting on that channel and performs a spectrum
handoff. Each SU is equipped with only one radio for spectrum
sensing, control information exchange, and data transmission.
Each PU alternates between the ON and OFF state according
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Fig. 1: PU activity model. (a) Transition rate of the Markov chain;
(b) PU activity in the time line.
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Fig. 2: Network coordination scheme

to a continuous-time Markov process. In Fig. 1, let A denote
the transition rate from the OFF to ON state, and let 1+ denote
the transition rate from the ON to OFF state. Thereby, the
mean sojourn time in the ON and OFF state is 1/ and 1/,
respectively, and both follow the exponential distribution.

B. Network Coordination Scheme

Rendezvous is a pre-requisite step before two SUs can
communicate and exchange control information with each
other in the absence of a dedicated CCC. A successful ren-
dezvous happens when both transmitting and receiving SUs
are on the same channel and have completed a successful
handshake between them, e.g., a Request-to-Send/Clear-to-
Send (RTS/CTS) exchange.

We consider the common frequency-hopping as the network
coordination scheme [19], [20] which means that the channel
hopping pattern is the same for all SUs. Fig. 2 illustrates the
operation of the common frequency-hopping-based network
coordination. We consider a time-slotted system. Each time
slot consists of a sensing interval (sensing) and a contention
interval (CI) with the transmission of an RTS/CTS pair. When
there is no packet in the buffer of an SU, it keeps hopping
through the channels from one time slot to another based on
the predetermined common channel-hopping pattern.

We adopt the MAC model from [21], [22] for network
coordination. Whenever a SU has a packet to send, it first
senses the channel. If the channel is idle, the SU chooses a
random number between 0 and CW — 1 (in terms of mini-
slots) as its backoff time to avoid contention on the channel.
If it hears no RTS before the backoff time runs out, it sends
an RTS on the channel. Otherwise, it saves the remaining time
in the backoff timer and will try to resend the RTS in the next
time slot. After sending an RTS, the source SU waits for the
CTS from the intended SU receiver. If the RTS sender fails to
receive a CTS, it means the RTS/CTS exchange has failed in
this slot and the source SU will continue the same process in
the next time slot. After a successful RTS/CTS exchange, both
SUs stop channel-hopping and start the data transmission on
the same channel. After a successful transmission, both SUs
start channel-hopping again by following the common hopping
sequence. Meanwhile, all other SUs keep hopping through the
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Fig. 3: An illustration of the network coordination with an ON/OFF
PU model.
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Fig. 4: An illustration of a network graph.

channels. To better illustrate the activity of a SU under the
coordination scheme, we provide an example in Fig. 3. In this
example, we consider that the SU always has a packet in its
buffer, wins contentions and a SU packet length is two time
slot long.

C. Routing Scheme

Many routing protocols have been proposed for CR-based
networks [23]-[26]. In all these papers, spectrum availability
has been given the highest weight for routing decisions.
Therefore, it is clear that CR-based routing protocols consider
spectrum availability as a significant cost metric.

Our focus in this paper is not to propose a new routing
protocol. Instead, we adopt a link-state based routing protocol
with channel availability as the only cost metric for routing
decisions. Our goal is to show the impact of our proposed
attack on routing performance. In our CR-WMN, CR-WMRs
calculate their link cost periodically with a period of ‘A‘
and broadcast it. We also define an activity threshold 7 (in
A interval) above which a PU will be considered busy and
hence the channel is not available. Along with cost, nodes also
share their available channel list (ACL). For the calculation
of the shortest path from a CR-WMR to the gateway, we
consider the CR-WMN as an undirected graph G = {V, E'},
called a connectivity graph. Each node i € V = {1,--- , N}
represents a CR-WMR, which is characterized by a circular
transmission range and an interfering range. Each edge F
represents the connectivity between neighboring CR-WMRs
and the edge cost is characterized by the spectrum availability.
Fig. 4 illustrates a network graph with 9 nodes and a gateway
(Gp). Link cost between node ¢ and j is defined as e;;.
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IV. PROPOSED OFF-SENSING AND ROUTE MANIPULATION
(OS-RM) ATTACK MODEL

In reality, it is very unlikely for one to take control of a
significant portion of the CR-WMRs in a CR-WMN without
being flagged. However, under our proposed attack model,
without even compromising a significant amount of routers,
the perpetrator can still have the control over a significant por-
tion of traffic flow around him. This can be done by exploiting
and taking advantage of the many cross-layer routing protocols
in CR enabled networks, where affecting lower layers can
result in influencing decisions in the network layer.

Attack model
Best node to 0OS-DoS
perform OS- attack node
DoS attack selection
A
Periodic (eI B Channel state
parameter B
route updates X prediction
estimator

Fig. 5: Proposed attack model.

The configuration of the proposed HMM-based system for
the OS-RM attack is shown in Fig. 5. Time is slotted into
a duration of routing updates A. Therefore, we consider a
discrete-time model, where the time variable takes values in
{0, 1, ..., T'}. The attacker has a separate HMM block for
each channel. The input to the system at time ¢ consists of the
routing updates received from the neighboring nodes.

The attacker model consists of three components: OS-DoS
attack node selection, channel state prediction, and HMM-
based channel parameter estimator. The OS-DoS attack node
selector chooses the best node as the victim node based on the
updated network graph G = {V, E'}. The output of the system
consists of the best neighbor to perform the OS-DoS attack, in
order to divert traffic flow through the target node. The attacker
updates the network graph G depending on the adjacency list
(i.e., neighboring list of the SUs) and prediction of the future
state of the channels, and the HMM-based channel parameter
estimator facilitates to estimate the channel activity based on
the routing updates.

We consider the frequency of routing updates comparable
to the frequency of channel status change. Also, due to
computational and physical efforts by the attacker, we consider
a constant delay between when the routing update arrives
and the attacker conducts an OS-RM attack without learning.
We will see that this delay degrades the attack performance
and hence it indicates the importance of predicting network
conditions beforehand to counteract the effect of the delay.
A. OS-DoS Node Selection

The victim of the OS-DoS attack will be disconnected from
the network (or has a very high cost to use it) and traffic
flows that have been going through it, will switch to the next
best available route. The performance of the OS-RM attack
depends on the right neighbor node to perform the OS-DoS

attack on. Depending on the predicted network graph, the
attacker finds the neighboring node whose traffic flow is most
likely to traverse through the target node, if attacked. Here,
the attacker’s goal is to choose a neighbor in such a way that
the rebound effect will divert most traffic flows to the target
node.

The attacker will use a shortest-path algorithm (i.e., Dijk-
stra’s algorithm) to figure out the best route for each node in
the network to reach the gateway. At every step, the attacker
first calculates the number of routers choosing the target router
as a forwarder, under no attack (i.e., successor routers, 7, qz)-
Then, it finds the best neighbor router to perform the OS-
DoS attack which will maximize its objective. It does it by
measuring what would happen if it attacks a neighbor. If there
is no neighbor that offers m > 7,42, it will not conduct the
OS-DoS attack and wait for the next update to come. Here, 7
is the number of successor nodes, under attack. Algorithm 1
and 2 show the pseudocode for calculating the successor CR-
WMRs of the target CR-WMR and OS-DoS node selection,
respectively. Next, we will discuss how an attacker can update
the network graph GG. Here, the target node and the gateway
node are denoted as 7,, and G,,, respectively.

Algorithm 1 Calculating the number of nodes that has the
target node in their forwarding set to the gateway
Input: G, T,,, G,
Result: T;,’s successor node quantity ¢,
function COMPUTESUCCESSORS(G, T, Gr)
or, =0;
for i =1: N do
Use Dijkstra’s algorithm to calculate the shortest path to the
gateway, P; ={i,--- forwarding nodes - --, G, }
if T, € P; then
| oér1, = o1, +1;
end
end
return o7, ;

Algorithm 2 Selecting the best node to perform OS-DoS
attack
Input: G, T,, G,
Result: OS-DoS node
Tmaz= ComputeSuccessors(G, Tr,, Gr);
0OS-DoS node = empty;
for i = 1 : all the neighbors do
Detach the neighbor i from G
Update network graph, G’ = {V’, E’}
= ComputeSuccessors(G’, Tr, Grn);

if T > Ta. then
Tmaz = T,

0OS5-DoS node = 1;

> 4= neighbor index
> ¢ Vlv('vi) ¢ E'

end
end
if OS-DoS node # empty then
| Perform OS-RM attack
else
|  Wait for the next update
end

B. Channel State Prediction
Channel state predictor assists in updating the network
graph G in each period, based on routing updates. In this
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Fig. 6: The PU activity on channel i; N;(t1) = 1.

section, we propose the prediction model to forecast future
channel activity to update the network graph.

By utilizing the periodic routing update, an attacker can
make predictions of the channel availability before the next
route update arrives. Based on the prediction results, an
attacker decides whether to change the link costs or not.
We propose two criteria for determining whether the channel
should be considered busy or idle: 1) the predicted probability
that the channel is busy or idle and 2) the expected length of
the activity or inactivity.

In Fig. 6, t( represents the last moment PU becomes active,
t, represents the last moment route update arrives, and t;
represents the expected moment of the next route update.
Fig. 6 shows the PU traffic activity on channel i, where X
represents the inter-arrival time of the kth packet. We denote
Y (t2) as the number of PU packets that arrive between ¢, and
to and N;(to) as the status of the channel at time ¢, which
is a binary variable between 0 and 1 representing the idle and
busy state, respectively.

In the following, we calculate the probability that the
channel state is active upon the next route update. All the
figures are normalized to routing update length A. As shown
in Fig. 6(a), where N;(t1) = 1, the probability that the next
channel state will be active and no PU packet arrives between
t1 and tqy 1S

Pr{N;(t2) = 1,Y(t2) = 0}

= Pr{X;} >ty —to} Pr{a > 7} (D

:P’I’{Xll >t2—t0}PT{LZQ—(t1 —t()) >T}7
where L;(k) denotes the length of the kth new PU packet in
channel 7 and 7 represents the activity threshold of PU. X; (k)
and L;(k) depend on the channel parameters \; and p;.

As shown in Fig. 6(b), the probability that the channel state
will be active and only one PU packet arrives between ¢; and

X
I I T A 1 '
Ly L. ;
i Lol B i |
e T |
f f £
to t b
(a) Only one PU packet arrives between t1 and t2
Y X, w X N ,
) L. k L Lo o Lo
~ A ~ A ~ A
i ooy Pt | B2 ]
cui ) - |
' —f " f
to t b T
(b) Two PU packets arrive between t; and ¢
Fig. 7: The PU activity on channel i; N;(t1) = 0.
tQ is

Pr{N;(t2) = 1,Y (t2) = 1}
=Pr{<1-71}Pr{a+L; > 7} 2)
=Pr{X}! - L) <1—-7}Pr{a+ L} > 7}
Similarly, in Fig. 6(c), the probability that channel ¢ is active
and two packets come between ¢; and ¢ is,
Pr{N;(t2) = 1,Y (t2) = 2}
=Pr{f +Bo<1—1}Pr{a+ (L} +L?) > 1}
=Pr{X! + X7 - (LY +L})<1—7}
Pr{a+ L} +L? >}

3)

Assume that U is the maximum number of PU packets that
could come between t; and t5. Hence, the probability of
having the channel active and arriving h (h € [1,U]) PU
packets is

Pr{N;(t;) = 1,Y(t2) = h}

h h
= Pr{Zﬁ;C <1—71}Pr{a+ ZLf > T}
k=1 k=1

h h—1 h
= Pr{ZXf — ZLf <1 —7'}P7‘{oz—|—z:L§€ > T}

k=1 k=0 k=1 @
Therefore, the probability that channel 7 is active at time ¢
can be obtained by,
P’I‘{Ni(t2) = 1|Ni(t1) = 1}
= P’I‘{Xll >ty — to}P’f‘{L? — (tl — to) > 7'}

U h h—1 h
+Y P XF =D LY <1—-7}Pr{a+ Y L >71}|.
h=1 k=1 k=0 k=1
5)
Likewise, in Fig. 7(a), where N;(t1) = 0, the probability that
next channel status will be active and one PU packet arrives
between t; and to is

Pr{N;(t2) = 1,Y(t2) = 1}
=Pr{f<1—71}Pr{L; > 1} (6)
=Pr{X}! - LY —a<1-71}Pr{L} > 7}
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Similarly, in Fig. 7(b), the probability that channel i is active
and two packets come between t; and s is,

Pr{N;(t2) =1,Y (t2) = 2}

= Pr{Bi+ B2 <1—7}Pr{(L} + L}) > 7}

:PT{X1-1+X1-2—(L?+L3)—O¢< 1—7}
Pr{L; + L} > 1}.

@)

Therefore the probability that channel ¢ is active at time ¢,
can be obtained by,

PT{Ni(tQ) = 1|Ni(t1) = 0}

=Pr{X} - L} —a<1—7}Pr{L; >}

U h h—1 h
+Z Pr{ZXf—ZLf—a<1—T}Pr{ZLf>7'} .
h=1 k=1 k=1

k=0
®)
Thus, if the channel statistics (e.g., A and p) are known,
the predicted probabilities can be calculated. Therefore, based
on the prediction, the policy that we consider the channel as
active, when
Pr{Ni(ts) =1} > T, 9)
where I is the threshold above which the channel is considered
active by the predictor model. After making channel decisions,
the attacker will calculate the corresponding link costs.
However, learning the channel statistics requires significant
efforts and hence, we design and propose a HMM based
technique to estimate the channel parameters A and p.

C. HMM based Parameter Estimator

A slotted discrete-time model is used for the channel
activity. The decision on whether a channel is busy or not
is made based on the channel activity during the last period.
If the channel activity exceeds the given threshold 7, then it
is assumed to be in the ON state or otherwise OFF.

We first present the structure of the HMM and then we
give a brief introduction of the forward-backward procedure
in Baum-Welch (BW) algorithm [27]. Finally, by analyzing the
estimated parameters, we calculate the channel parameters.

1) Hidden Markov Model: A Hidden Markov process is
a Markov process consisting of two states, where X is
the hidden process that is never observable and Z is the
observation process that can be seen by the observers (i.e.,
the OS-RM attacker). X; and Z; denote the hidden state and
observation state at time ¢, respectively. The hidden process
follows a Markov process with a finite number of states
and the observable process is another probabilistic function
which generates symbols based on the hidden states. The set
of symbols comes from a defined alphabet A. In our case,
A =1{0,1} (i.e., 0 = OFF and 1 = ON).

Hidden states
= Xy = X — X
Z(.l Z[ Z1.+1

Observable states

Fig. 8: The Hidden Markov model.

The general concept of an HMM is illustrated in Fig.
8. A system of discrete time is changing randomly from
one state to another, within a finite state space S. In our
case, the finite space S = {0,1}. The evolution of the
hidden sequence X7, Xo,..., X7 is hidden, which represents
PU states. However, it can be expressed by a sequence of
observed symbols from the alphabet A (i.e., Z; € A), which
represents routing updates. In order to model the HMM, it is
necessary to define the parameters first:

o Number of hidden states, s = 2

o Number of symbols, a = 2

o Initial state distribution, 7 = {m; }, where : = 0, --- ;s—1
o One-step state transition probabilities, P = p;;, where
,j=0,-+-,8s—1

e Symbol emission probability, B =
0,---,s—land k=0,---,a—1
Therefore, the one-step state transition probability is
Pr(X;=j|Xi-1 =0, X0 =tt_9, -, Xo =i2, X1 =i1)
= Pr(X; =j|Xi—1 =1)
= Dij»

b;j(k), where j =

(10)
where, i1, 42, ..,4t—2,%,j € {0,1} and ¢ > 2. And the emission
probability is

bj(k) = Pr(Zy = k| X, = j). (11
The BW algorithm is an iterative approach to estimate
the HMM parameters 7 = [7, P, B] such that the Pr(Z|n)

is maximized. To estimate the parameters, we define the
following parameters:

o Forward probability, «;(i) = Pr(Zy,Za, -, Z¢, Xt =
Si|m), for S; € {0,1}

o Backward probability, B () =
PT(Zt+1,Zt+2,"' ,ZTfl,ZT,Xt = SZ"I]), for
S; € {0, 1}

o Estimate of state transitions, v:(i,j) = Pr(X; =

Si, Xiy1 = SjlZ,n), for S;,S; € {0,1}. It represents
the probability of being in state .S; at instant ¢ and in
state S; at instant ¢ 4 1, given the observation sequence
7 and the model parameters n = [, P, B]

o Estimate of the state at each observation, 0;(i) =
Pr(X; = Si|Z,n), for S; € {0,1}. It represents
the probability of being in state S; at instant ¢, given
the observation sequence Z and the model parameters
n= [ﬂ—v P, B }

The estimation variables for the HMM parameters are

expressed in terms of (4, 7) and &:(7) :

i:1T_1%(Z' 7)
pij = L (12)
! 1)
St 2 0t (9)
b(k) = == 2 (13)
! §;1T 5:&(])

In (12) the numerator represents the expected number of
transitions from state .S; to state .S; over the interval 1" —
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1, while the denominator represents the expected number of
times a transition happens from state S;. The numerator in
(13) represents the expected number of transitions from state
S; at which symbol % is observed. In (12)-(14), v(i,j) and
0:(i) are calculated as follows:

ay(1)pijbi (Zis1)Bes1(J) .

(i, 5) = BrZin) (15)
@)= > wling) (16)
all S;€{0,1}

The forward and backward probabilities in the above equa-
tions are calculated recursively as follows:

Initialization:
(i) =mbi(1), 0<i<s—1. 17)
Be(i)=1, 0<i<s—1. (18)
Recursion:
art1(g [Z ar(1)pij | bj(Zesr)- (19)
ZPU (Z41) Be1(9)- (20)

The recursion process terminates when Pr(Z|n) maximizes,
which is the probability of observing the sequence Z given the

parameter n = [, P, B].
s—=1 T

> Lot
=0 t=1
2) Analysis of PU Activity: In this section, we need to
extract the PU activity from the estimated HMM parameters
n = [m, P,B]. To do this, we first introduce a new set of
PU parameters, § = [\, p], where A means the traffic arrival
rate and p means the traffic departure rate. From our network
model, the length of the ON and OFF state are exponentially
distributed. In [28], a useful method to compute the state
transition rate matrix from the state transition probability
matrix is provided. We denote the transition rate matrix as

Q and
A A
Q_( 1 —u>'

As described in 7, P is the one-step state transition probabil-
ity matrix. We know that P = exp(QA) and Q = log(P)/A,
where A is the route update period. However, the computa-
tional procedure is cumbersome and log(-) has a limitation
when P has a non-positive eigenvalue. Therefore, we adopt
the mapping approach introduced in [28], which provides an
easier computational approach and provides enough degree of
accuracy. If the two-dimensional transition rate matrix is the
form shown in (22), then the transition probability matrix is:

- ()
—\ Ppwo N ’
(23)

exp_“A
In (23), the relation between P and () unfolds the relation-
ship between 7 and 6.

Pr(Zn) = (21)

(22)

—AA
Po1

P11

exp
1 —exp M4
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V. PERFORMANCE EVALUATION

We evaluate the impact of the OS-RM attack by conducting
simulations in Matlab. We consider a grid size distribution of
25 CR enabled nodes, with 24 being CR-WMRs and a gateway
(Fig. 9). The attacker and the target node are colored with red
and green color, respectively. The gateway has three neigh-
boring CR-WMRs via which other routers can communicate
with the gateway. In reality, traffic is not uniformly distributed
among these three CR-WMRs due to their different spectrum
availability. We consider a uniform distribution of PUs in the
network. Parameters of our simulations are listed in Table I.

TABLE I: Simulation Parameters

Simulation area 1000x1000
Simulation time 50 seconds
Training time 25 seconds
SU sensing range 200

The number of PUs 10

The number of SUs 25
Bandwidth 2 Mbps

The size of (RTS+CTS)
Sensing duration

160 + 112 bits (802.11b/g)
T ms (302.22)

SU traffic p = As/ps=0.05 ~ 0.25
SU packet size 750 bytes
Number of channels 10

f h ;A h
: 1 i 1 H 1
FSGEENN VNN VNN s
1
R el T
I Bidirectional Attacker’s
P'U link link Attacker Target node CR-WMR

Fig. 9: Simulation scenario.

A. HMM Estimation

The performance of the OS-RM attack relies significantly
on how accurately HMM-based estimators can estimate the
parameters of PUs in the network. Furthermore, the length of a
training sample is instrumental to the learning performance. In
Fig. 10, we can observe the trend of estimation error over the
time for packet arrival rate (\) and service rate (x). Estimation
errors reduce to below 4% when the estimator is trained to 50
seconds.

In our simulations, we train the HMM estimator with 25
seconds of data and observe the impact of the attack for
the next 25 seconds without changing the PU activity rate.
Nevertheless, in reality, the PU activity rate is not going to be
constant all the time and the HMM estimator should reestimate
to track changes. The optimal training time length based on
the traffic change rate is out of this paper’s scope. In the future,
we plan to propose a strategy for the attacker in a time-varying
PU network.
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Fig. 10: HMM estimation performance.
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Fig. 11: Traffic heat map. (a) no attack; (b) OS-RM attack.

B. Impact on Traffic Flow

In Fig. 11 (color and number coded), we observe changes in
traffic flow due to the rebalancing effect caused by the OS-DoS
attack on the victim node. Without attack, two neighboring
CR-WMRs carry most of the traffic (Fig. 11(a)) except the
target node. However, with the OS-RM attack, we can see
that a portion of previous routes are disrupted (Fig. 11(b)).
As a result, traffic flows change directions and a few nodes
who were carrying less traffic are exposed to higher traffic load
now. Most significant change in traffic is observed in the target
node. This strategy works as the driving force to maneuver
traffic to any node an attacker wants. Though we discussed
only about diverting traffic towards a particular node, the same
kind of strategy can be employed to divert traffic from one.

C. Impact on Network Performance

We compare the impact of lower-layer attacks, e.g., con-
ventional jamming, random jamming, OS-RM attack without
learning, and OS-RM attack with learning, used as an auxiliary
attack in an effort to manipulate routes. In Fig. 12(a)-(d),
we compare the impact of these front-end attacks with an
increasing SU activity. From Fig. 12(a), we can observe the
increased number of traffic flows going through the target
node. Though the jamming attack can also influence traffic
flows, it is less significant as compared to the OS-RM attack.
In the jamming attack, all the nodes within the radio range
of the jammer get affected, hence, the traffic flows disperse
in the whole network. Moreover, it is inefficient to use the
jamming strategy due to the high energy required by the
jammer. Furthermore, as the attacker is an authorized network
entity and has the similar power requirement as other entities,
it is unrealistic to perform jamming. However, unlike the

—0—No attack —0—No attack
350 i~ 0S-RM w/o-learning — - 0S-RM w/o-learning
. —%—Jamming 8 20 —%—Jamming
Z ~0—Random jamming 2 ~0-Random jamming
2 oo |I->-08-RM Threshold-0.4 B - >-0S-RM Threshold-0.4
= 300 fl-+-08-RM Threshold-0.6 o —a Y -+-0S-RM Threshold-0.6
G -0-0S-RM Threshold-0.8| _ .-~ L -~ R E) N -0-0S-RM Threshold-0.8
=) 2N
et ; 3 §
5} o
) =10
= &0
=] =2
> i<
Z = st TR TS
[_4
150 0
0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 02 0.25
SU activity rate SU activity rate
(a) (b)
- 0.7
0.6 2_, 06
o /?_ L= . Q
5] L = S 05
205 R . ;
2 0 S04
—_— K % =]
S 4 e o
'g 41, —5-No attack D 03 ~5-No attack
g - 0S-RM w/o-leamning % ~£-0S-RM w/o-learning
[} —%—Jamming & 0.2¥ —%—=Jamming
So03 —)—Random jamming [-m ~O—Random jamming
- >-0S-RM Threshold-0.4 0.1¢ =D>-0S-RM learning-0.4
- +-0S-RM Threshold-0.6 Y -+-0S-RM Threshold-0.6
02 -{=0S-RM Threshold-0.8 0 =$=0S-RM Threshold-0.8
0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
SU activity rate SU activity rate

(© (d)
Fig. 12: Impact of lower-layer attacks on route manipulation. (a)
Number of traffic flows; (b) Throughput; (c) Mean dealy (d) Packet
drop rate.

jamming attack, an OS-DoS attack can be performed on an
individual node of choice. Thus, we can observe more than
50% increase in traffic flows to the target node.

In Fig. 12(b)-(d), we can observe the change in key per-
formance metrics of the flows going through the target node
(i.e., throughput, delay, and packet drop). If the perpetrator’s
objective is to increase congestion at the target node, then from
Fig. 12(b)-(c), it is quite evidential that this attack reduces
throughput and increases delay experienced by the flows going
through the target node. The effect of delay stems from the
queuing delay in intermediate nodes. In addition, a virtual
blackhole creates in the network as more packets are being
dropped. The increase in packet drop stems from the packet
drop in intermediate nodes due to the timeout and blocking of
new sessions. From Fig. 12, we can observe the performance
improvement by implementing learning strategy of the attacker
when I" > 0.6.

D. Influence on Traffic vs. Distance

We also observe that the attacker is more influential when
it is situated higher up in the routing tree (gateway is the root
of the tree). In another word, the attacker is more influential
when more number of traffic flows go around it. In Fig. 13, we
can observe that the number of traffic flows actually increases
when the distance between the attacker and the target node
changes from 1-hop to 2-hop, which is counterintuitive to what
we just mentioned. However, when the attacker is a direct
neighbor to the target node, it cannot perform the OS-DoS
attack on the target node. Therefore, the attacker has one less
neighbor to maneuver the neighbor’s traffic flows and hence
the decrease in the number of flows. Therefore, we can deduce
that the attacker is more potent when it is 2-hop away from
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the target node.

400 Il Jamming
350 F [l Random jamming

I OS-RM w/o-learning
300 [EE0S-RM Threshold-0.4

[10OS-RM Threshold-0.6
[_1OS-RM Threshold-0.8

Number of flows

1 2 3 4
Distance from the attacker (hop)

Fig. 13: Impact on traffic flows vs. distance between the attacker and
target node.

Depending on the end objective of the attacker, the impact
of the OS-RM attack can affect other network layers also. In
our proposed attack, the target node could be actually a pre-
compromised node to perform wormhole attacks, black-hole
attacks or perhaps a benign node to create network congestion.
From the above observations, one could imagine the atrocities
an attacker can perpetuate if it achieves a significant amount
of control over the traffic flow.

VI. CONCLUSION

In this paper, we proposed a cross-layer route manipulation
attack in CR-WMNs, namely OS-RM attack. In this attack,
we discussed how the off-sensing attack can be weaponized
as an aid to influence routing decisions in the network layer.
We considered the perpetrator as an intelligent entity and it
estimates necessary network information through learning.

We illustrated a general model of the attack and analyzed
through extensive simulations how to coordinate the OS-
RM attack in order to achieve the best-attacking result. Our
analysis and observations not only shed light on a new kind
of threats to the CR-based network, but also provide some
insightful findings on how to design cross-layer protocols.
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