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Abstract—Key-value (KV) stores play an increasingly critical
role in supporting diverse large-scale applications in modern data
centers hosting terabytes of KV items which even might reside on
a single server due to virtualization purpose. The combination
of ever growing volume of KV items and storage/application
consolidation is driving a trend of high storage density for
KV stores. Shingled Magnetic Recording (SMR) represents a
promising technology for increasing disk capacity, but it comes
at a cost of poor random write performance and severe I/0O
amplification. Applications/software working with SMR devices
need to be designed and optimized in an SMR-friendly manner.

In this work, we present SEALDB, a Log-Structured Merge
tree (LSM-tree) based key-value store that is specifically op-
timized for and works well with SMR drives via adequately
addressing the poor random writes and severe I/O amplification
issues. First, for LSM-trees, SEALDB concatenates SSTables of
each compaction, and groups them into sets. Taking sets as
the basic unit for compactions, SEALDB improves compaction
efficiency by mitigating random I/Os. Second, SEALDB creates
varying size bands on HM-SMR drives, named dynramic bands.
Dynamic bands not only accommodate the storage of sets, but
also eliminate the auxiliary write amplification from SMR drives.

We demonstrate the advantages of SEALDB via extensive
experiments in various workloads. Overall, SEALDB delivers
impressive performance improvement. Compared with LevelDB,
SEALDB is 3.42x faster on random load due to improved com-
paction efficiency and eliminated auxiliary write amplification on
SMR drives.
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I. INTRODUCTION

Nowadays, huge volume of data is being generated at an
accelerating rate, of which key-value systems are gaining in-
creasing popularity and have become an important component
in modern data center infrastructure [1], [2]. The ever-growing
storage requirement is continually pushing the storage capacity
envelope of storage systems, calling for efficient solutions to
expanding storage capacity. Adding more disks and/or servers
to expand storage space should be pursued as a last resort,
because it not only incurs added monetary investment, but
also counteracts virtualization platforms from consolidating
applications on fewer servers or less storage space. Facing
this dilemma, innovators from both academia and industry
have been relentlessly researching for more effective solutions.
Among the proposed disk technologies, Shingled Magnetic
Recording (SMR) [3] technology provides a feasible solution

to enlarging the disk capacity, as it significantly increases
storage space on the same disk platters as conventional disks,
while requiring minimal changes to the manufacture pro-
cess [4]. As a fact, Seagate [5] has already released 5 TB and
8 TB SMR drives, while HGST [6] has recently announced
its HM-SMR drive in the size of 14 TB.

An SMR drive is built on the same magnetic recording and
manufacture process as conventional disks, with the major
difference that disk tracks are overlapped. Although over-
lapped tracks enable significant disk capacity improvement,
data management complexity does increase in SMR drives.
One particularly challenging problem is the random write
constraint imposed on SMR drives [3], [7], [8], which
causes rather poor random write performance and severe /O
amplifications. Though we believe that SMR will play an
increasingly important role in massive storage systems due
to its areal density advantage [9], [10], system researchers
and SMR drive vendors should work in tandem to ensure the
smooth adoption of SMR drives. It is generally recognized
that new technology has been better adopted to a system in
an evolving approach rather than a revolutionary one [8],
[11]. High-level systems can craft friendly access patterns
presented to the underlying storage system, while the storage
system exposes informational hints to provide flexibility. When
it comes to SMR technology, these research efforts include
designing SMR-oriented on-disk data layout [12], reducing
internal data movement [13], developing SMR-friendly file
systems [14], [15], and providing an abstract layer of data
management [16].

In this paper, we choose key-value systems as our tar-
get applications to demonstrate how SMR drives can sat-
isfy the growing storage requirement since key-value stores
are becoming more and more important as the backbone
supporting a large variety of modern applications, including
web indexing [1], [17], social networking [18], [19], photo
stores [20], and cloud store [21]. The sizes of key-value
stores are skyrocketing and trillion-items key-value systems
are not uncommon [22] in data centers. The majority of mod-
ern key-value store implementations, including BigTable [1],
LevelDB [17], Cassandra [23], RocksDB [20], etc., are based
on the Log-Structured Merge trees (LSM-trees) due to its
optimized sequential write property. However, even though



LSM-trees buffer writes to create sequentiality in individual
files (i.e., SSTables), access patterns seen at the disk level
are yet not SMR-friendly [16]. As a result, building LSM-tree
based key-value stores on SMR drives still imposes significant
challenges due to LSM-trees’ inherent I/O amplification prob-
lem and the operational peculiarities of SMR drives. LSM-
trees periodically perform compactions by reading, sorting,
and rewriting files with overlapping key ranges, while these
processes cause internal device I/O amplifications on SMR
drives.

To reconcile compactions in LSM-trees and I/O amplifi-
cations in SMR drives, we introduce sets in an LSM-tree
to group related files that are involved in a compaction and
suggest dynamic bands in HM-SMR drives to accommodate
the storage of sets, which together comprise the key ideas of
our proposed key-value store named SEALDB. SEALDB in
its design is aware of the characteristics of both SMR drives
and LSM-trees, entailing a good cooperative optimization of
the system and device to deliver a high density and high
performance key-value store. The technical contributions of
our work are summarized as follows:

o« SEALDB exploits the inherent relationship between
SSTables in an LSM-tree and groups relevant SSTables of
each compaction into a set. A set essentially aggregates
SSTables scattered around the disk into a coarse-grained
unit, which helps to serialize I/O patterns to the shingled
disk and improve compaction efficiency.

o« SEALDB eliminates the auxiliary I/O amplification in
HM-SMR drives by employing the varying size dynamic
bands. Dynamic bands not only store sets in contiguous
disk space to gather semantically related data for LSM-
trees, but also increase the utilization of disk space by
mitigating space wastage.

To the best of our knowledge, SMRDB is one of the
very few research works on investigating the applicability
of SMR drives for key-value stores [16], [24], [25]. Ex-
perimental results demonstrate SEALDB shows impressively
better performance than LevelDB and SMRDB for both micro-
benchmarks and the cloud YCSB workloads.

II. BACKGROUND AND MOTIVATION

The high storage density is highly demanded by KV stores.
As the representative techniques of high capacity storage
device and KV stores, both SMR drives and LSM-trees have
their merits and demerits. In this section, we first present the
background knowledge of SMR technologies and LSM-trees.
Then, we discuss challenges in building LSM-tree based key-
value stores on SMR drives.

A. Shingled Magnetic Recording

Shingled Magnetic Recording (SMR) is a recently proposed
technology to increase the disk areal density by spacing tracks
more closely. In SMR drives, tracks overlap in one direction
like shingles on a roof. A group of overlapped tracks is called a
band and two adjacent bands are separated from each other by
a dedicated protection region called guard region. Reads and
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Fig. 1. LevelDB Architecture. This figure shows steps of LevelDB serving
write requests: (1) log file; (2) Memtable; (3) immutable Memtable (4) SSTable
in Lo; (5) compaction.

sequential writes in SMR drives are carried out as with conven-
tional hard disks. However, random writes require expensive
read-modify-write operations on a whole band to protect the
data residing on the subsequently overlapped tracks [3], [4],
which results in a large write amplification. To diminish this
imperfection, researchers have proposed various techniques
in the following three categories: DM-SMR (drive-managed)
addresses random writes in a shingled translation layer (STL)
[8], [12], [26]; HM-SMR (host-managed) only serves SMR-
friendly writes from specific host applications [14], [15],
[24]; and HA-SMR (host-aware) takes benefits from both
host and STL [27]. Specifically, to provide host applications
various parameters of SMR drives, there are ongoing effort
on standardized interfaces for HM-SMR and HA-SMR drives
(e.g., the ZBC/ZAC in T10/T13 [16], [28]). In this paper, we
build SEALDB on a raw HM-SMR drive without physically
divided bands and persistent cache, so we can utilize all tracks
and get the maximum capacity of SMR drives. This raw HM-
SMR is preferably written sequentially and allowed to write
anywhere with the promise of never overlapping valid data.
The HM-SMR drive in our study is similar to Caveat-Scriptor
[29], but it has no extra restrictive parameters.

B. LSM-tree and LevelDB

Multi-level structured LSM-trees are widely deployed in
modern key-value stores, such as the open sourced LevelDB
[17] from Google Inc. LSM-trees provide a competitive write
performance by batching data writes into Memtables in mem-
ory. Memtables are then flushed to disks, providing sequential
writes in each individual file. The architecture of an LSM-
tree is shown in Figure 1, where the size limit of L;i
is typically 10 times of L;, and this size factor is called
amplification factor (AF). To compact an SSTable from L;
to L;41, LevelDB first reads required SSTables into memory,
including an SSTable in Level L; called victim SSTable, and
several SSTables in L;;; which have key ranges overlapping
that of the victim SSTable (called overlapped SSTables);
then LevelDB merges and sorts SSTables being fetched into
memory; finally it writes the resultant SSTables back to L; .
Compactions are frequently conducted in the background
throughout the lifetime of an LSM-tree to maintain the balance
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Fig. 2. SSTables’ distribution for each compaction. This figure shows
SSTables’ distributions in the disk space for each compaction when randomly
loading a 10 GB database. The accesses of each compaction span the disk
space causing the random 1I/Os problem.

and enable an efficient lookup. However, it has been observed
that, due to compactions, write amplifications of an LSM-tree
are 10x on average [30], [31].

C. Challenges

As aforementioned, SMR drives provide enlarged capacity
for key-value stores, and LSM-trees offer file sized sequential
writes for SMR drives. These properties can potentially benefit
each other of them. However, current KV store is not a perfect
fit for SMR due to the random I/Os between files, which
exactly motivates us to propose SEALDB to pave a way
for deploying SMR drives in KV stores. The challenges in
designing an LSM-tree aware and SMR friendly key-value
store are as following.

1) Random I/Os of LSM-trees: Existing key-value stores
generally access on-disk data via a file system. However,
the mature and widely used file system Ext4 is not strictly
sequential. This HDD oriented file system is not SMR-friendly
and it delivers sub-optimal performance for SMR drives as
demonstrated in several researches [8], [16]. Although it tries
to put all blocks of a file in the same block group [32],
different files even they are semantically related can be placed
separately, inducing random write penalty in SMR drives. As
for the LSM-trees based Key-value store on Ext4, SSTables
of one compaction are separately stored on disks, resulting
in disperse reads and writes during compactions. We define
these disperse accesses of each compaction as random I/Os of
LSM-trees.

To demonstrate the random I/Os of LSM-trees, we exper-
imentally measure the distribution of SSTables during each
compaction by running LevelDB on Ext4 and a hard disk drive
(Seagate ST1000DMO003). We randomly load a 10 GB key-
value store and record the physical address of each SSTable for
every compaction via a Linux tool named “Ext4 Magic”. Other
evaluation parameters are the same with LevelDB in Section
IV. Figure 2 shows that 600 compactions are conducted during
this random load. For each compaction, SSTables are sepa-
rately written to different locations, almost scattered around

TABLE I
MEANINGS OF THE SYMBOLS

WA Write amplification from an LSM-tree

AW A Auxiliary write amplification from SMR drives

MW A | Multiplicative overall write amplification
MWA=WAx AWA

WSSTable Num W Band Num

973 007 983 972 986 080

973 1007 9.83 972 9.86
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Fig. 3. SSTables’ distribution and corresponding write amplification.
Figure (a) shows the average number of SSTables and bands involved in a
compaction on SMR emulators with different band sizes. Figure (b) shows the
average I/O amplification at different SMR band sizes.

the first 10 GB disk space. The dispersedly located SSTables
degrade compaction efficiency as well as system performance,
since random accesses lead to poor performance comparing to
the sequential one. It should be noted that simply adopting a
sequential-only log-structured file system cannot address this
problem, as it will induce complexity and large overhead on
garbage collections. Therefore, SEALDB tries to solve the
random write problem on Key-value store in itself.

2) Multiplicative write amplification: For SMR drives, ran-
dom accesses of SSTables not only bring an inferior perfor-
mance but also result in a large multiplicative write ampli-
fication. Repeating the above experiments on five emulated
conventional SMR drives with band sizes ranging from 20 MB
to 60 MB, we obtained the distribution of SSTables on SMR
bands. Figure 3(a) shows the average number of SSTables
written in one compaction and the average number of involved
bands. Taking the 40 MB band size SMR drive as an example,
on average a compaction rewrites 9.83 SSTables and these
SSTables are written back separately to 6.22 bands.

The random accesses of SSTables on SMR bands severely
increase write amplification of LSM-trees. For a clear descrip-
tion, write amplification from LSM-trees is denoted as (W A),
which is the ratio of data size in compactions to user write
data size; the auxiliary write amplification from SMR drives is
denoted as AW A, which is the ratio of data size in disk writes
to the data size in compactions; the overall write amplification
of LSM-trees on SMR drives is denoted as (MW A), which
is the multiplication of W A and AW A, as shown in Table
I. To quantitatively evaluate I/O amplification from LSM-
trees and SMR drives, we record the data volume from users,
compactions and SMR drives separately. Figure 3(b) shows
the write amplification from LSM-trees and multiplicative
amplification of the system. As an example, for a 40 MB band
sized SMR drive, write amplification deteriorates from 9.83x
to 52.85x (i.e., from WA to MWA). This serious MWA of



(QssTable
D Set

Level 1

A compaction
unit

Level 2
LSM-tree|

KV Store

onventional Disk Interfac:

HM-SMR
Drives

Log band A dynamic band Dynamic band

Guard region Guard Region

Fig. 4. SEALDB System Architecture. This figure depicts the overall system
architecture of SEALDB. At the high level, SSTables involved in a compaction
are tied together to form a set. At the device level, band sizes are not fixed
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building LSM-trees on SMR drives motivates us to develop
a more efficient solution for their integration. Remarkably,
existing SMR drives with a media cache cannot address the
MWA problem, since cache cleaning processes induce large
latency as well as write amplification and bring a bimodal
behavior, as demonstrated in [8], [27].

III. SYSTEM DESIGN

The severe multiplicative write amplification of building
LSM-trees on SMR drives can be mitigated by employing co-
operative optimizations to bridge the semantic gap of upper-
layer LSM-trees and underlying SMR drives. To achieve that,
we propose SEALDB, a novel LSM-tree aware and SMR
friendly key-value store. SEALDB realizes a better synergy
between LSM-trees and SMR drives by employing the fol-
lowing two critical techniques.

First, for LSM-trees, we concatenate SSTables involved in
each compaction, and group them into a set. Taking sets as
the basic unit of compactions, it refrains multiple SSTables
from spreading around disks during compactions. The com-
paction efficiency thus improved by creating a larger sequential
read and write granularity. Second, for HM-SMR drives, we
introduce variable sizes bands, named dynamic bands. To
fully comply with the constraints of SMR drives, SEALDB
manages data in dynamic bands by storing sets sequentially
and allowing inserts without overlapping valid data. With the
assistance of sets, dynamic bands eliminate the auxiliary write
amplification from SMR drives, which significantly mitigates
the multiplicative write amplification. As shown in Figure 4,
sets and dynamic bands are located in the high level LSM-tree
and the device level HM-SMR drive respectively.

A. Sets in LSM-trees

LSM-trees merge, sort, and rewrite SSTables in two ad-
jacent levels to compact data to deeper levels. SSTables in
a compaction have approximate key ranges, but they are
stored dispersedly almost spanning the disk space (Figure 2),
which induces large random accesses during compactions and
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Fig. 5. Set. This figure shows the organization of sets in an LSM-tree. Each
SSTable in Level 1 have its sets in Level 2, each SSTable in Level 2 has its
set in Level 3, and so on. The SSTable and set in the same color shares the
same key range and forms a compaction unit.

Level N

degrades system performance (Section II-C). To address the
random write problem of LSM-trees, we propose set.

Since the victim SSTable and its overlapped SSTables share
approximate key ranges, SSTables involved in a compaction
can be known in prior. Leveraging this regularity, we prepro-
cess overlapped SSTables and avoid semantic related SSTables
being read/written separately. SEALDB groups overlapped
SSTables of each compaction and defines them as a set. More
specifically, for every SSTable in Level L;, its corresponding
overlapped SSTables in Level L;;; form a set. The key range
of a set is approximate to the victim SSTable, and the key
range of each overlapped SSTable within a set is part of the
victim SSTable. The victim SSTable in question together with
its set comprise a ‘compaction unit’, as shown in Figure 4.
According to the default amplification factor (AF) between
two adjacent levels in LSM-trees, a set contains 10 SSTables
theoretically. That is to say, if an SSTable is 4 MB, the set size
is 40 MB. However, set sizes heavily depends on workload
distributions. We record set sizes in our evaluation (Section
IV-B1), and experimental results show that a set contains 6.87
SSTables and the set size is 27.48 MB on average.

Figure 5 shows an example demonstrating the organization
of sets in LSM-trees. As it is shown, the key range of the
first SSTable in Level 1 is ‘a — ¢’. Its overlapped SSTables in
Level 2 highlighted in green color form a set. This set includes
three SSTables, and their key ranges fall into the range of
‘a — ¢’. Similarly, the next 3 SSTables in Level 2 form a set
corresponding to the victim SSTable ‘e — £’ in Level 1, and
the last 2 SSTables in Lo form a set corresponding to the key
range of SSTable ‘p — 2’ in Level 1. By analogy, for each
SSTable in Lo, it has a corresponding set in L3, for each
SSTable in Ls, it has a corresponding set in L4, and so on.
An LSM-tree thus contains lots of compaction units between
adjacent levels, and every level contains multiple sets where
each set includes several SSTables. As a result, a set groups
overlapped SSTables in each compaction and allows them to
be read and written as a unit. However, be minded that sets
do not exist in Ly and L;. Because some SSTables in Lg
are overlapped with key ranges, an overlapped SSTable in L
might belong to several victim SSTables in L.

As a set is produced or faded by a compaction, the SSTables
in a set are either valid or invalid at the same time. Comparing
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Fig. 6. Dynamic bands on an SMR drive. This figure shows an example
of two dynamic bands on an SMR drive, where each band contains different
numbers of tracks and sets.

to a conventional compaction, a set only helps to assemble
overlapped SSTables into a unit, while SSTables involved in
each compaction remain the same. Hence, LSM-trees still keep
balance by compactions, and multiple random accesses on
scattered SSTables are turned into a large sequential one
by sets. Sets can be applied to various LSM-tree based key-
value stores. The performance of key-value stores is improved
as a result of more efficient data accesses during compactions.
Moreover, in this study, sets not only improve the compaction
efficiency but also provide a good unit for designing an LSM-
tree aware and SMR friendly KV store.

B. Dynamic bands on SMR drives

Random accesses from conventional LSM-tree based key-
value stores induce large auxiliary write amplification on SMR
drives as aforementioned in Section II-C. However, following
the semantic information of LSM-trees conveyed by sets,
SMR drives can obviate random accesses and auxiliary write
amplification. In this section, we introduce dynamic bands,
the varying size bands on HM-SMR drives, to accommodate
the storage of sets and eliminate auxiliary write amplification.

1) Dynamic band: Different from conventional SMR drives
with fixed size physical bands and guard regions, SEALDB
works on a primitive HM-SMR drive only with shingled
tracks, in which no write address restrictions are enforced.
Instead, the host is aware of drive characteristics that enable
it to make safe data placement decisions [29]. For SEALDB,
the size of each band is dynamically changed according to
data accesses of LSM-trees, so we name it dynamic band.
In a dynamic band, multiple sets are settled sequentially.
Invalid space is reused as free space. Write requests with
suitable size can be inserted into those free space, as long as
a safety guard region is reserved by leaving tracks unwritten
to avoid overlapping valid data in the shingled direction. As a
result, disk space between two guard regions form a dynamic
band. Hence, each set is stored in a contiguous address space
within a dynamic band, and every dynamic band includes
multiple sequentially located sets. Figure 6 shows an example
of dynamic bands on an SMR drives, where the first dynamic
band contains four sets, and the second one includes three sets.

There are three theoretical foundations for our dynamic
band. First, the optimized LSM-tree provides a coarse access
unit ‘set’ for compactions. To take this benefit, a set must
be stored on SMR drives in a contiguous physical space for
efficient accesses, thus we store a set within a dynamic band
entirely. Second, the property of SMR drives enables sequen-
tial writes in the shingled direction, and sequential writes
never overlap data. Hence, multiple sets can be appended in
a dynamic band without guard regions. Third, as long as a

‘guard region’ is reserved between the inserted data and the
previously written one in the shingled direction, inserting to
SMR drives does not overlap or induce write amplification
[29]. Hence, a ‘guard region’ is only needed when an inserting
set may damage subsequent valid data.

2) Dynamic band management: Based on the above dis-
cussion, we propose ‘dynamic band management’ to manage
dynamic bands on SMR drives. Generally, dynamic band man-
agement writes sets to an HM-SMR drive through appending,
but inserts are allowed with the promise of no overlaps to valid
data for fully utilizing disk space. The ‘dynamic band manage-
ment’ policy serves write requests and manages free space as
follows. In the beginning, SEALDB appends data sequentially.
When a compaction takes place, the corresponding invalid set
is marked as free space. The free space from faded sets is
organized by a sorted array of double linked list, named free
space list, and each array element is aligned with an SSTable
size (4 MB). Free space regions with similar sizes are tracked
on an array element by a double linked list. The residual space
indicates the whole not-yet banded disk space. After that, when
allocating space for an incoming set, SEALDB first searches
in the free space list by binary searching the sorted array and
picking the first free space in its linked list with the complexity
of O(logn). The size of a free space region (S,..) is required
to be not less than the sum of a request size (Sy¢q) and a
guard region (Sgyqrqd), as shown in Equation 1. Once an exact
size matched free space region is found, this free space is
split into a data writing region and a guard region. If a larger
free space region is found, data is inserted to that region and
the remaining space is returned to the free space list. If there
is no suitable free space, SEALDB just appends data to the
tail of valid data on disks, at the non-banded region. Using
dynamic band management, subsequent valid data will not
be overlapped and no auxiliary write amplification is caused.
Comparing to managing space in the unit of SSTable, the large
size set makes dynamic band management more efficiently as
it tremendously reduces metadata and unusable fine fragments
on disks.

Sfree > Sreq + Sguard (l)

The connection between dynamic bands and sets provides
HM-SMR drives and LSM-trees an optimized synergy. For
LSM-trees, dynamic bands deliver a suitable data layout,
where a set is always stored in a continuous physical
space within a dynamic band. Hence, random write and
corresponding auxiliary write amplification is eliminated.
For SMR drives, the coarse granularity access unit ‘set” helps
to simplify the space management of dynamic bands and
reduce small fragments. In addition, dynamic bands can
fully utilize bands and contribute to improving usable
disk space in HM-SMR drives. On the contrary, storing
sets in conventional SMR drives with fixed bands and gaps
or adopting a buddy system results in space wastage due to
partially used bands and unnecessary guard regions, since set
sizes are variably changed with workloads.
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Fig. 7. On-disk operations of dynamic bands. This figure shows an

example series of operations occurring to SMR space managed by dynamic
band management. Appending is the primary operation for write requests;
compactions generate invalid data; inserting a write request splits a free
space region and results in a guard region (gap) or another free space region;
coalescing combines adjacent free space regions.

C. On-disk operations of dynamic bands

We keep the interface of key-value stores unchanged (i.e.,
get, put, delete) because optimizations in LSM-trees and SMR
drives are behind that interface. In this section, we abstract
each of the main on-disk operations from the interface of
LSM-trees and SMR drives, including read, write, delete,
coalesce, and split. SEALDB serves read requests from LSM-
trees without significant changes as SMR drives impose no
constraints on read.

Write SEALDB serves write requests through append or
insert. SEALDB appends data to disk at first. Afterwards,
once some sets become invalid, they are reused as free space
and added into free space list by dynamic band management.
Write requests that meet the space constraint of Equation 1
are inserted into free space, otherwise they are appended to
the disk space.

Delete Delete happens when a victim SSTable and its set
compact and regenerate a new set. For an invalid set, SEALDB
deletes it by adding to the free space list. For an invalid victim
SSTable, we only mark it as invalid and record its key range in
the set it belongs to. The space of an invalid victim SSTable is
recycled until the set it belongs to becomes invalid. SEALDB
gives priority to compact the set with more invalid SSTables,
hence fragments can be recycled implicitly with no overhead.

Coalesce When a set becomes invalid, SEALDB checks free
space at its adjacent locations and coalesces free space before
updating the free list.

Split When a write request inserts into a large free space
region (i.e., exceeding the sum size of the request and a gap),
this free space is split into a used space and another free space.
We add the unused free space back to the free list to serve
other write requests.

For a better understanding, Figure 7 gives an example
showing the evolution of a shingled disk space experiencing a
series of operations. Please note that we assume the size of a
guard region is 4 MB. In subfigure (1), the first three sets are
written to SMR drives through appending. In subfigure (2),

set 1 undergoes a compaction, thus set I is deleted, and the
regenerated set I’ is appended to SMR drives, so does set 3.
In subfigure (3), set 4 (12 MB) meets the insert requirement
of no overlaps (reserving a guard region), so set 4 is inserted
into the free space region previously occupied by set 1. The
space is split into a used space and a guard region. If the size
of set 4 is 4 MB, in subfigure (4), the remaining region can
serve another write request Ser 5 (8MB). In this case, only
one gap is needed to guarantee not to overlap set 2, while the
guard region between set 4 and Set 5 is obviated, since Set
5’s append does not damage any data. In subfigure (5), Set I’
is deleted, thus two adjacent invalid free space regions can be
coalesced into a larger one to serve write requests. In subfigure
(6), after a series of operations, three resultant dynamic bands
with varying sizes are shown in the space of SMR drives, i.e.,
12 MB, 60 MB, and 40 MB.

D. Implementation

Theoretically our proposed techniques (dynamic bands and
sets) can be applied and implemented in any KV stores based
on LSM-trees, because they focus on SMR drives and the
structure of LSM-tree instead of any specific KV stores. For
demonstration purpose, we implement SEALDB based on
LevelDB 1.19, a popular and reputable LSM-tree based key-
value store. We believe this implementation shows the benefits
of our schemes and the potential of deploying our techniques
in other LSM-trees based KV stores. First, for the implemen-
tation of sets, we revise the code of compaction processes in
LevelDB to change the get/put unit from SSTables to sets.
Second, since SEALDB is a direct-on-disk key-value storage
system without file systems, we add an indirection from file
name to disk location (i.e., physical block address, PBA)
for KV stores accessing SMR drives. Third, we implement
dynamic bands on an emulated primitive HM-SMR drive due
to the needs of defining dynamic bands and controlling the
PBA. The emulated SMR drive for SEALDB only has shingled
tracks in disk platters and no physically partitioned zones and
bands. SMR constraints in the emulated HM-SMR drive is
implemented according to [27], [29]. The overall disk platter
is managed by dynamic band management, and guard regions
are assigned by reserving non-written shingled tracks.

IV. EVALUATION

In this section, we present evaluation results of SEALDB
and its competitors. All experiments are run on a testing
machine with 16 Intel(R) Xeon(R) CPU E5-2660 @ 3.30GHz
processors and 8-GB of memory. The operating system is
64-bit Linux 4.4.0. The storage device used for emulating
SMR drives is a 1 TB Seagate ST1000DM003 HDD, which
has the same read and sequential write performance as the
SMR drive available on market (Seagate ST5000AS0011).
Table II gives a performance comparison of the two disks.
Configurations of evaluation include LevelDB, SEALDB, and
SMRDB. SMRDB [24] is an SMR friendly KV store based on
LSM-trees. The design choices of SMRDB include enlarging
SSTables to the band size, assigning SSTables to dedicated



TABLE II
PERFORMANCE COMPARISON ON HDD AND SMR

HDD SMR
Sequence read (MB/s) 169 165
Sequence write (MB/s) 155 148
Random read 4KB (IOPS) 64 70
Random write 4KB (IOPS) 143 | 5-140
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Fig. 8.  Basic performance on micro-benchmark. This figure shows
the basic performance of sequential/random read and write normalized to
LevelDB’s performance. The number on top of each bar shows the actual
throughput achieved (IOPS).

bands and reserving only two levels for LSM-trees where key
ranges of SSTables in the same level may be overlapped. We
re-implement SMRDB as faithfully as possible according to
the descriptions in its paper for comparison. Both LevelDB
and SMRDB are implemented on a fix-banded emulated SMR
drive. The key size, value size, SSTable size, and default band
size are 16 bytes, 4 KB, 4 MB, and 40 MB respectively.
Particularly, the SSTable size in SMRDB is 40 MB, as it is
aligned with the band size according to its design strategies.
The band size in SEALDB is variably changed with requests.

A. Basic Performance

In this section, we first evaluate the basic read and write
performance of three configurations, using micro-benchmarks
distributed with the LevelDB. For write performance, micro-
benchmarks generate 25 millions key-value records amounting
to a total of 100 GB in a sequential order or a uniformly
distributed random order. For read performance, it is evaluated
by randomly or sequentially querying 100K key-value pairs on
the 100 GB random load database. All evaluated performance
is normalized to LevelDB, as shown in Figure 8.

1) Random write performance: Random write performance
mainly reveals the optimization of our design strategies, as
random writes incur compactions. There are two observations
for random write performance: first, SEALDB improves it by
3.42x relative to LevelDB. This is because a compaction in
LevelDB accesses SSTables that span multiple SMR bands,
bringing a large auxiliary write amplification on SMR drives
(Section II-C). SEALDB benefits random write by improving
compaction efficiency with sets, eliminating auxiliary write
amplification with dynamic bands, and removing redundant
software overhead. Second, SEALDB outperforms SMRDB
by 1.67x, owing to the poor compaction performance of
SMRDB. SMRDB’s design strategies that enlarging SSTable
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Fig. 9.  YCSB macro-benchmark performance. This figure shows the

performance on seven YCSB workloads. Workload A is composed of 50%
reads and 50% updates, Workload-B has 95% reads and 5% updates, and
Workload-C includes 100% reads. Workload-D has 95% reads and 5% insert
latest keys. Workload-E has 95% range queries and 5% insert new keys,
Workload-F includes 50% reads and 50% RMW.

and allowing key range overlap at the two-level structured
LSM-tree tremendously increase the amount of data involved
in compactions, which heavily slows down its random write
performance.

2) Sequential write performance: Overall, sequential write
performance is much better than random write, because
sequential writes never compact and thus have no write
amplification. SMRDB and SEALDB exhibit quite similar
sequential load performance. Their performance improvements
over LevelDB come from the absence of redundant software
overhead and the concise data layout.

3) Sequential read performance: For sequential read per-
formance, SEALDB surpasses LevelDB by 3.96x, and SM-
RDB is slightly inferior to SEALDB. The low sequential
read throughput of LevelDB results from its non-sequential
data layout, where semantic related SSTables span in multiple
bands. A sequential user read request might incur multiple
random reads on disks. On the contrary, both SMRDB and
SEALDB store SSTables in continuous PBAs, hence the coarse
sequential granularity helps to access data more efficiently.
Concretely, SEALDB gathers semantic related SSTables by
sets, while SMRDB enlarges each SSTable into a band size.

4) Random read performance: SMRDB has a similar ran-
dom read performance as LevelDB, while SEALDB tran-
scends them by about 1.80x. To get a KV item, SMRDB needs
to check more SSTables as some SSTables are overlapped
in its two-level structure, and LevelDB needs to check more
bands as SSTables span multiple bands. However, SSTables
in SEALDB are well-sorted and sequentially stored within
dynamic bands.

Finally, we investigate the performance of SEALDB and
other key-value stores using YCSB [33], a standard macro-
benchmark suit from Yahoo!. To evaluate the overall perfor-
mance, we load 25 million entries first, and then test the
performance in different workloads with 100k entries. Figure
9 shows the performance and patterns of every workload. We
find 1) SEALDB enjoys a larger performance improvement
in random load/write dominated workloads; 2) the behaviors
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Fig. 10. Compaction detail. Figure (a) shows the latency of every
compaction when randomly loading the first 40 GB database. Figure (b) shows
the average data size of compaction in three key-value stores.

of each competitor are aligned with what we find in micro-
benchmark, which verifies the advantages of SEALDB. It
should be noted that workloads in YCSB follow zipfian distri-
bution with skewed requests, except workload-E with the latest
distribution. Comparing to the uniform distribution workloads
in the micro-benchmark, space locality is more prominent
in zipfian distribution, which explains why SEALDB and
SMRDB obtains a larger performance improvement in YCSB.

B. Detailed Analysis

Generally, the advantage of SEALDB can be attributed to
three parts. First, the more efficient compactions; Second, the
LSM-tree aware and SMR friendly data layout; Third, the
eliminated auxiliary write amplification on SMR drives. We
evaluate them in three subsections respectively, to carefully ex-
amine the details of our design and demonstrate why SEALDB
delivers its performance improvement.

1) Compaction analysis: We record the detailed com-
paction information (i.e., latency and average data size) of
three competitors when randomly loading the first 40 GB
database. In Figure 10(a), the x-axis represents the order
of compactions, and the y-axis shows the latency of each
compaction. First, we find SEALDB and LevelDB share
similar number of compactions, but SEALDB beats LevelDB
with lower overall compaction latency (4.30x). The higher
compaction efficiency of SEALDB comes from sets, which
turn multiple scattered random accesses in a compaction
into a large sequential one. Second, SMRDB experiences
fewer compactions but the average compaction latency reaches
701.3 seconds, which brings 1.89x overall compaction latency
comparing to SEALDB. Figure 10(b) shows the reason, where
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Fig. 12.  Write amplification. This figure shows write amplifications in KV
stores (WA), SMR drives (AWA), and overall storage systems (MWA) of three
competitors.

SMRDB’s average amount of compaction data reaches 900
MB. This enormous data size comes from SMRDB’s large
SSTable and the two-level LSM-tree structure. It demonstrates
that simply enlarging SSTables to fit SMR bands even pro-
duces a counter effect. More importantly, in this figure, we
observe the average set size of SEALDB is 27.48 MB. As
sets accumulate SSTables in each compaction, the average set
size is equivalent to the average compaction data size.

2) Data layout: The performance improvement of
SEALDB also takes advantage of dynamic bands. Figure
11 shows the data layout on SMR drives by tracing the
physical address of each SSTable in every compaction, when
randomly loading the first 10 GB database. In this figure, we
observe 600 compactions, and for each compaction SSTables
are written to a continuous physical address space. The
consecutive offset of SSTables in each compaction represents
a set. Sets fill the first 2.7 GB disk space gradually, which
demonstrates the benefit of dynamic band management
(i.e., writing sets sequentially and allowing inserts without
overlapping valid data). Comparing this figure with the data
layout of traditional LevelDB (in Figure 2), we can observe
the space efficiency of SEALDB, which saves 6.3 GB disk
space for storing the same 10 GB database.

3) Write amplification: Write amplification is another as-
pect reflecting the reason why SEALDB improves perfor-
mance. In the 100 GB random load database, we evaluate
write amplification from LSM-trees (WA), the auxiliary write
amplification from SMR drives (AWA), and the overall multi-
plicative write amplification (MWA) respectively to illustrate
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which part takes advantage of our design strategies.

Figure 12(a) shows that SEALDB does not mitigate the
write amplification of LSM-trees by aligning semantic related
SSTables into sets. However, Section IV-B1 has demonstrated
the design of set contributes to more efficient data accesses in
compactions. For SMRDB, it reduces write amplification of
LSM-trees by the two-level structure, as it avoids KV items
from constantly compacting from level O to level 6.

Figure 12(a) shows that both SMRDB and SEALDB are
able to eliminate the auxiliary write amplification. For SM-
RDB, it dispels AWA by enlarging SSTable and putting each
SSTable to a dedicated band, where writing an entire band does
not induce auxiliary write amplification in SMR drives. For
SEALDB, it eliminates AWA by taking sets as the compaction
unit and adopting dynamic bands to store it, as dynamic bands
fully comply with the constraints of SMR drives and never
overlap valid data.

Figure 12(b) shows the overall efficacy of reducing the
multiplicative write amplification. SEALDB mitigates MWA
by 6.70x compared to LevelDB. The high MWA of LevelDB
is produced by compactions in LSM-trees and multiplied by
the AWA of SMR drives, since the unfriendly data layout of
LevelDB makes SSTables in a compaction span in a large disk
space.

C. Cost analysis

In this section, we conclude the overhead and contribution
of each design strategy (i.e., set and dynamic band).

Set gathers data in each compaction to improve compaction
efficiency. However, its combination with dynamic bands
induces some overhead. Although set provides a large man-
agement granularity, the exceptional small sets can result in
small fragments which is hard to reuse as free space, impairing
the space utilization of SEALDB.

The benefits of dynamic band mainly own to large granular-
ity sets, as large units reduce the software overhead of manage-
ment and produce fewer small fragments. The complexity of
free space list in dynamic band management is only O(logn)
when using the binary search in a sorted array. Considering
the space utilization in dynamic bands, free space that cannot
accommodate a set plus a guard region will be wasted.
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Fig. 14. Contribution analysis of set and dynamic band. This figure
shows the basic performance comparison of LevelDB, LevelDB with sets, and
SEALDB with sets and dynamic bands.

To evaluate the space utilization, we randomly load a 40
GB database and record the layout of dynamic bands and
fragments, ignoring free space regions that larger than the
average set size (27.48 MB). As shown in Figure 13, each
dynamic band is followed by a fragment or gap. The overall
fragments size 1.7 GB, takes only 9.32% of the occupied
space. However, these small fragments are quite difficult to be
leveraged, thus SEALDB needs alternative garbage collection
policies as a supplement. We leave it for our future work to
further optimize SEALDB.

Finally, the contribution of set and dynamic band are ana-
lyzed respectively by evaluating the performance of LevelDB,
LevelDB with sets, and SEALDB. From Figure 14, we find
sets mainly contribute to improve read and random write
performance, which accounts for 50% and 41% of the overall
performance improvement. However, sequential write perfor-
mance is only improved by dynamic band, since the benefit
of sets comes from gathering data in compactions while no
compaction happens in sequential write. Dynamic band makes
improvement in every workload for its sequential dominant
access pattern. With the combination of sets and dynamic
bands, SEALDB achieves a decent degree of performance
promotion in all workloads.

V. RELATED WORK

Key-value stores have become important in supporting a
huge variety of modern data center applications and SMR
devices are gaining popularity in storage systems due to
their density advantage. Aghayev and Desnoyers [3] carry
out extensive experiments to understand the internal details
of drive-managed SMR devices. Wu et al. [27] study the
performance and characteristics of host-aware SMR devices.
He et al. [26], Manzanares et al. [16], and Kadekodi et al.
[29] have proposed several novel data management policies
on SMR drives. These research consolidate our understanding
of SMR technologies.

Leveraging SMR drives in the storage system imposes
challenges. Relevant research address the challenge of building
KV stores on SMR drives as follow: Skip-tree [31] compacts
KV items by skipping some internal levels to reduce level
by level compactions. Yao et al. [25] proposes a light-weight



compaction tree to reduce I/O amplification in compactions.
Kinetic [34] is an implementation of a KV store on SMR
media released by Seagate. SMRDB [24] is what we compared
in this study, whose key techniques consist of using the two
level LSM-tree and enlarging SSTable to match the size of an
SMR band. By contrast, SEALDB employs set and dynamic
band, which provides a flexibility in managing disk space and
performs better than SMRDB, as verified by our experiments.

VI. CONCLUSION

In this paper, we present SEALDB to address the multi-
plicative I/O amplification problem when running LSM-tree
based key-value stores on SMR drives. First, SEALDB groups
SSTables involved in each compaction into sets to guarantee
more efficient compactions. Second, SEALDB proposes dy-
namic band on HM-SMR drives to accommodate the storage
of sets and eliminate auxiliary I/O amplifications. Extensive
experimental results have shown that SEALDB outperforms
other counterparts (i.e., LevelDB and SMRDB) in various
aspects.
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