
A Set-aware Key-Value Store on Shingled Magnetic

Recording Drives with Dynamic Band

Ting Yao1 3, Zhihu Tan2∗, Jiguang Wan1∗, Ping Huang3, Yiwen Zhang1, Changsheng Xie1, and Xubin He3

1 Wuhan National Laboratory for Optoelectronics, HUST, China
2 School of Computer Science and Technology, HUST, China

Email: {tingyao, stan, jgwan, cs xie}@hust.edu.cn
3 Department of Computer and Information Sciences, Temple University, USA

Email: {ting.yao, templestorager, xubin.he}@temple.edu

Abstract—Key-value (KV) stores play an increasingly critical
role in supporting diverse large-scale applications in modern data
centers hosting terabytes of KV items which even might reside on
a single server due to virtualization purpose. The combination
of ever growing volume of KV items and storage/application
consolidation is driving a trend of high storage density for
KV stores. Shingled Magnetic Recording (SMR) represents a
promising technology for increasing disk capacity, but it comes
at a cost of poor random write performance and severe I/O
amplification. Applications/software working with SMR devices
need to be designed and optimized in an SMR-friendly manner.

In this work, we present SEALDB, a Log-Structured Merge
tree (LSM-tree) based key-value store that is specifically op-
timized for and works well with SMR drives via adequately
addressing the poor random writes and severe I/O amplification
issues. First, for LSM-trees, SEALDB concatenates SSTables of
each compaction, and groups them into sets. Taking sets as
the basic unit for compactions, SEALDB improves compaction
efficiency by mitigating random I/Os. Second, SEALDB creates
varying size bands on HM-SMR drives, named dynamic bands.
Dynamic bands not only accommodate the storage of sets, but
also eliminate the auxiliary write amplification from SMR drives.

We demonstrate the advantages of SEALDB via extensive
experiments in various workloads. Overall, SEALDB delivers
impressive performance improvement. Compared with LevelDB,
SEALDB is 3.42× faster on random load due to improved com-
paction efficiency and eliminated auxiliary write amplification on
SMR drives.

Keywords-LSM-tree; SMR; KV store; Set; Dynamic band

I. INTRODUCTION

Nowadays, huge volume of data is being generated at an

accelerating rate, of which key-value systems are gaining in-

creasing popularity and have become an important component

in modern data center infrastructure [1], [2]. The ever-growing

storage requirement is continually pushing the storage capacity

envelope of storage systems, calling for efficient solutions to

expanding storage capacity. Adding more disks and/or servers

to expand storage space should be pursued as a last resort,

because it not only incurs added monetary investment, but

also counteracts virtualization platforms from consolidating

applications on fewer servers or less storage space. Facing

this dilemma, innovators from both academia and industry

have been relentlessly researching for more effective solutions.

Among the proposed disk technologies, Shingled Magnetic

Recording (SMR) [3] technology provides a feasible solution

to enlarging the disk capacity, as it significantly increases

storage space on the same disk platters as conventional disks,

while requiring minimal changes to the manufacture pro-

cess [4]. As a fact, Seagate [5] has already released 5 TB and

8 TB SMR drives, while HGST [6] has recently announced

its HM-SMR drive in the size of 14 TB.

An SMR drive is built on the same magnetic recording and

manufacture process as conventional disks, with the major

difference that disk tracks are overlapped. Although over-

lapped tracks enable significant disk capacity improvement,

data management complexity does increase in SMR drives.

One particularly challenging problem is the random write

constraint imposed on SMR drives [3], [7], [8], which

causes rather poor random write performance and severe I/O

amplifications. Though we believe that SMR will play an

increasingly important role in massive storage systems due

to its areal density advantage [9], [10], system researchers

and SMR drive vendors should work in tandem to ensure the

smooth adoption of SMR drives. It is generally recognized

that new technology has been better adopted to a system in

an evolving approach rather than a revolutionary one [8],

[11]. High-level systems can craft friendly access patterns

presented to the underlying storage system, while the storage

system exposes informational hints to provide flexibility. When

it comes to SMR technology, these research efforts include

designing SMR-oriented on-disk data layout [12], reducing

internal data movement [13], developing SMR-friendly file

systems [14], [15], and providing an abstract layer of data

management [16].

In this paper, we choose key-value systems as our tar-

get applications to demonstrate how SMR drives can sat-

isfy the growing storage requirement since key-value stores

are becoming more and more important as the backbone

supporting a large variety of modern applications, including

web indexing [1], [17], social networking [18], [19], photo

stores [20], and cloud store [21]. The sizes of key-value

stores are skyrocketing and trillion-items key-value systems

are not uncommon [22] in data centers. The majority of mod-

ern key-value store implementations, including BigTable [1],

LevelDB [17], Cassandra [23], RocksDB [20], etc., are based

on the Log-Structured Merge trees (LSM-trees) due to its

optimized sequential write property. However, even though



LSM-trees buffer writes to create sequentiality in individual

files (i.e., SSTables), access patterns seen at the disk level

are yet not SMR-friendly [16]. As a result, building LSM-tree

based key-value stores on SMR drives still imposes significant

challenges due to LSM-trees’ inherent I/O amplification prob-

lem and the operational peculiarities of SMR drives. LSM-

trees periodically perform compactions by reading, sorting,

and rewriting files with overlapping key ranges, while these

processes cause internal device I/O amplifications on SMR

drives.

To reconcile compactions in LSM-trees and I/O amplifi-

cations in SMR drives, we introduce sets in an LSM-tree

to group related files that are involved in a compaction and

suggest dynamic bands in HM-SMR drives to accommodate

the storage of sets, which together comprise the key ideas of

our proposed key-value store named SEALDB. SEALDB in

its design is aware of the characteristics of both SMR drives

and LSM-trees, entailing a good cooperative optimization of

the system and device to deliver a high density and high

performance key-value store. The technical contributions of

our work are summarized as follows:

• SEALDB exploits the inherent relationship between

SSTables in an LSM-tree and groups relevant SSTables of

each compaction into a set. A set essentially aggregates

SSTables scattered around the disk into a coarse-grained

unit, which helps to serialize I/O patterns to the shingled

disk and improve compaction efficiency.

• SEALDB eliminates the auxiliary I/O amplification in

HM-SMR drives by employing the varying size dynamic

bands. Dynamic bands not only store sets in contiguous

disk space to gather semantically related data for LSM-

trees, but also increase the utilization of disk space by

mitigating space wastage.

To the best of our knowledge, SMRDB is one of the

very few research works on investigating the applicability

of SMR drives for key-value stores [16], [24], [25]. Ex-

perimental results demonstrate SEALDB shows impressively

better performance than LevelDB and SMRDB for both micro-

benchmarks and the cloud YCSB workloads.

II. BACKGROUND AND MOTIVATION

The high storage density is highly demanded by KV stores.

As the representative techniques of high capacity storage

device and KV stores, both SMR drives and LSM-trees have

their merits and demerits. In this section, we first present the

background knowledge of SMR technologies and LSM-trees.

Then, we discuss challenges in building LSM-tree based key-

value stores on SMR drives.

A. Shingled Magnetic Recording

Shingled Magnetic Recording (SMR) is a recently proposed

technology to increase the disk areal density by spacing tracks

more closely. In SMR drives, tracks overlap in one direction

like shingles on a roof. A group of overlapped tracks is called a

band and two adjacent bands are separated from each other by

a dedicated protection region called guard region. Reads and

Log
L0
L1

Li

Ln

………

Memory

Disk

2

14

Write request

Compaction

Sstable Memtable Immutable memtable

3

L2
………

Fig. 1. LevelDB Architecture. This figure shows steps of LevelDB serving

write requests: (1) log file; (2) Memtable; (3) immutable Memtable (4) SSTable

in L0; (5) compaction.

sequential writes in SMR drives are carried out as with conven-

tional hard disks. However, random writes require expensive

read-modify-write operations on a whole band to protect the

data residing on the subsequently overlapped tracks [3], [4],

which results in a large write amplification. To diminish this

imperfection, researchers have proposed various techniques

in the following three categories: DM-SMR (drive-managed)

addresses random writes in a shingled translation layer (STL)

[8], [12], [26]; HM-SMR (host-managed) only serves SMR-

friendly writes from specific host applications [14], [15],

[24]; and HA-SMR (host-aware) takes benefits from both

host and STL [27]. Specifically, to provide host applications

various parameters of SMR drives, there are ongoing effort

on standardized interfaces for HM-SMR and HA-SMR drives

(e.g., the ZBC/ZAC in T10/T13 [16], [28]). In this paper, we

build SEALDB on a raw HM-SMR drive without physically

divided bands and persistent cache, so we can utilize all tracks

and get the maximum capacity of SMR drives. This raw HM-

SMR is preferably written sequentially and allowed to write

anywhere with the promise of never overlapping valid data.

The HM-SMR drive in our study is similar to Caveat-Scriptor

[29], but it has no extra restrictive parameters.

B. LSM-tree and LevelDB

Multi-level structured LSM-trees are widely deployed in

modern key-value stores, such as the open sourced LevelDB

[17] from Google Inc. LSM-trees provide a competitive write

performance by batching data writes into Memtables in mem-

ory. Memtables are then flushed to disks, providing sequential

writes in each individual file. The architecture of an LSM-

tree is shown in Figure 1, where the size limit of Li+1

is typically 10 times of Li, and this size factor is called

amplification factor (AF). To compact an SSTable from Li

to Li+1, LevelDB first reads required SSTables into memory,

including an SSTable in Level Li called victim SSTable, and

several SSTables in Li+1 which have key ranges overlapping

that of the victim SSTable (called overlapped SSTables);

then LevelDB merges and sorts SSTables being fetched into

memory; finally it writes the resultant SSTables back to Li+1.

Compactions are frequently conducted in the background

throughout the lifetime of an LSM-tree to maintain the balance

















compaction tree to reduce I/O amplification in compactions.

Kinetic [34] is an implementation of a KV store on SMR

media released by Seagate. SMRDB [24] is what we compared

in this study, whose key techniques consist of using the two

level LSM-tree and enlarging SSTable to match the size of an

SMR band. By contrast, SEALDB employs set and dynamic

band, which provides a flexibility in managing disk space and

performs better than SMRDB, as verified by our experiments.

VI. CONCLUSION

In this paper, we present SEALDB to address the multi-

plicative I/O amplification problem when running LSM-tree

based key-value stores on SMR drives. First, SEALDB groups

SSTables involved in each compaction into sets to guarantee

more efficient compactions. Second, SEALDB proposes dy-

namic band on HM-SMR drives to accommodate the storage

of sets and eliminate auxiliary I/O amplifications. Extensive

experimental results have shown that SEALDB outperforms

other counterparts (i.e., LevelDB and SMRDB) in various

aspects.

VII. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive

comments and Billy Luqiu for his help to proofread the draft.

Zhihu Tan and Jiguang Wan are corresponding authors of this

paper. This work was sponsored in part by the National Natu-

ral Science Foundation of China under Grant No.61472152,

No.61300047, No.61432007, and No.61572209; the Funda-

mental Research Funds for the Central Universities HUST:

2015QN069; the 111 Project (No.B07038); the Director Fund

of WNLO; the Key Laboratory of Data Storage System,

Ministry of Education; the U.S. National Science Foundation

grants CCF-1717660 and CNS-1702474.

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed
storage system for structured data,” in Proceedings of the 7th Symposium

on OSDI, 2006, pp. 205–218.

[2] B. Fitzpatrick and A. Vorobey, “Memcached: a distributed memory
object caching system,” 2011.

[3] A. Aghayev and P. Desnoyers, “Skylight—a window on shingled disk
operation,” in Proceedings of the 13th USENIX Conference on FAST,
2015, pp. 135–149.

[4] G. Gibson and G. Ganger, “Principles of operation for shingled disk
devices,” Carnegie Mellon University Parallel Data Lab Technical

Report CMU-PDL-11-107, 2011.

[5] Seagate. (2014) Archive hdds from seagate. [Online].
Available: http://www.seagate.com/www-content/product-content/hdd-
fam/seagate-archive-hdd/en-us/docs/100757960a.pdf

[6] HGST. (2017) Western digitals worlds first 14tb enterprise hard
disk drives. [Online]. Available: https://www.hgst.com/products/hard-
drives/ultrastar-hs14

[7] A. Amer, D. D. E. Long, E. L. Miller, J.-F. Paris, and S. J. T. Schwarz,
“Design issues for a shingled write disk system,” in Proceedings of the

2010 IEEE 26th Symposium on MSST, 2010.

[8] A. Aghayev, T. Tso, G. Gibson, and P. Desnoyers, “Evolving ext4 for
shingled disks,” in Proceedings of the 15th USENIX Conference on

FAST, vol. 1, 2017, p. 105.

[9] T. Feldman and G. Gibson, “Shingled magnetic recording: Areal density
increase requires new data management,” USENIX, vol. 38, no. 3, pp.
22–30, 2013.

[10] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and T. T’so, “Disks for
data centers,” Google, Tech. Rep., 2016.

[11] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, N. Zeldovich et al., “An analysis of linux scalability to many
cores,” in Proceedings of the 9th Symposium on OSDI, vol. 10, 2010,
pp. 86–93.

[12] Y. Cassuto, M. A. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z. Bandic,
“Indirection systems for shingled-recording disk drives,” in Proceedings

of the 2010 IEEE 26th Symposium on MSST, 2010, pp. 1–14.
[13] Jones, S. N, Amer, Ahmed, Miller, E. L, Long, D. DE, Pitchumani,

Rekha, Strong, and C. R, “Classifying data to reduce long-term data
movement in shingled write disks,” ACM Transactions on Storage (TOS),
vol. 12, no. 1, p. 2, 2016.

[14] Seagate. Smrffs-ext4. [Online]. Available:
https://github.com/Seagate/SMR FS-EXT4

[15] C. Jin, W.-Y. Xi, Z.-Y. Ching, F. Huo, and C.-T. Lim, “Hismrfs: A high
performance file system for shingled storage array,” in Proceedings of

the 2014 IEEE 30th Symposium on MSST, 2014, pp. 1–6.
[16] A. Manzanares, N. Watkins, C. Guyot, D. LeMoal, C. Maltzahn, and

Z. Bandic, “Zea, a data management approach for smr,” in 8th USENIX

Workshop on HotStorage, 2016.
[17] S. Ghemawat and J. Dean. (2016) Leveldb. [Online]. Available:

https://github.com/Level/leveldown/issues/298
[18] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan,

“Linkbench: A database benchmark based on the facebook social graph,”
in Proceedings of the 2013 ACM SIGMOD, 2013.

[19] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project voldemort,” in
Proceedings of the 10th USENIX Symposium on FAST, 2012.

[20] Facebook. Rocksdb, a persistent key-value store for fast storage
enviroments. [Online]. Available: http://rocksdb.org/

[21] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, “Finding a
needle in haystack: Facebooks photo storage,” in Proceedings of the 9th

Symposium on OSDI, 2010.
[22] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “Lsm-trie: An lsm-tree-based ultra-

large key- value store for small data,” in Proceedings of the USENIX

Annual Technical Conference (USENIX 15), 2015.
[23] A. Lakshman and P. Malik, “Cassandra: A decentralized structured

storage system,” in The 3rd ACM SIGOPS International Workshop on

Large Scale Distributed Systems and Middleware, 2009.
[24] R. Pichumani, J. Hughes, and E. L.Miller, “Smrdb: Key-value data store

for shingled magnetic recording disks,” in Proceedings of SYSTOR 2015,
2015.

[25] T. Yao, J. Wan, P. Huang, X. He, Q. Gui, F. Wu, and C. Xie, “A light-
weight compaction tree to reduce i/o amplification toward efficient key-
value stores,” in Proceedings of the 2017 IEEE 33th Symposium on

MSST, 2017.
[26] W. He and D. H. Du, “Smart: An approach to shingled magnetic

recording translation,” in Proceedings of the 15th USENIX Conference

on FAST, 2017, p. 121.
[27] F. Wu, M.-C. Yang, Z. Fan, B. Zhang, X. Ge, and D. H.C.Du, “Evalu-

ating host aware smr drives,” in 8th USENIX Workshop on HotStorage.
Denver, CO: USENIX Association, 2016.

[28] I. T. T. Committee, “Information technology-zoned block commands
(zbc). draft standard t10/bsr incits 550, american national
standards institute, inc.” Draft Standard, 2017. [Online]. Available:
http://www.t10.org/drafts.htm

[29] S. Kadekodi, S. Pimpale, and G. A. Gibson, “Caveat-scriptor: Write
anywhere shingled disks,” in 7th USENIX Workshop on HotStorage.
Santa Clara, CA: USENIX Association, 2015.

[30] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Wisckey: separating keys from values in ssd-conscious storage,” in
Proceedings of the 14th USENIX Conference on FAST, 2016, pp. 133–
148.

[31] Y. Yue, B. He, Y. Li, and W. Wang, “Building an efficient put-intensive
key-value store with skip-tree,” IEEE Transactions on Parallel and

Distributed Systems, vol. PP, no. 99, pp. 1–1, 2016.
[32] A. K. KV, M. Cao, J. R. Santos, and A. Dilger, “Ext4 block and inode

allocator improvements,” in Linux Symposium, vol. 1.
[33] B. F. Cooper, A. Silberstein, R. R. Erwin Tam, and R. Sears, “Bench-

marking cloud serving systems with ycsb,” in Proceedings of the ACM

Symposium on Cloud Computing (SOCC’10), 2010.
[34] Kinetic open storage. [Online]. Available: https://www.openkinetic.org/


