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Abstract—NAND flash-based Solid State Devices (SSDs) offer
the desirable features of high performance, energy efficiency,
and fast growing capacity. Thus, the use of SSDs is increasing in
distributed storage systems. A key obstacle in this context is that
the natural unbalance in distributed I/O workloads can result in
wear imbalance across the SSDs in a distributed setting. This, in
turn can have significant impact on the reliability, performance,
and lifetime of the storage deployment. Extant load balancers
for storage systems do not consider SSD wear imbalance when
placing data, as the main design goal of such balancers is to
extract higher performance. Consequently, data migration is
the only common technique for tackling wear imbalance, where
existing data is moved from highly loaded servers to the least
loaded ones.

In this paper, we explore an innovative holistic approach,
Chameleon, that employs data redundancy techniques such as
replication and erasure-coding, coupled with endurance-aware
write offloading, to mitigate wear level imbalance in distributed
SSD-based storage. Chameleon aims to balance the wear among
different flash servers while meeting desirable objectives of:
extending life of flash servers; improving I/O performance; and
avoiding bottlenecks. Evaluation with a 50 node SSD cluster
shows that Chameleon reduces the wear distribution deviation
by 81% while improving the write performance by up to 33%.

I. INTRODUCTION

Flash memory has emerged as a viable storage alternative

for mobile computing devices due to its high throughput,

persistence, and lower power consumption. The development

of commodity flash devices such as solid state drives (SSDs)

has also expanded flash memory’s role in enterprise storage

servers. All-flash or disk-free server storage systems (e.g.,

FlashStore [1] and Analyzethis [2]) are being developed.

Flash-based storage servers that can play a significant role

in accelerating application performance are clustered together

and managed as a single entity for high reliability and

availability in many distributed storage platforms such as

FAWN [3], BlueDBM [4], QuickSAN [5] and CORFU [6].

Unlike magnetic disk drives, flash devices read and write

data at the granularity of pages but erase data in units of a

block.SSDs typically provide a flash translation layer (FTL)

within the device to manage garbage collection (GC). If some

valid pages are physically located in a block (called victim

block) that has some invalid pages that need recycling, GC

will first copy the valid data to a free page and then erase

the victim block to make the block available for new writes.

Consequently, a write operation can lead to multiple writes,

resulting in write amplification. In this case, GC is time
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(a) Erasure distribution under REP.
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(b) Erasure distribution under EC.

Fig. 1: Wear imbalance in a 50-server flash cluster. X-axis

shows flash servers sorted by total erasure count.

consuming (relative to read/write speeds) and also affects

device endurance, as the number of sustainable erasures (P/E

cycles) of a given block is limited.

To improve flash endurance and lifetime, FTL uses wear

leveling (WL) to evenly wear all the flash blocks within a flash

device so that no block will be worn out faster than others

(detailed in Section II). However, the I/O workloads served

by the flash based storage servers are imbalanced, which incur

wear imbalance among flash servers. For example, Facebook’s

distributed key-value (KV) store workload analysis [7] reports

high access skew and time varying workload patterns. The

flash devices associated with heavily loaded servers serve more

writes and perform more GCs, and thus wear out faster than

others in a deployment. The maintenance of SSD devices

raises many concerns. For instance, any maintenance required

by the storage devices may require taking the entire flash

server offline. This not only incurs administrative cost but also

performance degradation, especially when SSDs are crucial,

e.g., for burst buffer I/O nodes performance [8]. Non-uniform

I/O workload, coupled with wear imbalance, also impact write

performance because frequent GCs in flash servers with high

utilization cause overall system slow down.

Moreover, wear imbalance worsens when fault tolerant or

data redundancy schemes such as replication (REP) or erasure

coding [9], [10], [11] (EC) are applied in a flash cluster. This

is mainly because storing extra redundant data generates more

writes, which in turn severely impact flash endurance.

Motivational Study. To quantify the impact of non-uniform

write intensity on the SSD erasure count, we built a distributed



flash-based KV store that maps data to a 50-node cluster

using consistent hashing [12]. Each node stores data locally

in an SSD device that is simulated using FlashSim [13]. We

applied two kinds of redundancy policies separately: REP with

replication level r = 3, and EC with RS (6,4) encoding [14].

We measure total erasure count under YCSB workload [15]

with Zipf-like access pattern (Y CSB−zipf ), and two block-

level traces from MSR-Cambridge data center servers [16],

namely, prn 0 and proj 0.

Figures 1(a) and 1(b) show the sorted erasure count distri-

bution under REP and EC, respectively. The largest erasure

count is 4× more than the smallest erasure count for proj 0,

and 3× for both prn 0 and Y CSB−zipf under REP. Under

EC, the largest erasure count is 12× more than the smallest

erasure count for Y CSB − zipf , and 3× for the other two

workloads. These results show that the erasure counts are

highly skewed among flash servers both under REP and EC

schemes. Moreover, REP experiences almost 2× more erasure

counts than EC.

To address the challenge of balancing wear across flash

servers, many researchers take inspiration from data migra-

tion [17], [18], [19]. For example, EDM [19] is a data

migration-based wear balancing algorithm. It moves data from

the flash servers with higher erasure count to the ones with

lower erasure count for balancing the wear speeds. However,

the extra writes generated by data migration create additional

overhead, which incurs a considerable write amplification

overhead and consequently causes more GCs and significant

extra erasure count to the flash cluster. Moreover, the redun-

dancy policies are completely ignored during wear balancing.

However, we observed that the redundancy policies can pro-

vide useful information that can be leveraged to improve wear

balance and flash lifetime, as well as performance.

Contributions. To solve the problems of multi-server wear

imbalance, we propose a practical and efficient global wear

balancing technique, Chameleon. Chameleon quickly detects

the presence of erasure imbalance in a flash cluster. The goal

is to balance the erasure count and improve both lifetime and

performance of the flash cluster.

Specifically, this paper makes the following contributions:

• We exploit two redundancy policies–REP and EC–to

help improve wear balance and flash lifetime, while also

improving performance.

• We take advantages of the out-of-place update feature of

flash memory by directly offloading the writes/updates

across flash servers instead of moving data across flash

servers to mitigate extra-wear cost, which includes late

replicating (Late REP), late encoding (Late EC), and

endurance aware write offloading (EWO).

• We provide two adaptive wear-balancing algorithms, re-

dundancy policy transition (ARPT) and Hot/Cold data

swapping (HCDS), coupled with write offloading and

redundancy policies to balance the erasure count and

improve both lifetime and performance of a flash cluster.

• We integrate our Chameleon emulator with a distributed

flash-based KV store application. Emulation results on

real-world workloads show that Chameleon outperforms

the state-of-the-art data migration based wear balancing

technique, reducing up to 81% wear variance while

improving the write performance by up to 33%.

II. RELATED WORK

Flash endurance A large body of work has examined flash

endurance [20], [21], [22], [23]. Techniques such as log-

structured caching [23], inclusion of combining multiple bad

blocks into virtual healthy blocks [22] have been explored

to improve the lifetime of flash devices. These works are

orthogonal and complementary to Chameleon.

Intradisk wear leveling Dynamic [24], [25] techniques aim

to achieve a good wear evenness while keeping the overhead

low. Similarly, static wear leveling techniques [26], [27], [22],

[28] move cold data to the blocks with higher erasure counts,

thereby improving the even spread of wear. Chameleon lever-

ages such approaches for extending the lifetime of individual

SSDs in its target distributed setting.

Interdisk wear leveling Application of SSD arrays in enter-

prise data-intensive applications is growing. In such an envi-

ronment, we have observed significant variance in number of

writes and merge operations that are sent to individual SSDs.

Recent work [29] manages EC stripes to increase reliability

and operational lifetime of such flash memory-based storage

systems, and uses a log-structured approach that does not need

explicit wear balancing as data is appended and not updated in

place. In contrast, EDM [30] also targets SSD arrays but use

data migration to achieve wear balance across the SSDs in the

array. SWANS [31] dynamically monitors the variance of write

intensity across the array and redistributes writes based only on

the number of writes that an SSD has received to prolong the

SSD arrays’ service life. These methods share with Chameleon

the goal of wear leveling across an SSD array, however unlike

them Chameleon considers the role of redundant policies at

various storage hierarchy and their impact on overall wear

balancing.

Distributed flash storage systems FAWN [3] uses small

amounts of local flash storage across a number of low-

power resource-constrained nodes to enable a consistent and

replicated key-value storage system. CORFU [6] extends the

local log-structured design by organizing the entire cluster of

SSDs as a global shared log. Both of these systems utilize

homogeneous nodes and replication for high availability. Other

works [32], [33], [34], [35] focuses on tiered storage to

reduce the load on flash devices. Similarly, [36], [37] use data

partitioning to evenly distribute load. In contrast, Chameleon

focuses on EC storage solutions, which offer higher storage

efficiency and exploits the interactions between the storage

hierarchy to improve overall flash lifetime in flash-based

clusters.

III. DESIGN OF CHAMELEON

Chameleon is aimed to addresses challenges arising from

modern I/O workloads that exhibit high skewness across

distributed flash servers. If a flash cluster does not implement
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Fig. 2: Chameleon system.

server-level wear balancing, a flash server with high write

intensity can have huge erasure counts and be worn out, while

other flash servers are underutilized. This uneven use will

trigger degraded performance, and eventual maintenance and

downtime that would affect overall system performance and

availability.

Chameleon is designed to balance the wear among different

flash servers with the goal of: (1) reducing the unnecessary ad-

ministration cost of replacing worn-out or failed flash devices;

(2) improving the average lifespan of all flash devices; and

(3) improving performance especially for write operations.

We first describe the framework of Chameleon in Sec-

tion III-A followed by two adaptive wear-balancing algorithms

detailed in Section III-B. The mapping table is discussed in

Section III-C.

A. Overview of Chameleon architecture

Figure 2(a) shows an overview of Chameleon architecture

comprising four modules: flash monitor, wear balancer, map-

ping table, and client library. Instances of Flash monitor and

wear balancer are distributed across the flash-based storage

servers (called flash servers). These components monitor and

balance the wear of the whole cluster. Chameleon keeps track

of objects related metadata (e.g., location and popularity)

and stores the metadata in a distributed database as a dis-

tributed mapping table. The use of distributed database helps

Chameleon scale as needed. The Client library provides a basic

interface for users to read and write data to flash servers.

Read or write requests are sent to Chameleon instances that

determine the location of the flash devices for serving the

requests.

Flash monitor monitors the statistics (i.e. , erasure count and

flash space utilization) of flash devices, and sends them to

the wear balancer. In our current implementation, Chameleon

assumes the host has full control over garbage collection (GC)

as provided by open-channel SSDs [38]. The argument behind

moving GC management from the flash to the host is that the

host has better overall knowledge (e.g., total erasure count)

that offers both better performance and more optimization

opportunities, compared to the individual device FTL [39]. We

focus on open-channel SSDs, as more and more of such de-

vices are being introduced to the market, e.g., LightNVM [40].

Thus, by focusing on open-channel SSDs we can optimize

both the current available components, as well as a growing

number of components that will become available in the near

future.

Wear balancer is responsible for balancing the wear of the

whole cluster. Balancer has two major components as shown

in Figure 2(b): (1) An adaptive redundancy policy transition

(ARPT) module that dynamically converts data redundancy

and adapts to workload changes for balancing the wear while

ensuring good performance and low erasure overhead. (2) A

data swapping module that swaps data between the servers

with higher erasure counts and servers with lower erasure

counts to further improve wear balance.

Mapping table keeps track of the updates made to the

metadata when data object’s addresses and redundancy policies

are changed during the balancing process. The table stores

objects’ metadata, such as object’s state, popularity, and lo-

cation. It also keeps track of the object access history (i.e. ,

popularity) to facilitate wear balancing. Mapping table is kept

in a distributed database to avoid memory overhead.

B. Adaptive wear balancing algorithms

In this section, we describe two wear balancing algorithms

used by Chameleon: (1) Adaptive redundancy policy transition

(ARPT) algorithm, and (2) Hot/cold data swapping (HCDS)

algorithm.

ARPT adopts a hot/cold data segregation approach by

leveraging: (1) REP to store a small fraction of mostly

frequently updated data (write hot data) to provide overall

low I/O latency for the system; and (2) EC to encode all

the remaining relatively cold data to realize a low erasure

overhead. Moreover, ARPT dynamically adapts to workload

changes by using late-REP or late-EC (§III-B1) to switch

data state between two redundancy schemes and remap data

for balancing the wear of whole cluster with low overhead.

Furthermore, HCDS is used to swap hot and cold data between

servers with higher erasure counts with the ones with lower

erasure counts to further improve the wear balance.

1) Adaptive redundancy policy transition (ARPT):

Chameleon tracks erasure counts to decide when the wear

balancing process should be triggered. We define the wear

variance σ as the standard deviation of erasure counts. If the

system develops significant wear imbalance—indicated by σ
> σARPT , where σARPT is a preset wear variance threshold



Algorithm 1: Adaptive redundancy policy transition.

Input: σ: cluster wear variance, σARPT : wear variance threshold, `hot: object

popularity threshold

Require: σ > σARPT

Ensure: σ <= σcARPT
1: // Step 1, Screen candidates from each server

2: for each object obji that is in flash cluster do

3: if obj
−

popularity(obji) >= `hot && obji is neither in REP nor late-REP

state then

4: //Convert its’redundancy scheme to late-REP

5: Convert
−

object
−

state(obji, late-REP)

6: end if

7: if obj
−

popularity(obji) < `hot && obji is neither in EC nor late-EC state

then

8: //Convert its’redundancy scheme to late-EC

9: Convert
−

object
−

state(obji, late-EC)

10: end if

11: end for

12: // Step 2, Rearrange candidates among nodes

13: while σ > σARPT do

14: X(x1, x2, x3) � extract servers with MIN erasure counts

15: Y (y1, y2, y3, y4, y5, y6) � extract servers with MAX erasure counts

16: obji � Get
−

hottest
−

candidate (from step 1)

17: objj � Get
−

coldes
−

candidate (from step 1)

18: Map
−

object
−

to(obji, X)

19: Map
−

object
−

to(objj , Y)

20: σ � Estimate wear variance

21: end while

(Table I)—the balancing process is triggered periodically until

the wear variance drops below the threshold.

Moreover, Chameleon also records the object write heat

changes. Each object is classified as either hot or cold based

on their write heat changes and the object’s state switches

between REP and EC.

Chameleon performs a periodic scan through all the repli-

cated data for “cooled down” data and convert such data’s

redundancy policy from REP to EC, a process denoted as

downgrade. Similarly, encoded data is also scanned for new

hot data and these new hot data’s redundancy policy is

switched from EC to REP, denoted as upgrade.

Late-EC & Late-REP The additional erasure count caused

during downgrade/upgrade operations is nontrivial. The down-

grade operation requires network transfers of the replicated

objects from different locations to encode them into RS code,

along with invalidation of the old replicated objects. Upgrade

operation needs to retrieve the data stripes from different

locations to k-way replicate them and invalidate the old stripes.

Both downgrade and upgrade operations will incur network

overhead and extra erasure cycles. To mitigate this, Chameleon

implements two additional optimizations, late-REP or late-EC,

to support downgrade/upgrade with low overhead. Here, the

conversion due to upgrade and downgrade are delayed until

the next update, which not only reduces conversion overhead

but also avoids unnecessary conversions, such as, a downgrade

followed by an upgrade for the same data.

Downgrade/upgrade operations are delayed as long as the

wear variance remains tolerable. The late policies trades-

off the probability of wear imbalance with network traffic

overhead. To do this, we exploit the out-of-place update feature

of flash memory by delaying the redundancy policy transition

until clients issue the write/update requests to the objects

whose redundancy policies need to be converted. Then, we

TABLE I: Terminology & List of Acronyms.

Acronym Description

REP Replication

EC Erasure coding

ARPT Adaptive redundancy policy transition

HCDS Hot cold data swapping

EWO Endurance aware write offloading

Downgrade Conversion from REP to EC

Upgrade Conversion from EC to REP

Late-REP Late replicating

Late-EC Late erasure coding

σ Standard deviation of erasure counts

σARPT Wear variance threshold that triggers ARPT

`hot Popularity threshold

wj Number of writes to the object during epoch j.

pk Write heat of the object at the end of epoch k

µ Utilization of a victim block that needs to be cleaned

Bp Number of pages per block

Wt Number of page writes during a certain epoch t.

Et Block erasure counts during epoch t

σHCDS Wear variance threshold that triggers HCDS

directly convert the requested data into the desired redundancy

policy state (replicas or EC stripes) and re-distributes them

to their respective destinations. Thus, the network traffic

overhead can be reduced and the number of extra writes during

redundancy transition process are mitigated.

As shown in Figure 2(b), we define two kinds of states

for objects: redundancy states which contain REP and EC,

and intermediate states that contain late REP, late EC, REP-

EWO, and EC-EWO (detailed in III-B2). Figure 2(b) shows

the redundancy policy transition of an object. As the write

heat of an object increases, the object either stays in REP

state or is converted from EC to late REP state by ARPT. The

object stays in the late REP state until the next write/update

is received and the state is changed to REP. Similarly, if the

write heat of an object decreases, its state either stays in EC or

is converted to late EC state if the current state is not EC. The

state will be eventually converted to an encoded state upon

next write/update.

Specifically, if object obji’s popularity is greater than a

predefined threshold (`hot) denoted as hot object, and its state

is neither REP nor late-REP, obji’s state will be converted to

late-REP. In contrast, if object obji’s popularity is smaller than

`hot denoted as cold object, and its state is neither EC nor

late-EC, the state will be converted to late-EC. Here, object

popularity can be calculated by using Equation 1.

We use an exponential decay function [19] to record the

write heat of an object. For a given object i, the time duration

from the time when the object i is created to the present time

is split into k + 1 epochs, epoch 0, . . . , epochk. We define the

popularity of each object as follows:

pk =

k∑

j=0

wj

2k−j
, (1)

where wj denotes the number of writes that access the

object during an epoch j. pk denotes the write heat of the

object at the end of epoch k.

Remapping A key challenge is to determine where to store

the converted replicas or EC stripes after redundancy transition



to ensure a good wear balance across different flash servers.

The wear balancing process uses an effective endurance-aware

greedy algorithm. As shown in lines 1 to 11 of Algorithm 1,

Chameleon first screens candidates whose popularity state

changes from hot to cold by sorting objects based on their

popularly.

During upgrade, Chameleon’s greedy algorithm iteratively

re-distributes the k (where k = 3) replicas of hottest candidate

object to the flash servers with the lowest erasure count as

shown in lines 11 to 21, the replicas of obji are mapped to

server array X(x1, x2, x3). While during downgrade, the n
(where n = 6) stripes of coldest candidate object are remapped

to the flash servers with the highest erasure count as shown in

lines 11 to 21, the stripes of objj are mapped to server array

Y (y1, y2, y3, y4, y5, y6).

To estimate the erasure count caused by a specific number

of writes, we first define the erasure cost for flash memory as

1− µ according to [41], [42], where µ is the utilization of a

victim block that needs to be cleaned during the GC process.

That is, the erasure cost is the amount of valid pages µ that

need to be rewritten per victim block of new space claimed

(1-µ). Let Bp be the number of pages per block and Wt be the

number of page writes during a certain epoch t. Then, after

GC starts, the approximation for block erasure counts caused

by Wt page writes during epoch t is:

Et =
Wt

Bp × (1− µ)
(2)

At the end of each iteration, we estimate the new cluster

wear variance σ. If σ <= σARPT , ARPT will stop the

iteration. To estimate the new σ, we first estimate the new

erasure count of each server x in array X after re-mapping

obji, as Ex: Ex = Ex + E(obji), where E(obji) can be

calculated by using Equation 2. While the new erasure count

of each server y in array Y after re-mapping objj can be

estimated as Ey: Ey = Ey + E(objj), where E(objj) can

be calculated by using Equation 2.

Algorithm 2: Hot/cold data swapping.

Require: σ > σHCDS

Ensure: σ <= σHCDS

1: while σ > σcHCDS
do

2: x � extract server with max erase cycles

3: y � extract server with min erase cycles

4: obji � Get
−

hottest
−

candidate from x

5: objj � Get
−

coldest
−

candidate from y

6: Map
−

object
−

to(obji, y)

7: Map
−

object
−

to(objj , x)

8: σ � Estimate wear variance

9: end while

2) Hot/cold data swapping (HCDS): To further improve

wear balance, Chameleon uses data swapping to exchange the

storage location of hot replicas and cold EC stripes. As shown

in Algorithm 2, Chameleon first selects two servers, server x
with highest erasure cycles and server y with lowest erasure

cycles. Then, the coldest object obji from x and the hottest

objects objj from server y are exchanged until their erasure
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Fig. 3: Chameleon’s mapping table.

count difference (σ) is less than a preset threshold σHCDS

(Table I).

After we map obji to server y, we estimate its new erasure

count as Ey: Ey = Ey + E(obji), where E(obji) can be

calculated by using Equation 2. Similarly, the new erasure

count of server x is given by Ex: Ex = Ex+E(objj). The data

swapping process stops when the predefined erasure variance

threshold σ <= σHCDS is met.

Endurance-aware write offloading (EWO): To minimize

the network traffic and wear balancing overhead, Chameleon

offloads the writes/updates to the replicas or stripes to their

destination servers instead of migrating data via bulk data

transfer through the network. Incoming writes/updates trigger

the data mapping change eventually.

As shown in Figure 2(b), the hot/cold data swapping module

swaps the hot and cold data from the highly loaded (in terms of

erasures) server to lightly loaded server using endurance-aware

write offloading. There are two intermediate states: REP-EWO

and EC-EWO. As seen in the figure, a replica is selected to

be exchanged with a EC-stripe. It will first be converted to

the intermediate state REP-EWO until the next write/update

is received and the state is changed to REP. Similarly, if an

encoded stripe is chosen to swap with a replica, its state

is converted to EC-EWO state. The state will be eventually

converted to the EC state upon next write/update.

Ideally, EWO can offload all the candidate replicas or stripes

to their destination servers. However, there is rarely accessed

cold data that has not been accessed for a long period. For

such data, we trade off network traffic overhead with better

wear balancing by migrating the cold stripes to the destination

servers.

C. Mapping table

The data mapping relationship from client to flash servers

is changed dynamically. Different versions of the same data

can be stored on multiple different locations because of redun-

dancy scheme conversion and data swapping. Chameleon must



ensure that reads always go to the location holding the latest

version of the data. To ensure read correctness, Chameleon

uses a mapping table to efficiently manage the objects whose

redundancy scheme and addresses have been changed during

wear balancing process as shown in Figure 3.

Source/Destination server array: Chameleon provides two

levels of indirection for locating servers so as to reduce meta-

data overhead while maintaining read and write correctness.

For a given Obji, the first level indirection indicates the former

data host, i.e., the source server array for intermediate states,

e.g. late-EC, late-REP, EC-EWO, or REP-EWO state. The

second level indirection represents the object’s destination

server array for intermediate sates or its current host for

redundancy states, e.g. REP or EC state.

Assume Chameleon monitors the cluster wear variance

in a fixed time interval, denoted as epoch. As shown in

figure 3, during epoch 0, Obj0 is selected for redundancy

policy transition from EC to REP. Obj0’s state is late-REP,

which means that Chameleon will wait until an update/write

request accesses Obj0. When a write request accesses Obj0,

Chameleon directly replicates the request data and distributes

its R replicas on the associated destination servers denoted as

array D node arr and then changes Obj0’s redundancy state

to REP.

For a read request, if the requested object’s state is an

intermediate state, e.g. late-EC, late-REP, EC-EWO, or REP-

EWO state, Chameleon sends the request to the object’s source

server. The source server is denoted as the array S Node arr.
and holds the latest version of the data as shown in Figure 3.

Otherwise, read requests will be sent to the object’s destination

servers.

Compaction As mentioned before, to reduce network traffic

during the wear balancing process, Chameleon uses late-

EC/REP, and EWO techniques to make a compromise between

network traffic and the risk of temporary wear imbalance

by waiting for an update request to the state change object.

However, this wait can be for a very long time especially for

cold data. Moreover, even for a hot object, there may not be an

update request to such an object during an epoch as workloads

are unpredictable.

As shown in Figure 3, a hot Obj0 is selected to convert

its redundancy scheme from EC to REP during epoch 0, but

until epoch 3, there is still no updates to Obj0. So in the

epoch 4, Chameleon classifies the object as cold data and

converts its redundancy policy from REP to EC. Chameleon

creates a metadata object with version 4 for Obj0, and appends

the metadata to Obj0’s epoch log. In this case, Chameleon can

keep track of each converted objects’ state/location changes for

failure recovery. However, epoch log would incur considerable

memory overhead since epoch log increases with number of

wear balancing process and the amount of involved objects.

Chameleon uses compaction to combine epoch log for each

remapped object to reduce memory overhead. As shown in

Figure 3, the metadata object associated with Obj0 is updated

from epoch version 0 to epoch version 4. The object’s state

TABLE II: SSD parameters.

Page size 4KB

Block size 256KB

Read latency 25us

Write latency 200us

Erase latency 1.5ms

Over-provisioned space 15%

is marked as EC since till epoch 3, there is no update to

convert the state from late EC to REP. This means that Obj0
is still encoded as stripes stored on its source destination

array S Node arr.. Thus, in epoch 4, the object’s source

destination array S Node arr. becomes its destination array

as shown in Figure 3.

Consequently, Chameleon only maintains a single updated

metadata object for the current epoch version, which not only

ensures the correctness of R/W requests but also can mitigate

matadata overhead.

IV. EVALUATION

A. Implementation

We have implemented a prototype emulator of Chameleon

using 16k lines of C++ code. We built a KV-store from

scratch as a test application. We map data to servers by using

a consistent hash-based data distribution algorithm that dis-

tributes data evenly across participating servers [12]. The hash

function used in our experiments is FVN-a1 [43]. Each trace

record maps to a logical object, which corresponds to a unique

object ID calculated by using the consistent hash function.

The logical object is then stored in the appropriate server by

consulting the consistent hash table. We use ISA-L [14] for

encoding and decoding operations. The Intel ISA-L library

provides a highly optimized implementation of Reed-Solomon

codes that significantly decreases the time taken for encoding

and decoding operations. Specifically, we implemented our

Chameleon as follows:

Flash server and flash cluster We emulate a large flash

cluster by running multiple instances of our SSD simulator

as flash server nodes. We use Flashsim [13] to simulate the

SSD behavior as Flashsim can accurately show the block erase

cycles. For all of our tests, we use an evaluation testbed with

50 flash server nodes. Each flash server node is equipped

with one SSD that is simulated by FlashSim. To improve the

performance especially write performance, we built a local log

on top of SSD simulator. All the writes are appended to tail of

the log. Table II summarizes the parameters that are commonly

used to simulate SSD.

Flash monitor runs on each flash server, monitors the statistics

of SSDs, and sends them to the wear balancer. We modified

Flashsim by adding a flash statistics collector to the code. For

connectivity between flash server nodes, we integrate Google

Protocol Buffer [44] in Flashsim to facilitate communication,

such as protocol parsing and messaging.

Wear balancer and mapping table are also implemented

along with flash monitor on each flash server. We integrated

ZooKeeper [45] in our KV-store as a distributed coordination



TABLE III: Trace characteristics.

Parameters ycsb-zipf mds-0 web-1 usr-0 hm-0

Reqs. cnt 1.2M 1.3M 1.3M 2.2M 4.0M

Dataset(GB) 10.4 3.1 3.8 2.5 1.9

Reqs. Data(GB) 55 44 18 194 135

Write ratio 81.1% 93.2% 76.9% 83.6% 86.6%

TABLE IV: Test schemes.

Schemes Technique details

Chameleon Implement two wear balancing techniques: ARPT and HCDS

EDM Implement a data migration based wear balancing technique

REP-baseline Apply only REP without any wear balancing technique

EC-baseline Apply only EC without any wear balancing technique

REP+EC-baseline Apply Hybrid REP/EC without any wear balancing technique

service. One flash server is chosen as a coordinator. The wear

balancer running on the coordinator node gathers statistics

of each flash server, such as the flash space utilization and

erasure count by exchanging the heartbeat messages with

the flash monitor running on each flash server. We installed

MySQL on the flash cluster as a metadata service for storing

the mapping table. Before performing wear balancing, the

balancer running on the coordinator node first requests object

popularity statistics from the mapping table. After wear bal-

ancing, the coordinator updates the metadata changes related

to the remapped objects to the mapping table.

Client library provides a basic API to read/write the data

to flash cluster and to choose between REP or EC as initial

redundancy policy. For EC, the data is split into several data

stripes and encoded with few parity stripes. Throughout our

evaluation, we use RS (6,4) for EC (4 data stripes and 2 parity

stripes) and 3-way replication for REP.

B. Experimental Methodology

1) Traces: We use two kinds of workloads for our tests:

YCSB workload with Zipf-like access pattern [15] and

four block-level traces from MSR-Cambridge data center

servers [16]: Y CSB zipf , mds 0, web 1, usr 0, and hm 0.

YCSB trace is generated by YCSB benchmark which is often

used to evaluate the performance of different key-value stores

and cloud serving stores [15]; MSR traces are collected at the

block device level from Microsoft Cambridge.Table III shows

the details of trace characteristics, such as, total request count

(Reqs. cnt), total dataset size (Dataset (GB)), total R/W request

data (Reqs. Data(GB)), and write ratio.

2) Evaluated Schemes: We evaluated Chameleon by com-

paring it with multiple different schemes as shown in Table IV.

To compare the state-of-art redundancy techniques, we imple-

mented a hybrid REP/EC baseline scheme named REP+EC-

baseline without using any wear balancing technique, similar

to HDFS-RAID [46]. REP+EC-baseline replicates recently

created data, and converts cold date from REP to EC. We also

tested other two baselines schemes that applies only REP and

only EC separately without using any wear leveling, denoted

as REP-baseline and EC-baseline.

To compare the state-of-art wear balancing technique, we

implemented and evaluated a data migration based wear bal-

ancing technique called EDM [19](detailed in II). Note that
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Fig. 4: Wear variance.

EDM does not consider the impact of redundancy schemes

on wear balancing, so we only applied a single redundancy

scheme to EDM scheme, either REP or EC.

C. Experimental Results

1) Wear Balance: To evaluate the wear variance of flash

cluster, we calculate the standard deviation of the total erasure

counts along with the average erasure count across 50 flash

servers. Figure 4 shows the results of using three baseline

redundancy schemes and two wear balancing schemes. The Y-

axis shows the average erasure counts across 50 flash servers.

Error bars represent one standard deviation.

First consider the results of three baseline schemes without

using wear balancing algorithm as shown in Figure 4(a).

Among these three baseline schemes, EC-baseline’s standard

deviation error bars were much smaller than that of the two

baseline schemes. This is mainly because EC naturally reduces

the storage overhead by eliminating redundant copies and EC

can distribute data more evenly than replication since we use

RS(6, 4) for EC while 3-way replication for REP. REP+EC-

baseline’s standard deviation errors were almost similar to that

of REP-baseline. This is because REP+EC-baseline replicates

all the newly created data and converts replicas to stripes only

after they are cool down.

To compare Chameleon with EDM in terms of balancing the

erasure count across 50 servers, we applied EC for the request

data and evaluated EDM scheme and Chameleon scheme

respectively. The reason we chose EC is that EC can achieve a

smaller wear variance than both REP and REP+EC-baseline as

shown in Figure 4(a). As shown in Figure 4(b), although EDM

did improve the deviation of erasure counts, Chameleon signif-

icantly outperformed EDM under all workloads. For example,

the standard deviation for the Chameleon scheme was at most

˜1,000 under workload Hm 0 while the standard deviations

were 1,880 and 2,316 for EDM and EC-baseline respectively

as shown in Figure 4(b). For the two workloads, Web 1 and
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Fig. 5: Flash endurance.

YCSB zipf, which exhibit relatively smaller standard deviation

error bars compared to others, Chameleon also delivered a

better wear balance compared with EDM. In particular, its

standard deviations were 162 and 704 under workloads Web 1

and YCSB zipf respectively while that of the EDM were 190

and 876, respectively.

Overall, Chameleon can reduce wear variance by 52%

on average and at-most 81%, compared to EC-baseline.

Chameleon can reduce the wear variance by 43% on average

and at-most 70%, compared to EDM.

2) Flash endurance: To evaluate flash endurance, we cal-

culate the aggregate erase cycles for all flash servers. The

results are shown in Figure 5. The Y-axis shows cluster-wise

total erasure counts. As shown, the total erase cycles when

replaying the workload web 1 is relatively lower than that

when replaying others. This is because that workload web 1

has lower amount of write request data than other workloads

as shown in Table III.

As shown in Figure 5(a), we observe that among three

redundancy policies, REP (shown as REP-baseline) has more

erasure count than other two redundancy policies because

REP writes almost 3× more data to the whole cluster and

entails more erasure count. While EC-baseline has the lowest

erasure count since it consumes less storage than REP. The

total erasure count of REP-baseline is ˜2× higher than that of

EC-baseline.

To compare Chameleon with EDM about their compact

on flash endurance across 50 servers, we applied EC for

the request data and evaluated EDM scheme and Chameleon

scheme, respectively, since EC can achieve a smaller total

erasure count than other two redundancy policies, REP and

REP+EC-baseline. Comparing Chameleon with EC-baseline

scheme, we observe that Chameleon has a similar amount

of cluster-wise aggregate block erase cycles with EC-baseline

scheme while EDM has a significant higher total erasure count
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(a) The impact of redundancy scheme on SSD write
latency (normalized to that of REP-baseline).
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(b) SSD write latency under EDM and Chameleon
(normalized to that of Chameleon).

Fig. 6: Write latency.

than both Chameleon and EC-baseline as shown in Figure 5(b).

This is because Chameleon introduces less writes to the

destination servers compared with EDM by using late EC/REP

and EWO techniques. For EDM, the data migration process

introduces significant wear overhead to the flash cluster due

to extra write overhead. As we can see in Figure 5(b), the

block erasure count of EDM is increased by up to ˜20% under

workload Usr 0, Mds 0, and Hm 0 due to data migration.

3) Impact on SSD write latency: We measured the average

write response time in each SSD simulator to see the impact of

wear balancing on write performance as GC has a significant

influence on write performance as shown in Figure 6. Note

that the write latency is measured as the time interval between

SSD simulator receiving a write request and finishing the write

request. Y-axis shows normalized write latency.

The write latency normalized to REP-baseline are shown in

Figure 6(a). As shown, the average write response time when

replaying the workload Web 1 is relatively lower than that

when replaying others. This is because that workload Web 1

have lower amount of write request data than others as shown

in Table III. Moreover, EC-Baseline’s average write response

time is the highest among three redundancy schemes. The

write latency of EC-baseline is 1.12 on average and at-most

1.35 higher than that of REP-baseline. This is because, under

EC, the writes are scattered across multiple servers (e.g., 6 in

RS-(6,4)) at a smaller stripe granularity, while REP performs

writes at a bigger object-level and therefore has a higher

sequentiality of writes. With increasing sequentiality of writes

(Figure 6(a)), the write performance of SSDs is observed to

be improved.

To compare Chameleon with EDM with respect to impact

on write performance, we applied REP for the request data

and evaluated EDM scheme and Chameleon scheme since

REP can achieve a better write performance than both EC

and REP+EC-baseline. Compared to EDM, Chameleon has
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(b) Write amplification under EDM and Chameleon.

Fig. 7: Write amplification.

a better write performance. Chameleon can reduce the write

latency by 25% on average and at-most 33%, compared to

REP-baseline. In contrast, EDM can only reduce the write

latency by 7% on average and at-most 20%, compared to

REP-baseline. This is because Chameleon can achieve a good

wear balance with minimum extra overhead. In contrast, EDM

introduces considerable extra overhead during wear balancing

process.

4) Impact on write amplification: We measured the write

amplification (WA) after GC starts in each SSD simulator

to see the impact of wear balancing on write amplification.

The results are shown in Figure 7. Y-axis shows the write

amplification.

EC-Baseline’s WA is the highest among three redundancy

schemes as shown in Figure 7(a). We compare the WAs of

EC-baseline and REP-baseline. The WA of EC-baseline is

2.11 on average and at-most 2.8, while that of REP-baseline

is 1.4 on average and 1.7 at-most. The reason is the same

as that of write latency: under REP, the writes have higher

sequentiality because REP performs writes at a bigger object-

level while the writes are scattered across multiple servers

(e.g., 6 in RS-(6,4)) at a smaller stripe granularity under EC.

With increasing sequentiality of writes (Figure 7(a)), the WA

of SSDs improved.

Theoretically, write amplification can be defined as 1/(1−
µ), where µ is the utilization of victim block that needs to

be cleaned during GC. That is, to make room for (1-µ) new

writes, µ valid pages need to be rewritten so the total number

of writes is (1 − µ) + µ = 1. Thus, write amplification is

directly affected by the victim block utilization. Redundancy

policy impacts victim blocks utilization by changing the size

and destination of write requests. Moreover, the relationship

between redundancy policy and write amplification is not a

simple linear relationship as shown in Figure 7(a).

To compare Chameleon with EDM about the compact on

WA, we applied REP for the request data and evaluated EDM

scheme and Chameleon scheme since REP can achieve a lower
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Fig. 8: Data state changes over 85 hours under Chameleon by

replaying YCSB-zipf workload.

WA than both EC and REP+EC-baseline. Compared with

EDM, Chameleon has a lower WA. Chameleon can reduce

the WA by 12% on average and at-most 20%, compared

to REP-baseline. While EDM can only reduce the WA by

6% on average and at-most 13%, compared to REP-baseline.

There are several reasons for this behavior. First, Chameleon

achieves a better wear balance distribution, which mitigates

the overall write amplification due to garbage collection. For

one hand, the utilization of hot flash servers is reduced. For the

other hand, Chameleon introduces less writes to the destination

servers compared with EDM.

5) Data state changes over time: As discussed in Sec-

tion III, Chameleon achieves better wear balance by using two

adaptive wear balancing techniques, ARPT and HCDS. ARPT

converts data redundancy polices while HCDS off-loads data

via EWO. Consequently, data has two redundancy states, REP

and EC, and four intermediate states, Late REP, Late EC, REP-

EWO, and EC-EWO.

To see how the data state changes over time, we calculated

the aggregate amount of data in different states individually

for each hour. Figure 8 shows data state changes over 85

hours by replaying workload Y CSB−zipf . Y-axis shows the

percentage of data in different states. As shown, We combine

the REP-EWO and EC-EWO together as EWO state since the

amount of data in REP-EWO state is roughly similar to that

of data in EC-EWO.

First, all the data started with EC state since we applied

EC for all newly created data and after three hours, ARPT

started to convert a small mount of hot data from EC to late

REP and later cover to REP when their update requests come.

During the 5th hour, Chameleon detected that wear imbalance

happened and started HCDS to swap hot data with cold data

for wear balancing. After that we see the data in EWO state

increased up to 20% during the 20th hour and then fluctuated

during the period of the 25th-65th hour. During this period, up

to 20% of data was involved in HCDS for wear balancing. The

slight decrease during this period means that a certain amount

of data was offloaded and covered to a redundancy state.

After the 65th hour, we see a decrease for the amount of

data in EWO state, implying that not only the wear but also the

workload were almost balanced. Moreover, the data involved

in HCDS was almost converted from a intermediate EWO state

to a finial redundancy state.

Overall, we can see the data involved in HCDS was less



than 20% for each hour, while the data involved in ARPT was

less than 5% for each hour. We conclude that only a relative

small amount of data’s popularity changes and HCDS plays a

major role in wear balancing.

V. CONCLUSION

We have presented the design and implementation of

Chameleon, a wear balancer for distributed flash-based storage

cluster. Chameleon aims to improve both the flash endurance

and runtime performance. First, Chameleon takes advantages

of the out-of-place update feature of flash memory by directly

offloading the writes/updates across flash servers instead of

moving data across flash servers to mitigate extra-wear cost.

We implemented several optimizations to this end: late repli-

cating (Late REP), late encoding (Late EC), and endurance

aware write offloading (EWO). Second, Chameleon provides

two adaptive wear balancing algorithms, namely, redundancy

policy transition (ARPT) and Hot/Cold data swapping (HCDS)

to balance the wear distribution across the flash servers,

coupled with write offloading and redundancy policies to

balance the erasure count and improve both lifetime and

performance. Evaluation shows that Chameleon reduces the

wear distribution deviation by up to 81%, while improving

the write performance by up to 33%. In the future, we aim

to realize Chameleon in real flash hardware such as Open-

channel SSD [38] and integrate Chameleon to other distributed

storage types such as distributed file systems.
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