
RAFI: Risk-Aware Failure Identification to Improve the RAS

in Erasure-coded Data Centers

Juntao Fang‡, Shenggang Wan†, and Xubin He§

†School of Computer Science and Technology, Huazhong University of Sci. and Tech., China
‡Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci. and Tech., China

§Department of Computer and Information Sciences, Temple University, USA

{yydfjt, sgwan}@hust.edu.cn, xubin.he@temple.edu

Abstract

Data reliability and availability, and serviceability (RAS)

of erasure-coded data centers are highly affected by data

repair induced by node failures. Compared to the re-

covery phase of the data repair, which is widely studied

and well optimized, the failure identification phase of the

data repair is less investigated. Moreover, in a traditional

failure identification scheme, all chunks share the same

identification time threshold, thus losing opportunities to

further improve the RAS.

To solve this problem, we propose RAFI, a novel risk-

aware failure identification scheme. In RAFI, chunk fail-

ures in stripes experiencing different numbers of failed

chunks are identified using different time thresholds. For

those chunks in a high risk stripe (a stripe with many

failed chunks), a shorter identification time is adopted,

thus improving the overall data reliability and availabil-

ity. For those chunks in a low risk stripe (one with

only a few failed chunks), a longer identification time is

adopted, thus reducing the repair network traffic. There-

fore, the RAS can be improved simultaneously.

We use both simulations and prototyping implementa-

tion to evaluate RAFI. Results collected from extensive

simulations demonstrate the effectiveness and efficiency

of RAFI on improving the RAS. We implement a proto-

type on HDFS to verify the correctness and evaluate the

computational cost of RAFI.

1 Introduction

In large-scale erasure-coded data centers, node failures

are the norm rather than the exception [1]. Those fre-

quent node failures can result in numerous chunk fail-

ures (a chunk is the basic unit to organize data). The RAS

(Reliability, Availability, and Serviceability) of data cen-

ters are highly affected by repairing those failed chunks,

which is known as data repair. Many solutions [2–19]

are proposed to improve the RAS, i.e., reduce data loss,

unavailability, and repair network traffic (a typical repair

cost), through optimizing the data repair. However, ex-

isting solutions typically focus on the recovery phase,

which is from the time when a chunk failure is identi-

fied to the time when the failed chunk is recovered. In

contrast, the identification phase, which is from the time

when a chunk failure occurs to the time when the chunk

failure is identified, has not been explored yet. Conse-

quently, the potential to further improve the RAS is not

fully explored.

Traditionally, the failure identification of a chunk de-

pends on the failure identification of its host node. When

a node fails, its failure is not identified until a certain

time threshold. When the node failure is identified, the

failures of all the chunks on that node are identified, and

the states of those chunks transition to lost. In summary,

all chunks share the same time threshold with nodes in a

traditional failure identification (TFI) scheme.

Under the TFI scheme, it is hard to simultaneously im-

prove the RAS through adjusting the time threshold. On

one hand, higher data reliability and availability could

be achieved by lowering the failure identification time

threshold, because of the shortened data repair time. On

the other hand, the data center might suffer from increas-

ing repair network traffic, because more transient node

failures might be identified. In contrast, by increasing

the failure identification time threshold, the repair net-

work traffic could be reduced but the data reliability and

availability might be suffer.

In this paper, we posit that the RAS can be simulta-

neously improved through optimizing the identification

phase. This is rooted in the following dedicated observa-

tion on stripes. Each stripe consists of data chunks and

parity chunks generated from those data chunks. A stripe

is the basic unit for ensuring data reliability and avail-

ability. According to the number of failed chunks in a

stripe, failed stripes can be classified into two types. One

is a stripe which has many failed chunks, e.g., by default

two or more failed chunks in a stripe with three parity

chunks. This type of failed stripes is referred to as a high

risk stripe. The other is referred to as a low risk stripe,

which has a few failed chunks, e.g., by default one failed

chunk in a stripe with three parity chunks. The more

failed chunks a stripe has, the lower the data reliability

and availability of the stripe are. Hence, most of the data

loss and unavailability occur in high risk stripes. On the

other hand, low risk stripes are much more common than

high risk stripes, and thus induce most of the repair net-

work traffic.

There already exist solutions that improve the RAS in

the failure recovery phase, are rooted in being aware of

the risk of stripes, e.g., prioritizing the recovery of the

chunks in the stripes with multiple lost chunks [3, 7], or

canceling the recovery of the chunks in the stripes with

a few lost chunks [14]. Inspired by these approaches,

we propose a novel Risk-Aware Failure Identification

scheme, named RAFI, to improve the RAS of erasure-

coded data centers. More specifically, RAFI is aware

of not only lost chunks, which are focused on the tra-

ditional risk-aware wisdom, but also unidentified failed

chunks, whose failure has not been identified yet. The

key principle of RAFI is that the more failed chunks a

stripe has, the shorter failure identification time thresh-

old those chunks take. As a result, the aforementioned

conflict between the data reliability and availability, and

the repair network traffic is resolved, and the RAS are

improved simultaneously.

We make the following contributions in this paper.

(1) We propose a risk-aware failure identification

scheme RAFI to simultaneously improve the RAS of

erasure-coded data centers. By deploying RAFI, a chunk

failure is identified through multiple independent iden-

tification thresholds. Therefore, for chunks in high risk

stripes, their failure identification is expedited, thus im-

proving the data reliability and availability. For chunks in

low risk stripes, their failure identification is postponed,

thus reducing the repair network traffic. As a result, the

RAS are improved simultaneously.

(2) A simulator is developed to verify our RAFI. The

simulation results demonstrate that RAFI is very effec-

tive and efficient. For example, cooperating with all

types of the state-of-the-art optimizations on the failure

recovery phase, RAFI can further improve the data relia-

bility by a factor of 9.3, and reduce the data unavailability

and repair network traffic by 43% and 36%, respectively,

at the cost of degraded reads increased by 1.7%.

(3) A prototype of RAFI is implemented in HDFS

to verify the correctness and computational cost of our

RAFI. The experimental results demonstrate that, in the

worst case scenario, the computational cost of RAFI is

still negligible.

The rest of this paper is organized as follows: Sec-

tion 2 presents a model to analyze the relevance among

the data reliability, repair network traffic, and failure

identification. In Section 3, we give the design of RAFI.

The results of prototype experiments and simulations are

illustrated in Section 4 and 5, respectively. Section 6

reviews related work on optimizing the failure recovery

phase, and Section 7 concludes the paper.

2 Background and Motivation

In this section, we first define the terms used in this paper.

Then, we review the background materials of erasure-

coded data centers, and summarize the existing methods

to improve the RAS. Finally, we illustrate our motivation

to propose RAFI.

2.1 Terms

Some terms to facilitate our discussion are summarized

as follows.

A failed node: a node whose heartbeats have been lost.

When a node fails, its heartbeat is lost immediately and

it becomes a failed node. In TFI, the failure of a node is

not identified until its heartbeats have been lost for over

a certain time threshold.

A failed chunk: a chunk whose host node fails. When

a node fails, all chunks on that node become failed. A

failed chunk can be further classified into an unidentified

failed chunk and a lost chunk as described below.

An unidentified failed chunk: a failed chunk whose

failure has not been identified yet. Between the chunk

failure occurs and that failure is identified, the chunk is

treated as unidentified failed.

A lost chunk: a failed chunk whose failure is identified.

After the failure of a chunk is identified, the chunk is

treated as lost.

Si and Si+: a stripe Si is a stripe with i lost chunks, and

a stripe Si+ is a stripe with i and more lost chunks.

2.2 Erasure-coded Data Centers

To tolerate node failures, data redundancy techniques are

usually deployed in data centers. Traditional data redun-

dancy techniques, e.g., replication, suffer from high spa-

tial cost. Hence, erasure coding techniques (e.g., Reed-

Solomon coding) which have a much lower spatial cost

compared to replication techniques, are widely used in

data centers [7, 12, 20, 21].

To apply the erasure coding in data centers, data is

first divided into fixed size data chunks. Then, parity

chunks are generated from those data chunks. To prevent

data loss or unavailability from node failures, all those

data and parity chunks together form a stripe and are dis-

tributed to different nodes.

Table 1: Methods to Improve the RAS

Time Threshold ↓ Recovery Penalty Factor ↑ Network Bandwidth ↑ Queue Time ↓
Reliability/Availability ↑ ↑ ↑ ↑
Repair Network Traffic ↑ ↓ → →

Node failures are monitored through frequent heart-

beats, e.g., every 3 seconds [3]. However, a node fail-

ure is not immediately identified when the heartbeats are

lost, because most node failures are transient and those

failed nodes can come back in a short period, e.g., 10

minutes [20]. In order to reduce the repair network traf-

fic, only when the heartbeats have been lost over a certain

time threshold, e.g., 15 minutes [20] or 30 minutes [7],

a node failure is identified (a misidentification occurs if

the node comes back).

Traditionally, when a node failure is identified, all the

chunk failures due to that node failure are treated as iden-

tified failures. Surviving data and parity chunks (on other

nodes) of the lost chunks would be fetched to repair those

lost chunks (data repair), thus ensuring the data availabil-

ity and reliability.

2.3 Methods to Improve the RAS

It is cost-effective to improve the RAS by optimizing the

data repair process. Many solutions are proposed follow-

ing this way which are explained below and also summa-

rized in Table 1.

(1) Decreasing the time threshold reduces the repair

time, and thus improves the reliability; however, it in-

creases the repair network traffic;

(2) In erasure-coded data centers, multiple available

chunks are transmitted over the network to recover lost

chunks in the stripe. Recovery penalty factor is a factor

which is between the amount data transmitted for recov-

ering a stripe Si and the size of a chunk. Decreasing the

recovery penalty factor [2, 4, 5, 7–13, 16, 17, 22, 23] re-

duces the repair time, and thus improves the reliability;

in the meanwhile, it reduces the repair network traffic;

(3) Increasing the network bandwidth [6, 24–26] of

each storage node reduces the repair time, and thus im-

proves the reliability; in the meanwhile, the repair net-

work traffic stays almost the same.

(4) The queue time (waiting for recovery) of failed

stripes is affected by recovery schemes. Giving high pri-

ority to Si (i > 1) [7, 27], the queue time of Si (i > 1)

is decreased, and thus the reliability is improved; in the

meanwhile, this method has little effect on the repair net-

work traffic.

According to the above analysis and simulation results

demonstrated in Figure 9a in Section 5.3, the RAS can-

not be improved simultaneously by adjusting the failure

identification time threshold. Therefore, a novel risk-

aware failure identification scheme RAFI is proposed to

explore the huge potential of simultaneously improving

the RAS within the failure identification phase.

2.4 Motivation

When some nodes fail, many stripes are affected, i.e.,

have failed chunks. Due to the randomized chunk layout,

only a small fraction of those affected stripes have many

failed chunks, and the remaining affected stripes only

have a few failed chunks. Hence, most repair network

traffic is induced by repairing the latter type of stripes.

On the other hand, the failure identification time of an

arbitrary affected stripe having i failed chunks is equal

to the failure identification time of its ith failed chunk,

i.e., all the affected stripes share the same failure identi-

fication time. The stripes with many lost chunks usually

entitle high recovery priority, i.e., a short queuing time.

Hence, the repair time of those stripes are usually dom-

inated by the failure identification time. In contrast, the

stripes with a few identified failed chunks usually have a

long queuing time. Hence, the repair time of those stripes

are usually dominated by the recovery time.

If the failure identification of those two types of stripes

can be handled separately, the RAS of data centers can

be improved simultaneously. More specifically, for the

stripes having many failed chunks, we tune down the fail-

ure identification time threshold of those failed chunks,

and thus improving the data availability and reliability

at the cost of slightly increasing repair network traffic.

For the stripes having a few failed chunks, we tune up

the failure identification time threshold of those failed

chunks, and thus reducing the repair network traffic with-

out significantly reducing data reliability and availability.

More importantly, the benefit induced by the above two

operations would be dominant compared to the associ-

ated cost. Hence, the RAS of data centers can be im-

proved simultaneously.

3 RAFI: Design and Analysis

In this section, we first present the design of RAFI; fol-

lowed by a discussion on the benefit and cost of deploy-

ing RAFI.

timet1 t2 t4 t5

a1

b1

b2

unavaialble chunkavailable chunk lost chunk

t3

T

t6

T

(a) In TFI, a fixed threshold T is used to identify failures. The failure

of chunk a1 is not identified until t4, while two failures of chunks b1

and b2 are not identified until t4 and t5, respectively.

timet1 t2 t4 t5

a1

b1

b2

T1

t3

T2

t6

(b) In RAFI, the failure of chunk a1 is identified through the threshold

T1 at t6, which is later than t4. On the other hand, the failures of

chunks b1 and b2 are identified through the threshold T2 at t3, which

is ahead of t4 and t5.

Figure 1: Identification of chunk failures using TFI and RAFI.

We use three sample chunks, where a1 is a random chunk of a

stripe A while b1 and b2 are two random chunks of a stripe B.

Assume chunk a1 fails at time t1 while chunks b1 and b2 fail

at t1 and t2, respectively.

3.1 Design of RAFI

As we discussed above, the key problem of the traditional

failure identification (TFI) scheme is that all chunks

share the same failure identification time threshold. To

simultaneously improve the RAS, we propose RAFI to

identify chunk failures according to the risk level of their

host stripes and apply different time thresholds accord-

ingly. More specifically, dedicated chunk failure identi-

fication time thresholds are set for stripes in different risk

levels, which are determined by the total failed chunks in

the stripes. For chunks in low risk stripes, long failure

identification time thresholds are adopted, thus reducing

the repair cost. For chunks in high risk stripes, short fail-

ure identification time thresholds are adopted, thus im-

proving the data reliability and availability. As a result,

the RAS are simultaneously improved.

In summary, the key design principle of RAFI is that

the more failed chunks a stripe has, the shorter failure

identification threshold those chunks take. For a failed

chunk in a stripe with i failed chunks, there are at most

i identification thresholds to identify the failure of this

chunk, and the jth (0 < j ≤ i) identification threshold is

described as follows. If there are j failed chunks and the

failure durations of these j failed chunks are all longer

than a preset time threshold Tj, all these j chunk failures

are identified and these chunks are denoted as lost imme-

diately. The state of an unidentified failed chunk in these

j chunks transitions to lost, and a lost chunk in these j

chunks remains lost. The states of the remaining (i− j)

chunks do not transition.

In RAFI, a chunk failure is identified by independent

identification thresholds, which is quite different from

the traditional single identification threshold described

in Section 1. For example, in a (6,3)-coded data cen-

ter, stripe A has one failed chunk and is a low risk stripe,

stripe B has two failed chunks and is a high risk stripe.

A time threshold T1 which is larger than the original time

threshold T is set to identify failures of chunks in the low

risk stripe; while a time threshold T2, which is shorter

than the T is set to identify failures of chunks in the high

risk stripe. As shown in Figure 1, using RAFI, the failure

identification of chunk a1 in the stripe A is postponed;

in the meanwhile, the failure identification of chunks b1

and b2 in the stripe B is expedited.

RAFI is flexible. First, all the time thresholds can be

set independently to get proper trade-offs between the

data reliability and availability, and the repair network

traffic for a certain type of stripes. Second, the identifica-

tion thresholds can be merged to get proper trade-offs be-

tween the RAS and the computation cost of RAFI. When

the time thresholds in all identification thresholds are set

to the same T , RAFI becomes TFI.

3.2 Benefit and Cost

Improving the RAS: Using RAFI, we can independently

set different time thresholds to identify failures. First,

short thresholds are used to expedite the identification

of failed chunks in high risk stripes, thus improving the

data reliability and availability. At the same time, long

thresholds are used to postpone the failure identification

of chunks in low risk stripes, thus reducing the repair

network traffic and improve the serviceability. Because

the identification time is dominant in the repair time of

chunks in high risk stripes, the expedition is effective in

improving the data reliability and availability thus com-

pensates the negative impacts induced by the postpone-

ment. Because most repair network traffic is induced by

recovering chunks in low risk stripes, the repair network

traffic is significantly reduced, even under the consider-

ation of the extra repair network traffic induced by the

expedition, thus improving the serviceability.

Compatibility: Because RAFI focuses on the failure

identification phase, it can work together with existing

optimizations which focus on the failure recovery phase.

Increasing Degraded Reads: Degraded read is an op-

eration to read unavailable but recoverable chunks in a

stripe. Because we postpone the failure identification

of chunks in low risk stripes, more failed chunks might

be generated, thus increasing degraded reads. However,

the simulation results in Section 5 show that degraded

reads increase by less than 1.7% due to RAFI. Because

degraded reads are much fewer than normal reads, the

overhead is very small.

4 Prototyping Evaluation

In this section, we first present the evaluation method-

ology; then we illustrate implementation details of our

prototype RAFI-HDFS; finally we demonstrate results of

prototyping experiments.

4.1 Evaluation Methodology

To verify the effectiveness of RAFI, we propose a hybrid

methodology to comprehensively evaluate RAFI via both

simulation and prototype implementation. The reason is

explained below.

It is difficult to evaluate a technique targeting at the

RAS of data centers because the data loss and unavail-

ability events are very rare and not evenly distributed.

The accuracy problem induced by that uneven distribu-

tion can be mitigated by high accurate simulation, which

is run thousands to millions of iterations, although the

simulator itself might be not that accurate. However,

pure simulation cannot verify the correctness of design

details and might cover fatal defects of the technique.

In our hybrid evaluation, the design details and com-

putational cost of RAFI are verified through prototyping

running on a real distributed storage system; the effec-

tiveness and efficiency of RAFI on the RAS are evaluated

through high accurate Monte-Carlo simulation.

In this section, we evaluate the identification time and

computational cost of RAFI in real world environments.

The simulator and simulation results are discussed in

Section 5.

4.2 RAFI-HDFS

To evaluate the effectiveness of RAFI, we implement

a prototype named RAFI-HDFS on HDFS [27], a rep-

resentative distributed file system widely deployed in

the data centers. Because erasure coding is supported

by HDFS in version 3.0.0, our implementation is based

on HDFS 3.0.0-alpha2. The implementation of RAFI-

HDFS follows the design in Section 3. We only add

about 200 lines of codes to HDFS.

Figure 2 demonstrates the overall architecture of

RAFI-HDFS consisting of two modules: one is a classi-

fication module and the other is an identification module.

The classification module is responsible for convert-

ing the node failures into appropriate input for the iden-

tification thresholds. More specifically, the classification

module receives a node list that contains all failed nodes

and their failure durations from the node monitor mod-

ule. Only those nodes whose failure durations are larger

Node Monitor Module

Classification Module

Identification Module

Recovery Module

(node id, failure duration)

Stripes with new
lost chunk(s)

IT 1

key value

nid1 cid11 cid12 …

nid2 cid21 cid22 …

… … … …

key value

sid1 cid11 cid12 …

sid2 cid21 cid22 …

… … … …

key value

cid1 sid1

cid2 sid2

… …

key value

cid1 nid1

cid2 nid2

… …

node->chunks

chunk->stripe chunk->node

stripe->chunks

IT 2 IT m…

RAFI

query

Existing data structures

node list L1 node list Lm

Figure 2: Architecture of RAFI-HDFS. The right side is exist-

ing data structures which are used in RAFI. The node monitor

module reports failed nodes and their failure durations. The

classification module inserts nodes to different identification

thresholds in the identification module according to their fail-

ure durations. The identification thresholds (IT) in the identifi-

cation module are used to identify chunk failures.

than Ti (1 ≤ i ≤ m) are inserted into the node hash list

Li for the identification threshold (IT) i, thus reducing

the computation cost of that identification threshold. It

is worth noting that the classification module replaces

failed chunk lists with failed node lists. In such a manner,

the memory usage of maintaining the numerous failed

chunks is saved.

The identification module is a universal set of all the

identification thresholds in RAFI. When IT i receives its

node list Li, it begins to calculate the count of failed

chunks in stripes. First, the identification threshold cal-

culates the count of unidentified failed chunks in stripes

through querying the node-chunk mapping table and the

chunk-stripe mapping table, which typically reside in the

main memory of the manager nodes of the data cen-

ters. Second, through querying the stripe-chunk map-

ping table and chunk-node mapping table, the count of

lost chunks is obtained. If the count of failed chunks

(unidentified failed chunks and lost chunks) is larger than

or equal to i, those failed chunks which belong to nodes

in Li, transition to lost.

After working through all identification thresholds, if

new chunk failures are identified, the recovery module

is called to recover stripes containing those lost chunks.

Particularly, for nodes which enter IT 1, the failures of

these nodes are identified and these nodes are removed

from the system at the end of the IT 1.

Complexity. RAFI-HDFS only checks chunks on

failed nodes which newly enter Li to reduce the compu-

tation cost. Assume there are j nodes in Li (2 ≤ i ≤ m)

and there are an average of d chunks to be checked on

5.1 DR-SIM

We developed a simulator called DR-SIM which is writ-

ten in the R language because it easily runs in parallel.

The source code is approximately 1400 lines [29].

Event-driven simulators are widely used to study the

RAS of data centers [14, 20, 30]. However, those simu-

lators cannot be used in our simulations due to the fol-

lowing two reasons. First, some simulators are not open

source, e.g., the Google’s Cell Simulator [20]. Second,

the RAS cannot be all simulated by some simulators.

For example, limited by performance, the data reliabil-

ity cannot be studied by the ds-sim [14]. As a result, we

develop our own simulator, named DR-SIM, to study the

effect of the data repair on the RAS in data centers.

We summarize important features of DR-SIM as fol-

lows. (1) The trade-off between the performance and ac-

curacy of DR-SIM is carefully tuned. A simulation it-

eration (typically represents five years) can be finished

in tens of seconds. Therefore, we run hundreds of thou-

sands iterations for each simulation configuration, to ac-

curately measure the RAS. (2) Many state-of-the-art op-

timizations on the data repair are integrated into DR-

SIM, and important parameters of the data repair are

considered as variants in DR-SIM. Through modifying

the configuration of DR-SIM, we study the effectiveness

and efficiency of RAFI upon various combinations of the

state-of-the-art optimizations under various typical envi-

ronments of the data centers.

Figure 5 shows the architecture of DR-SIM which in-

cludes four modules: a configuration manager, a failure

generator, a repair calculator, and an event collector.

The configuration manager loads parameters used in

the simulations. The parameters are explained as fol-

lows. (1) System parameters: The target erasure-coded

data center consists of N independent storage nodes.

Each node has d chunks. The chunk size is s. (2) Coding

parameters: Data are coded with (k, m) erasure codes,

i.e., k data chunks and m parity chunks are in a stripe.

The k +m chunks in the same stripe are distributed to

k+m distinct nodes. A random placement policy is used

because it is usually adopted in practice. The recovery

penalty factor of Si (1 ≤ i ≤ m) is ri which is between the

amount data transmitted for recovery of Si and s. The re-

covery network bandwidth is b on each node. (3) Failure

parameters: Assume node failure arrivals are indepen-

dent. Let f (x) and F(x) be the probability and cumula-

tive distribution functions of the failure arrivals, respec-

tively. Assume failure durations are independent. Let

g(x) and G(x) be the probability and cumulative distribu-

tion functions of the failure durations, respectively. ρ is

the ratio of permanent node failures to all node failures. τ

denotes the additional proportion of correlated node fail-

ures. (4) Identification parameters: Storage nodes peri-

Configuration
Manager

Failure Generator

Repair Calculator Event Collector

failure events
data loss events,
data unavailability events,
chunk unavailability events,
data repair events

simulation
parameters

Figure 5: Architecture of DR-SIM

odically send heartbeats to dedicated manager nodes, e.g.

the NameNode [27, 31] or the metadata manager [32].

The manager nodes check states of all nodes at regular

time intervals of Th. The time thresholds for identifying

chunk failures are Ti (1 ≤ i ≤ m). (5) Simulation runtime

parameters: Ni denotes the number of iterations. Td is

the simulation duration for each iteration.

The failure generator is responsible for generating fail-

ure arrivals and failure durations of node failures at the

beginning of a simulation iteration. The failure arrivals

are generated according to the distribution function f (x).
Permanent failures and transient failures are generated by

their durations. For the transient failures, their durations

are generated according to the distribution function g(x).
For permanent failures, they are generated according to

the parameter ρ . Technically, failure durations of the per-

manent failures are set to zero (only for handling but not

calculating). In DR-SIM, additional correlated failures

are explicitly generated by adding a random value be-

tween 0 to 120 seconds [20] to existing failure arrivals

according to the parameter τ . It is worth noting that the

comeback of transient failed nodes has been already con-

sidered in DR-SIM.

The repair calculator simulates the data repair process

for lost chunks when failures occur. The repair calcula-

tor identifies the chunk failures according to the Th and Ti

(1 ≤ i ≤ m) and calculates the repair time for lost chunks

based on the recovery network bandwidth, the recovery

penalty factors and the recovery priority. The recovery

processes of lost chunks are scheduled depending on the

number of lost chunks in their stripes. For stripes have

the same number of lost chunks, the repair calculator

uses first come first scheduled rule to manage the recov-

ery of those chunks. Moreover, lost chunks are recovered

in parallel by utilizing all available nodes [33, 34].

The event collector is responsible for collecting data

loss events, data unavailability events, chunk unavail-

ability events, and data repair events. At the end of

each iteration, DR-SIM calculates metrics according to

the collected events. The mean time to data loss in the

whole data center (referred as MTTDL) is the metric to

evaluate the data reliability. All the data loss events are

recorded to calculate the MTTDL. The cumulative un-

available time of all stripes (referred as Tus) is the metric

to evaluate the data availability. All the data unavailabil-

ity events are recorded to calculate the Tus. The total re-

pair network traffic (referred as RNT) is the metric to

evaluate the serviceability. All the data repair events are

recorded to calculate the RNT. The cumulative unavail-

able time of all chunks (referred as Tuc) is the metric to

evaluate the degraded reads. All the chunk unavailabil-

ity events are recorded to calculate the Tuc. The former

three metrics are widely used in evaluation of the RAS in

the data centers [6, 7, 12, 14, 15, 20, 30, 35, 36]. The latter

one is roughly in proportion to the number of degraded

reads. It is worth noting that chunks and stripes are actu-

ally not simulated in DR-SIM under the consideration of

computation complexity. In fact, the cumulative unavail-

ability time of stripes and cumulative unavailability time

of chunks are estimated from the generated node failures

and data repair events.

5.2 Simulation Testbed

Comparisons between RAFI and TFI are made upon the

testbed described as follows.

The following three state-of-the-art optimizations are

always considered in the testbed. (1) The network adopts

CLOS topologies [24–26]. (2) All lost chunks are paral-

lel recovered via using available recovery network band-

width on all nodes. (3) The chunks in stripes with more

lost chunks have the higher priority to be recovered.

Three kinds of erasure codes are chosen in the simu-

lations to understand the sensitivity to different erasure

codes. RS codes are are a set of popular erasure codes

which are widely used in real world distributed storage

systems [12, 20, 21]. Zigzag codes [10] represent MDS

(Maximum Distance Separable) codes with optimal re-

covery penalty factors. LRC codes [7] are representative

non-MDS codes deployed in Windows Azure Storage.

The 1 Gbps network is chosen as the baseline in the

testbed under the consideration of the cost-effectiveness

in the erasure-coded data center, although we have found

that RAFI is more efficient in reducing the RNT under

the 40 Gbps network during studying the sensitivity of

RAFI to the recovery network bandwidth.

Because chunks in low risk stripes are the optimization

objects of both RAFI and Lazy [14], Lazy is considered

in the testbed when we made dedicated comparisons be-

tween these two techniques in Section 5.3.4.

Default values of most parameters used in the simu-

lations are listed in Table 2. The failure arrivals are as-

sumed to be independent and exponentially distributed

with the mean time to failure (MTTF = 7.1 days) [12,20].

The failure durations are assumed to be independent and

Weibull distributed. We get sample values from [20] and

model the failure durations with Weibull(113 seconds,

0.54), which is shown in Figure 6. The model fits well

starting from 0.5 minutes.

In our simulations, to simplify the comparison

Table 2: Symbols and Their Definitions

Symbol Definition Default Value

N # of storage nodes in a data center 1000

d # of chunks on a node 125,000

s Chunk size 128 MB

Th Check interval of node states 5 minutes

b
Recovery network bandwidth 0.1 Gbps

on each node

Td Duration of each iterations 5 years

Ni # of iterations 500,000

1 22 24 26 28 210 212

2
0

4
0

6
0

8
0

1
0
0

Unavailability event duration(seconds)

E
ve

n
ts

(%
)

sample

model

Figure 6: Unavailability Event Duration

complexity, the identification thresholds identification

threshold i (i > 1) are merged to one by sharing the same

threshold value. The features of the erasure codes, and

two time threshold values (one for T1, and the other for Ti

(i> 1)) are represented by an abbreviation, e.g., RS(6,3)-

15-2 denotes a data center employed RS(6,3) with T1 =

15 minutes and T2 = T3 = 2 minutes. r1, r2 and r3 of an

RS(6,3)-coded stripe are 6, 7, and 8, respectively. All

measured metrics including the MTTDL, Tus, RNT and

Tuc, are normalized to that of the RS(6,3)-15-15 (it de-

notes a TFI configuration when the latter two values are

the same). The MTTDL, Tus, and RNT are the metrics to

evaluate the RAS.

5.3 Simulation Results

5.3.1 RAS as Functions of Ti

First of all, we run simulations to find the proper two

threshold values for RAFI. Let T3 = T2 = T1. Figure 9a

illustrates that the data reliability and availability get

worse while the repair network traffic is improved when

T1 increase. The RNT reduces slowly when T1 is larger

than 60 minutes. Thus, T1 of RAFI is set to 60 minutes

in the rest simulations.

Then, to study the impact of T2, let T3 = T2. T2 ranges

from 0.5 to 8 minutes. The results in Figure 9b demon-

strate that RAFI simultaneously improves the RAS in

most configurations. More specifically, the MTTDL is

improved by a factor up to 11. The Tus is reduced by up

to 45%. The RNT is reduced by up to 27%. The RNT

increases with the reduction of T2 because reducing T2

increases the number of S2+, and results in unnecessary

LRC(12,2,2)

M
TT

D
L(

N
or

m
al

iz
ed

)

Zigzag(6,3) RS(6,3) RS(9,3) RS(12,3)

0
1

2
3

10
12

TFI
RAFI14

Erasure Coding Schemes

(a) Reliability

RS(6,3) LRC(12,2,2)
Erasure Coding Schemes

T u
s(

N
o
rm

a
liz

e
d
)

0
2

4
6

8

Zigzag(6,3) RS(9,3) RS(12,3)

TFI
RAFI

(b) Availability

RS(6,3) LRC(12,2,2)
Erasure Coding Schemes

R
N

T(
N

o
rm

a
liz

e
d

)
0

.0
0

.5
1

.0
. 5

Zigzag(6,3) RS(9,3) RS(12,3)

TFI
RAFI
Perm

1
.5

(c) Serviceability

RS(6,3) LRC(12,2,2)

T u
c(

N
o

rm
a

liz
e

d
)

0
.0

0
.4

0
.8

1
.2

Zigzag(6,3) RS(9,3) RS(12,3)

TFI
RAFI

Erasure Coding Schemes

(d) Degraded Reads

LRC(12,2,2)

R
N

T(
N

or
m

al
iz

ed
)

0.
0

0.
5

1.
0

1.
5 5

Zigzag(6,3) RS(6,3) RS(9,3) RS(12,3)

Induced by S1
Induced by S2+

Erasure Coding Schemes

(e) RNT induced by S1 v.s.

RNT induced by S2+.

Figure 7: Impacts of different erasure coding schemes on the RAS. The results are normalized to RS(6,3)-15-15.

0
4

8
1
2

Bandwidth(Mbps)

M
T

T
D

L
(N

o
rm

a
liz

e
d
)

80 60 40 20

RS(6,3)−60−0.5
Zigzag(6,3)−60−0.5

(a) Reliability

0
.5

1
.0

1
.5

2
.0

2
.5

Bandwidth(Mbps)

T u
s(

N
o
rm

a
liz

e
d
)

80 60 40 20

RS(6,3)−60−0.5
Zigzag(6,3)−60-0.5

(b) Availability

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Bandwidth(Mbps)

R
N

T(
N

o
rm

a
liz

e
d
)

80 60 40 20

RS(6,3)−60−0.5
Zigzag(6,3)−60−0.5

(c) Serviceability

1
.0

1
.2

1
.4

1
.6

1.
8

. 8

Bandwidth(Mbps)

T u
c(

N
o
rm

a
liz

e
d
)

80 60 40 20

RS(6,3)−60−0.5
Zigzag(6,3)−60−0.5

(d) Degraded Reads

Figure 8: Impacts of constrained recovery network bandwidth on the RAS. RS(6,3) and Zigzag(6,3) are considered in the simula-

tions. The results are normalized to RS(6,3)-15-15.

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

T1(minutes)

M
T

T
D

L
,
T u

s
a
n
d
 R

N
T(

N
o
rm

a
liz

e
d
) MTTDL

Tus
RNT

7.5 15 30 60 120

(a) The MTTDL, Tus, and RNT

with different T1.

0
.5

0
.7

0
.9

1
.1

T
u

s
 a

n
d
 R

N
T

(N
o
rm

a
liz

e
d
)

T2(minutes)

0.5 1 4 8

0
2

4
6

8
1
0

1
4

MTTDL

Tus

RNT

1
2

2

M
TT

D
L(

N
o
rm

a
liz

e
d
)

(b) The MTTDL, Tus, and RNT with

different T2. T1 is set to 60 minutes.

Figure 9: Impacts of T1 and T2. The erasure coding scheme is

RS(6,3), and the results are normalized to RS(6,3)-15-15.

repair network traffic to repair those S2+. Only when T2

is 8 minutes, which is close to the original T of 15 min-

utes, RAFI does not take effect on the data availability.

From the results, we find that the data reliability and

availability are sensitive to the decrease of T2 but the re-

pair network traffic is not sensitive to the decrease of T2.

As a result, both T2 and T3 are set to 0.5 minutes in the

rest simulations.

5.3.2 RAS as Functions of Erasure Coding Schemes

In this section, we examine the effectiveness and effi-

ciency of RAFI under five typical kinds of erasure coding

schemes, RS(6,3), RS(9,3), RS(12,3), Zigzag(6,3) [10],

and LRC(12,2,2) [7]. These erasure coding schemes rep-

resent various recovery penalty factors. T1, T2 and T3

are 60 minutes, 0.5 minutes and 0.5 minutes, respec-

tively. All results are normalized to RS(6,3)-15-15 and

presented in Figure 7. In general, RAFI can cooperate

with all the five kinds of erasure coding schemes, and si-

multaneously further improve the RAS at the cost of the

slightly increased degraded reads.

Improving Reliability: Figure 7a shows that RAFI

improves the MTTDL of Zigzag(6,3), RS(6,3),

LRC(12,2,2), RS(9,3), and RS(12,3) by a factor of

9.3, 11, 7.7, 9.8, and 7.7, respectively. When the

recovery penalty factor increases, the improvements

diminish a little. The reason is that the higher recovery

penalty factor lengthens the recovery time, thus weakens

the effect of the reduction of the identification time.

Improving Availability: Figure 7b illustrates that

RAFI improves the data availability under various era-

sure coding schemes. The Tus of Zigzag(6,3), RS(6,3),

LRC(12,2,2), RS(9,3), and RS(12,3) is reduced by 43%,

45%, 24%,37%, and 30%, respectively.

Improving Serviceability: Figure 7c shows that RAFI

reduces the RNT under various erasure coding schemes.

The Perm represents the RNT induced only by permanent

node failures. Figure 7e shows the composition of the

RNT. In TFI, over 99% of the RNT is induced by the

repair of S1. In RAFI, about 15%-30% of the RNT is

induced by the repair of S2+.

Degraded Reads: When RAFI postpones the recov-

ery of S1, the amount of unidentified failed chunks in-

creases. Figure 7d shows that the degraded reads in-

crease by 1.7% at most, which is very slight.

5.3.3 RAS as Functions of Recovery Network Band-

width

Network bandwidth is very valuable in the data cen-

ters. In this section, simulations are performed to un-

derstand the effect of RAFI under a limited recovery net-

work bandwidth b. Both RS(6,3) and Zigzag(6,3) codes

are considered in the simulations. T1, T2 and T3 are 60

minutes, 0.5 minutes and 0.5 minutes, respectively. The

simulation results are normalized to RS(6,3)-15-15 and

presented in Figure 8.

Figure 8 shows that the RAS are still improved even

when b is 40 Mbps. However, at the same time, the Tuc

increases by 22%, because a small b significantly extends

the repair time of the lost chunks, thus leads to longer

chunk unavailability time. When b reduces, the reduction

of RNT increases a little.

Table 3: The RAS improvements under 40 Gbps network

Erasure Coding Schemes RS(6,3) Zigzag(6,3)

Improvement of MTTDL 3.4 3.7

Reduction of Tus 54% 56%

Reduction of RNT 79% 86%

40 Gbps network: Nowadays, some data centers are

equipped with 40 Gbps network for each node [26, 37].

In such a scenario, the recovery network bandwidth b is

4 Gbps for each node. Table 3 shows that RAFI still im-

proves the RAS when b is 4 Gbps. When b increases

from 100 Mbps to 4 Gbps, the recovery time reduces.

Because the ratio between the recovery time and the

repair time decreases, the improvement of MTTDL de-

creases. However, when the repair rate increases, there

will be more unnecessary repair network traffic. There-

fore, RAFI is very effective in reducing the repair net-

work traffic.

5.3.4 Comparisons with Lazy

To comprehensively compare RAFI with Lazy, the com-

parisons are made in the form of TFI + Lazy v.s. RAFI +

Lazy v.s. RAFI. RS(6,3) and Zigzag(6,3) codes are con-

sidered in the simulations. Lazy [14] recovers lost chunks

if their host stripes have at least two lost chunks. In TFI +

Lazy, we use the parameters: T1 = T2 = T3 = 15 minutes.

In RAFI + Lazy, T1 = T2 = 15 minutes, T3 = 1 minutes.

In RAFI, T1 = 60 minutes and T2 = T3 = 15 minutes. The

comparison results are shown in Figure 10.

Cooperating with Lazy, compared to TFI, RAFI im-

proves the MTTDL by a factor of 5.1, at the cost of in-

creasing the RNT by 2.5%. Because Lazy even does not

recover some permanent failed chunks, RAFI cannot fur-

ther reduce the RNT.

Compared to TFI + Lazy, RAFI without Lazy increases

the MTTDL by over two orders of magnitude at a higher

RNT cost. An interesting thing is that, RAFI suffers a

much lower increase of the RNT when cooperating with

the Zigzag codes. The reason is that the recovery penalty

factor of a Zigzag(6,3)-coded S1 is only 63% of that of

an RS(6,3)-coded S1. In fact, as mentioned in Section 6,

30 35 40 45 50 55
RNT(TB per day)

M
T

T
D

L
(y

e
a

rs
)

1
0

2
1

0
3

1
0

5

TFI+Lazy+RS

TFI+Lazy+Zigzag
RAFI+Lazy+RS

RAFI+Lazy+Zigzag

RAFI+RS
RAFI+Zigzag

Figure 10: The MTTDL and RNT under TFI+Lazy,

RAFI+Lazy, and RAFI. The erasure coding schemes are

RS(6,3) and Zigzag(6,3). X axis is the repair network traffic, Y

axis is the MTTDL.

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Proportion of Additional Correlated Failures(%)
5 10 15 20 25

T u
s(

N
o
rm

a
liz

e
d
)

RS(6,3)−60−0.5
Zigzag(6,3)−60−0.5

Figure 11: Impact of correlated failures on availability. The

results are normalized to RS(6,3) with no additional correlated

failures.

many codes [6, 7] are proposed to reduce the recovery

penalty factor of stripes with one lost chunk.

5.3.5 Availability under Correlated Failures

Because transient failures may happen concurrently [20],

we desire to see how data availability is affected by cor-

related failures. From Figure 11, we can see that, as

the proportion of additional correlated failures increases,

RAFI still reduces about 40% of the Tus, demonstrating

that RAFI is very resilient to correlated failures.

6 Related Work

Existing solutions which are proposed to improve the

RAS focus on optimizing the failure recovery phase,

such as reducing recovery penalty factors [2, 4, 5, 7–13,

16, 17, 22, 23], improving recovery rates [6, 18, 19], and

risk-aware recovery scheduling [3, 7, 14].

Reducing recovery penalty factors: Both the recov-

ery time and repair network traffic are improved through

reducing the recovery penalty factors of erasure codes.

Two types of techniques are proposed. One is to de-

sign MDS and non-MDS erasure codes with low recov-

ery penalty factors [2, 6–12, 15–17, 38]. The other is to

design recovery algorithms to reduce recovery penalty

factors of existing erasure codes [4, 5, 13].

Regenerating Codes [22, 23, 38, 39] are a family of

MDS codes. The recovery penalty factors of the Regen-

erating Codes are much lower than that of the traditional

RS (Reed-Solomon) codes [40]. However, the Regener-

ating Codes are not systematic codes, thus suffer from

high read cost. To maintain low recovery penalty factors

and read cost, systematic MDS codes, such as Zigzag and

Butterfly codes [10, 17] are proposed. Zigzag codes [10]

are proved to be with optimal recovery penalty factors

in all systematic MDS codes. One significant drawback

of Zigzag codes is that the implementation depends on

non-binary algebra.

New trade-off points between storage overheads and

recovery penalty factors are found through non-MDS

codes, such as LRC [7, 11, 16]. Compared to MDS

codes, non-MDS codes dramatically reduce the recovery

penalty factors. However, the cost of non-MDS codes

cannot be ignored, particular when the scale of the data

center is very large, i.e., even 1% extra storage overhead

usually means millions of dollars [41, 42].

Recovery algorithms, such as [4,5,13], are proposed to

reduce recovery penalty factors of existing erasure codes.

The biggest drawback of those recovery algorithms is

that their efficiency on reducing recovery penalty factors

are much lower than that of designing novel codes.

Improving the recovery rate: Another approach to

shorten the recovery time is improving the recovery rate.

It is common to improve the recovery rate through

deploying high-speed networks, i.e., increasing the re-

covery network bandwidth. For example, CLOS net-

works [24–26] are deployed in FDS [6] to provide non-

oversubscribed full bisection bandwidth networks at the

scale of a data center. As a result, the recovery is dramat-

ically accelerated.

The recovery rate is also improved through increasing

the recovery parallelism. Mitra et al. propose a paral-

lel chunk recovery method PPR [18] to improve the re-

covery parallelism. Li et al. propose a pipelined chunk

recovery method ECPipe [19] to further improve that re-

covery parallelism. However, both PPR and ECPipe take

effect when there are only a few chunks be recovered.

Risk-aware recovery scheduling: Besides accelerating

the recovery of all chunks, high data reliability and avail-

ability can also be achieved through scheduling the re-

covery of chunks according to the number of lost chunks

in their host stripes, which indicates the data reliability

and availability risk of those stripes.

The recovery of the chunks in high risk stripes is pri-

oritized in HDFS [3] and WAS [7]. In such a manner, the

repair time of high risk stripes is dramatically reduced.

Meanwhile, the increase of the repair time is relatively

small. Therefore, the data reliability and availability are

improved. It is worth noting that, after being scheduled,

the failure identification time becomes dominant in the

repair time of high risk stripes, because those chunks in

high risk stripes are usually very few. As a result, the re-

duction in the identification time of high risk stripes

is very effective in improving the data reliability and

availability.

Silberstein et al. propose a technique Lazy [14] to re-

duce the repair network traffic. Because chunks in low

risk stripes, e.g., S1, are dominant in all chunks be re-

covered, most of the repair network traffic is generated

by recovering those chunks. Canceling the recovery of

chunks in low risk stripes dramatically reduces the repair

network traffic. However, the data reliability and avail-

ability dramatically decrease.

7 Conclusions

In this paper, we present a risk-aware failure identifica-

tion scheme, named RAFI, to simultaneously improve

the data reliability, availability, and serviceability (RAS)

of erasure-coded data centers. The basic idea of RAFI

is identifying a chunk failure not only according to its

failure duration, but also based on the data reliability and

availability of its host stripe. The benefits of RAFI are:

(1) the identification of failed chunks in high risk stripes

is expedited to improve the data reliability and availabil-

ity; and (2) the identification of failed chunks in low risk

stripes is postponed to reduce the repair network traffic,

thus improving the serviceability. Our results based on

both simulations and prototyping have demonstrated the

effectiveness and efficiency of RAFI in terms of reduced

data loss, unavailability, and repair network traffic.

8 Acknowledgment

We are grateful to anonymous reviewers and particu-

larly our shepherd Dahlia Malkhi for their helpful com-

ments and suggestions. We thank Changsheng Xie and

Ting Ye for their great efforts on this paper. Shenggang

Wan is the corresponding author. This research is spon-

sored by National Natural Science Foundation of China

Grants Nos. 61300046 and 61331010, and U.S. National

Science Foundation Grants Nos. CCF-1717660, CNS-

1702474 and CCF-1547804.

References

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File

System,” in SOSP’03, 2003.

[2] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based erasure

codes in storage systems: Constructions, efficient recovery, and

tradeoffs,” in MSST’10, 2010.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” in MSST’10, 2010.

[4] L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang, “Optimal recovery

of single disk failure in RDP code storage systems,” in SIGMET-

RICS’10, 2010.

[5] S. Li, Q. Cao, J. Huang, S. Wan, and C. Xie, “PDRS: A New

Recovery Scheme Application for Vertical RAID-6 Code,” in

NAS’11, 2011.

[6] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and

Y. Suzue, “Flat Datacenter Storage,” in OSDI’12. USENIX,

2012.

[7] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan,

J. Li, and S. Yekhanin, “Erasure Coding in Windows Azure Stor-

age,” in ATC’12, 2012.

[8] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethink-

ing Erasure Codes for Cloud File Systems: Minimizing I/O for

Recovery and Degraded Reads,” in FAST’12, 2012.

[9] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang, “NCCloud:

applying network coding for the storage repair in a cloud-of-

clouds,” in FAST’12, 2012.

[10] I. Tamo, Z. Wang, and J. Bruck, “Zigzag Codes: MDS Array

Codes With Optimal Rebuilding,” Transactions on Information

Theory, 2013.

[11] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,

R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel

Erasure Codes for Big Data,” in VLDB’13, 2013.

[12] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur,

and K. Ramchandran, “A Solution to the Network Challenges

of Data Recovery in Erasure-coded Distributed Storage Systems:

A Study on the Facebook Warehouse Cluster,” in HotStorage’13,

2013.

[13] S. Xu, R. Li, P. P. C. Lee, Y. Zhu, L. Xiang, Y. Xu, and J. C. S. Lui,

“Single Disk Failure Recovery for X-Code-Based Parallel Stor-

age Systems,” IEEE Transactions on Computers, vol. 63, no. 4,

pp. 995–1007, 2014.

[14] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin,

“Lazy Means Smart: Reducing Repair Bandwidth Costs in

Erasure-coded Distributed Storage,” in SYSTOR’14, 2014.

[15] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ram-

chandran, “Having your cake and eating it too: jointly opti-

mal erasure codes for I/O, storage and network-bandwidth,” in

FAST’15, 2015.

[16] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A Tale of Two

Erasure Codes in HDFS,” in FAST’15, 2015.

[17] L. Pamies-Juarez, F. Blagojević, R. Mateescu, C. Gyuot, E. E.

Gad, and Z. Bandić, “Opening the Chrysalis: On the Real Repair

Performance of MSR Codes,” in FAST’16, 2016.

[18] S. Mitra, R. Panta, M. R. Ra, and S. Bagchi, “Partial-parallel-

repair (PPR): a distributed technique for repairing erasure coded

storage,” in EUROSYS’16, 2016.

[19] R. Li, X. Li, P. P. C. Lee, and Q. Huang, “Repair Pipelining for

Erasure-Coded Storage,” in ATC’17, 2017.

[20] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,

L. Barroso, C. Grimes, and S. Quinlan, “Availability in Globally

Distributed Storage Systems,” in OSDI’10, 2010.

[21] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,

“The quantcast file system,” 2013.

[22] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and

K. Ramchandran, “Network coding for distributed storage sys-

tems,” Transactions on Information Theory, 2010.

[23] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, and C. Huang, “Sim-

ple regenerating codes: Network coding for cloud storage,” in

INFOCOM’12, 2012.

[24] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-

ity data center network architecture,” in SIGCOMM’08, 2008.

[25] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, and M. Zhu, “B4: experi-

ence with a globally-deployed software defined wan,” in SIG-

COMM’13, 2013.

[26] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,

R. Bannon, S. Boving, G. Desai, B. Felderman, and P. Ger-

mano, “Jupiter Rising: A Decade of Clos Topologies and Central-

ized Control in Google’s Datacenter Network,” in SIGCOMM’15,

2015.

[27] D. Borthakur, “The hadoop distributed file system: Architecture

and design,” Hadoop Project Website, vol. 11, 2007.

[28] AlibabaCloud, “Alibab ECS,” https://www.alibabacloud.com/

product/ecs, 2017.

[29] J. Fang, “DR-SIM,” https://github.com/yydfjt/distributed

system simulator, 2017.

[30] L. Wan, F. Wang, H. S. Oral, S. S. Vazhkudai, and Q. Cao,

A Report on Simulation-Driven Reliability and Failure Analysis

of Large-Scale Storage Systems, Nov 2014. [Online]. Available:

http://www.osti.gov/scitech/servlets/purl/1185665

[31] A. Oriani and I. C. Garcia, “From Backup to Hot Standby: High

Availability for HDFS,” in SRDS’12, 2012.

[32] A. Thomson and D. J. Abadi, “CalvinFS: Consis-

tent WAN Replication and Scalable Metadata Manage-

ment for Distributed File Systems,” in FAST’15, 2015.

[Online]. Available: https://www.usenix.org/conference/fast15/

technical-sessions/presentation/thomson

[33] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and

M. Rosenblum, “Fast Crash Recovery in RAMCloud,” in

SOSP’11, 2011.

[34] B. gon Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,

M. F. Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica

maintenance for distributed storage systems,” in NSDI’06, 2006.

[35] V. Venkatesan, I. Iliadis, and R. Haas, “Reliability of Data Stor-

age Systems under Network Rebuild Bandwidth Constraints,” in

MASCOTS’12, 2012.

[36] P. Bodı́k, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and

I. Stoica, “Surviving failures in bandwidth-constrained datacen-

ters,” in SIGCOMM’12, 2012.

[37] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside

the Social Network’s (Datacenter) Network,” in SIGCOMM’15,

2015.

[38] F. André, A.-M. Kermarrec, E. Le Merrer, N. Le Scouarnec,

G. Straub, and A. Van Kempen, “Archiving cold data in ware-

houses with clustered network coding,” in EUROSYS’14, 2014.

[39] S. Jiekak, A.-M. Kermarrec, N. Le Scouarnec, G. Straub, and

A. Van Kempen, “Regenerating Codes: A System Perspective,”

in SIGOPS’13, 2013.

[40] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Fi-

nite Fields,” Journal of the Society for Industrial and Applied

Mathematics, 1960.

[41] A. K. Dutta and R. Hasan, “How much does storage really cost?

Towards a full cost accounting model for data storage,” in Inter-

national Conference on Grid Economics and Business Models.

Springer, 2013.

[42] Amazon, “Pricing of Amazon S3,” https://aws.amazon.com/s3/

pricing, 2017.

	Introduction
	Background and Motivation
	Terms
	Erasure-coded Data Centers
	Methods to Improve the RAS
	Motivation

	RAFI: Design and Analysis
	Design of RAFI
	Benefit and Cost

	Prototyping Evaluation
	Evaluation Methodology
	RAFI-HDFS
	Results of Prototyping Experiments

	Simulations and Results Analysis
	DR-SIM
	Simulation Testbed
	Simulation Results
	RAS as Functions of Ti
	RAS as Functions of Erasure Coding Schemes
	RAS as Functions of Recovery Network Bandwidth
	Comparisons with Lazy
	Availability under Correlated Failures

	Related Work
	Conclusions
	Acknowledgment

