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Abstract—Mobile augmented reality (MAR) involves high com-
plexity computation which cannot be performed efficiently on
resource limited mobile devices. The performance of MAR would
be significantly improved by offloading the computation tasks to
servers deployed with the close proximity to the users. In this
paper, we design an edge network orchestrator to enable fast
and accurate object analytics at the network edge for MAR. The
measurement-based analytical models are built to characterize
the tradeoff between the service latency and analytics accuracy
in edge-based MAR systems. As a key component of the edge
network orchestrator, a server assignment and frame resolution
selection algorithm named FACT is proposed to mitigate the
latency-accuracy tradeoff. Through network simulations, we
evaluate the performance of the FACT algorithm and show
the insights on optimizing the performance of edge-based MAR
systems. We have implemented the edge network orchestrator
and develop the corresponding communication protocol. Our
experiments validate the performance of the proposed edge
network orchestrator.

Index Terms—Mobile augmented reality; edge network orches-
tration; Mobile edge computing

I. INTRODUCTION

Mobile augmented reality (MAR) augments a real-world

environment by computer-generated sensory information such

as text, sound, and graphics. With advanced MAR technolo-

gies, the information about a person’s surrounding physical

environment can be brought out of the digital world and

overlaid with the person’s perceived real world. MAR will

be widely adopted in various industries such as tourism,

entertainment, advertisement, education, manufacture and so

on [1]. According to Digi-Capital, MAR will become the

primary driver of a $108 billion virtual/augmented reality

market by 2021 [2].

Since MAR performs in the semantic context of the real-

world, the fast and accurate object analytics is the key compo-

nent for integrating digital information with environment ele-

ments in MAR applications [3]. Although the object detection

and recognition have been well studied in computer vision

researches, the existing solutions are designed to run with

powerful CPU/GPU and cannot be applied to MAR directly

due to the limited computing resource in mobile devices [4]–

[7]. Two research directions emerge for solving this problem.

The first direction is tailoring the compute-intensive computer

vision algorithms for executing on mobile devices [8], [9].

The state-of-the-art object analytics latency in mobile devices

is about 600ms per frame [8] which is still longer than the

expected latency of MAR [1].

The other research direction is offloading the compute-

intensive object analysis to powerful cloud servers [10]–

[13]. The cloud-based MAR solutions significantly reduce

the computational latency by exploiting high-end CPU/GPU
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Figure 1: The cloud-based vs. edge-based MAR system.

in cloud servers. However, offloading video frames to cloud

may introduce excessive network latency because of the time-

varying and capacity-constrained wireless channels. Therefore,

reducing the network latency becomes one of the focal points

in designing cloud-based MAR systems. The fundamental idea

of reducing the network latency is reducing the amount of data

required to be transmitted to cloud servers. The data transmis-

sion can be reduced by methods such as the frame selection,

target area/object selection, and feature extraction [11]–[13].

Mobile edge computing (MEC) is a new networking

paradigm in which computing nodes are placed in close

proximity to mobile devices for highly responsive cloud ser-

vices [14], [15]. Leveraging MEC, cloud-based MAR systems

can further improve their responsiveness and potentially enable

large-scale MAR services. However, it is not trivial to push

cloud servers to the edge of the network. Edge servers are

usually less powerful than cloud servers. A single edge server

may be easily overloaded by MAR services [16]. Therefore,

multiple edge servers are necessary to provisioning MAR ser-

vices for a large number of users. Meanwhile, the distribution

of mobile users exhibits highly spatial diversity [17]. Such

a user distribution will lead to imbalanced workloads among

edge servers, which impairs the performance of MAR in terms

of the service latency. Therefore, a well designed network

orchestrator, which can dynamically dispatch MAR related

computing workloads to edge servers, is needed in an edge-

based MAR system as illustrated in Fig. 1.

The major challenge of designing the edge network or-

chestrator lies in the difficulty of mitigating the tradeoff

between the analytics accuracy, network latency, and com-

putational latency. A higher-resolution video frame usually

allows a better analytics accuracy at the cost of longer network

and computational latency [18]. Meanwhile, the network and

computational latency may not be minimized simultaneously

because of diverse workloads and heterogeneous edge servers.

Since the network latency largely depends on the location

of the server, an edge server with the closest proximity to a

mobile user can provide the lowest network latency. However,

the computational latency is contingent on the computing



resources and workloads in the edge server. Therefore, the

edge server with lowest network latency may cause higher

computational latency because of the limited computing re-

sources.

In this paper, we design and implement an edge network

orchestrator which enables fast and accurate object analytics

in an edge-based MAR system. In order to address the

aforementioned challenge, we model the network latency,

computational latency, and analytics accuracy in an edge-based

MAR system according to the performance measurements

obtained from our MAR testbed. Then, we formulate a multi-

objective optimization problem which aims to mitigate the

tradeoff between the network latency, computation latency and

analytics accuracy by optimizing the edge server assignment

and video frame resolution selection for MAR users. We

develop a fast and accurate object analytics (FACT) algorithm

which solves the multi-object optimization problem based on

convex optimization theory. We evaluate the FACT algorithm

through both network simulations and experiments with our

edge-based MAR system implementation.

To the best of our knowledge, our work is the first to design

an edge network orchestrator for edge-based MAR systems.

Our contributions are summarized as follows:

• We build analytical models for investigating the tradeoff

between the network latency, computational latency and

analytics accuracy in an edge-based MAR system.

• We design an edge network orchestration algorithm named

FACT which boosts the performance of an edge-based

MAR system by optimizing the edge server assignment

and video frame resolution selection for MAR users. We

evaluate the performance of the FACT algorithm and pro-

vide insights on optimizing the edge-based MAR system

through network simulations.

• We develop an edge-based MAR system, implement the

FACT algorithm as the edge network orchestrator, and

design the corresponding MAR communication protocol.

We conduct experiments and validate the performance of

the edge-based MAR system.

The rest of this paper is organized as follows. Section II

briefly reviews the related work. Section III presents the

system model and problem formulation. Section IV develops

the FACT algorithm. Section V evaluates the performance

of the FACT algorithm through network simulations. Sec-

tion VI details the system implementation and experiments.

Section VII concludes the paper.

II. RELATED WORK

Our work relates to cloud-based MAR systems and edge

cloud load balancing algorithms. The cloud-based MAR sys-

tem design has attracted many research efforts recently [1].

The main objectives in designing cloud-based MAR systems

are improving the object recognition accuracy and reducing

the service latency. Chen et al. propose a continuous real-

time object recognition system which implements an active

cache mechanism to improve the recognition accuracy and

and exploits a trigger frame selection method to reduce the

latency caused by wireless networks [11]. Jain et al. propose

two methods to improve cloud-based MAR systems [3], [12].

The first method is to improve the accuracy and latency of the

object recognition by using a location-free geometric to prune

down the visual search space [3]. The second method is to

reduce the network latency by only transferring the distinctive

features of images to the server [12].

On designing cloud-based MAR systems, the existing work

does not consider the heterogeneous computing capability and

diverse workloads on edge servers. Therefore, no solution is

provided to properly dispatch computing workloads among

edge servers for MAR services. In addition, the existing

work does not allow the adaptation of video frame resolution

(the amount of data transferred to servers) based on the

performance of edge servers and networks.

There are many studies on the edge cloud load balanc-

ing problem. The basic idea of the existing solutions is to

mitigate the tradeoff between the computational and network

latency [16], [19], [20]. Jia et al. propose a task redirection

algorithm to balance workloads among edge cloudlets and

show that the load balancing scheme can significantly reduce

the service response time of edge cloudlets [19]. Tong et al.
propose a hierarchical architecture for edge clouds and design

a heuristic workload dispatch algorithm to minimize the aver-

age program execution delay by adaptively placing workloads

among different tires of servers [16]. Tan et al. propose an

online job dispatching and scheduling algorithm to minimize

total weighted service response time in edge clouds. [20].

These existing edge cloud load balancing solutions only fo-

cus on reducing the service latency. However, the analytics

accuracy is as important as the service latency for MAR.

Therefore, mitigating the tradeoff between the service latency

and analytics accuracy is indispensable in designing workload

dispatching algorithms for edge-based MAR systems.

III. ANALYTICAL MODEL OF EDGE-BASED MAR SYSTEM

In this section, we describe the system model for analyzing

the edge-based MAR system. The system model includes

network latency, computational latency, and analytics accuracy

models. The computational latency and analytics accuracy

models are derived based on the performance measurements

obtained from our MAR testbed.

We consider a mobile edge network with K MAR users and

N heterogeneous servers including both the cloud and edge

servers. Denote K and N as the set of MAR users and servers,

respectively. The MAR users communicate with servers via

wireless access points such as cellular base stations and WiFi

hotspots. The object analytics is performed on either edge

servers or cloud server. The average service latency of the

kth MAR user can be defined as

Lk = Lwk + Ltk + Lpk, (1)

where Lwk is the wireless latency incurred by sending a video

frame from the kth user to its associated wireless access point;

Ltk is the core network latency caused by transferring the

frame from the wireless access point to the server assigned



to the user; and Lpk is the computational latency of the object

analytics on the server.

A. Network Latency Model

The network latency is composed of the wireless and core

network latency. The wireless latency is determined by the

user’s video frame resolutions and wireless data rates. Since

the data size of analytics results is usually small, we do

not model the latency caused by transmitting the analytics

results [21]. We assume that the AR video of the kth user is

preprocessed into video frames with the resolution of sk × sk
pixels. In this paper, we use s2k (the number of pixels) to

represent the video frame resolution of the kth MAR user.

Denote σ as the number of bits required to represent the

information carried by one pixel. Denote S = {s2k |k ∈ K}
as the set of users’ frame resolutions. The data size of a video

frame is calculated as σs2k bits. Let Rk be the average wireless

data rate of the kth user. The wireless latency experienced by

the kth user is modeled as

Lwk =
σs2k
Rk

. (2)

Note that we consider the simplified wireless latency model

(Eq. 2) because we focus on the system level performance

rather than wireless link level performance in this paper.

Since the core network usually has very high transmission

capacity, its latency is mainly determined by the aggregated

traffic loads in the network and the geo-distance between the

wireless access points and the servers. The impact of the video

frame size of a single user on the link latency of the core

network is negligible. Therefore, we do not consider such an

impact in our core network latency model. Denote ak,n ∈
{0, 1} as the server assignment indicator which indicates the

kth user is served by the nth server if ak,n = 1. Denote A =
{ak,n |k ∈ K, n ∈ N } as the set of users’ server assignments.

Here, we set ak,n as a binary variable to restrict that a user can

be served by only one server at a time. Let lk,n be the core

network latency between the kth user’s associated wireless

access point and the nth server, the core network latency of

the kth user can be expressed as

Ltk =
∑
n∈N

ak,nlk,n. (3)

B. Computational Latency Model

The computational latency is closely related to the computa-

tional complexity of a user’s task and available computational

resources on servers [21]. Let ck and fn be the computational

complexity of analyzing the kth user’s video frame and

the available computational resources on the nth server. We

assume that the available computational resources on a server

are evenly shared by the users associated with the server. Then,

fn/
∑
m∈K am,n is the computational resources allocated to

one user on the nth server. Therefore, the computational

latency experienced by the kth user can be modeled as

Lpk =
∑
n∈N

ak,n
ck
fn

∑
m∈K

am,n. (4)
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Figure 2: The latency and accuracy vs. the frame resolution.

In order to characterize the computational latency, we

have to figure out the relationship between the computational

complexity ck and the video frame resolution sk×sk. To do so,

we implement two object recognition algorithms, YOLO [5]

and SSD [6], on our Dell workstation with Nvidia Quadro

M4000 GPU. The original YOLO algorithm resizes incoming

video frames to a predefined resolution, e.g., 448 x 448, before

performing the object analytics. In order to measure the impact

of the video frame resolution on the object analytics perfor-

mance, we modify the YOLO algorithm to resize incoming

video frames to different resolutions and perform the object

analytics based on resized video frames. Since the workstation

is fully occupied by the object recognition algorithm, the

computational latency measured in the experiments reflects

the computational complexity of the object recognition under

different video frame resolutions.

Fig. 2 (a) shows that the computational latency increases

when the video frame resolution becomes higher. The speed of

the latency increase become faster at a higher video frame res-

olution. Such a relationship between the computational com-

plexity and the video frame resolution can be characterized

by a convex function. For example, the measurement data can

be fitted by a convex function f(s2k) = 7× 10−10sk
3 +0.083

with the root mean square error (RMSE) of 0.01. Based on

these observations, we model the computational complexity

ck = ψ(s2k) where ψ(s2k) is convex with respect to the video

frame resolution s2k.

C. Analytics Accuracy Model

The analytics accuracy highly depends on the resolutions

of the AR video frame. The higher video frame resolution

usually results in a better mean average precision of an object

recognition function [18]. Therefore, we model the analytics

accuracy as a function of the video frame resolution. We define

the analytics accuracy as the ratio between the number of

correctly recognized objects and that of total objects in a video

frame. We build the analytics accuracy model based on the

aforementioned performance measurement. On calculating the

accuracy, we assume that the YOLO algorithm can detect all

objects in a video frame when the video frame resolution is

600× 600 pixels.

Fig. 2 (b) shows the analytics accuracy of the YOLO and

SSD algorithm under different video frame resolutions. There

are two observations. The first one that a higher video frame



resolution enables a better analytics accuracy. The second

observation is that the performance gain narrows down at a

high video resolution. Based on these observations, we can

use a concave function to define the relationship between

the analytics accuracy and the video frame resolution. For

example, the concave function f(s2k) = 1−1.578e−6.5×10−3sk

can fit the measurement data with less than 0.03 RMSE.

Therefore, we model the analytics accuracy Ak = ξ(s2k)
where ξ(s2k) is a concave function with respect to video frame

resolution s2k.

D. Problem Formulation
Based on the analytical model, the total service latency of

the MAR users is

L =
∑
n∈N

∑
k∈K

[
σs2k
Rk

+ ak,n

(
lk,n +

ψ(s2k)

fn

∑
m∈K

am,n

)]
,

(5)

and the summation of the analytics accuracy of the MAR users

is

A =
∑
k∈K

ξ(s2k). (6)

On designing the edge network orchestrator, we aim to

minimize the overall service latency and maximize the total

analytics accuracy of the MAR users. Therefore, designing the

orchestrator is a multi-objective optimization problem [22].

There is a tradeoff between the service latency and analytics

accuracy. In order to characterize the tradeoff, we introduce a

positive weight parameter β which reflects the preference be-

tween the service latency and analytics accuracy in optimizing

the MAR system. We adopt the weighted sum method [23] to

express the multi-object optimization problem as

P1 : min
{A,S}

F = L− βA
s.t. C1 : ξ(s2k) ≥ δk,∀k ∈ K,

C2 :
∑
n∈N ak,n = 1,∀k ∈ K,

C3 : ak,n ∈ {0, 1}, ∀k ∈ K, ∀n ∈ N
(7)

where δk is the minimum analytics accuracy requirement

of the kth user; the constraints C2 and C3 ensure that an

individual user is assigned to one and only one server. The

weight parameter β controls the latency-accuracy tradeoff. For

example, a larger β indicates that the MAR system prefers a

higher accuracy. As a result, the optimal solution of Problem

P1 trades the average service latency for enhancing the

analytics accuracy.

IV. THE FACT ALGORITHM

Problem P1 is a mixed-integer nonlinear programming

problem (MINLP) which is difficult to solve [24]. We develop

the FACT algorithm to solve the problem based on the block

coordinate descent method [25].
To solve Problem P1, we relax binary variables

ak,n to continuous variables ãk,n. Denote Ã =
{ãk,n |k ∈ K, n ∈ N }. The relaxed problem is

P2 : min F = L− βA
s.t. C1, C2, ãk ∈ [0, 1].

(8)

Algorithm 1: The FACT Algorithm

Input: The weight β, the convergence condition τ , the

initial set of frame resolutions S0.

Output: The set of server assignments A, the set of

frame resolutions S .

1 S ← S0, i← 0;

2 while True do
3 Ã ← solve Problem P2 with fixed S;

4 S ← solve Problem P2 with fixed Ã;

5 Fi ← L− βA;

6 if |(Fi − Fi−1)/Fi| ≤ τ then
7 break;

8 i← i+ 1;

9 for k ∈ K do
10 for n ∈ N do
11 if n = argmax

j∈N
ãk,j then

12 ak,n ← 1;

13 else
14 ak,n ← 0;

15 S ← solve Problem P2 with A;

16 return A,S

Lemma 1. The Problem P2 is strictly convex with respect to
the relaxed server assignments Ã.

Proof: For any feasible ãm,n, ãi,j , ∀m, i ∈ K, ∀n, j ∈ N ,

∂2F

∂ãi,j∂ãm,n
=

{
2ψ(s2i )
fj

, i = j and m = n,

0, i �= j or m �= n,
(9)

The Hessian matrix H =
(

∂2F
∂ãi,j∂ãm,n

)
KN×KN

is symmetric

and positive definite. The constraints C2 and C3 are linear. The

constraints C1 are irrelevant to Ã. Therefore, P2 is strictly

convex with respect to Ã [26].

Lemma 2. The Problem P2 is strictly convex with respect to
frame resolution S .

Proof: For any feasible variable s2i , s
2
j , ∀i, j ∈ K, we

have

∂2F

∂s2i ∂s
2
j

=

{
∂2ψ

∂s2i∂s
2
j

∑
n∈N

ãi,n
fn

∑
m∈K

ãm,n − β ∂2ξ
∂s2i∂s

2
j
, i = j,

0, i �= j,
(10)

Since ψ(s2k) is convex function, ∂2ψ
∂s2i∂s

2
j

is non-negative. Since

ξ(s2k) is concave function, ∂2ξ
∂s2i∂s

2
j

is non-positive. Hence, the

Hessian matrix H =
(

∂2F
∂s2i∂s

2
j

)
K×K

is symmetric and positive

definite. Constraints C1 are convex, and Constraints C2 and C3

do not apply to S . Therefore, Problem P2 is strictly convex

with respect to S [26].

Lemmas 1 and 2 lay the foundation for solving Problem

P2 with the block coordinate descent method [25]. Based on



this method, we develop a fast and accurate object analytics

(FACT) algorithm which solves Problem P2 by sequentially

fixing one variable, i.e., Ã or S , and updating the other

one. The pseudo code of the FACT algorithm is presented

in Algorithm 1. At the beginning of the algorithm, the weight

β and video frame resolution S are initialized. With the fixed

video frame resolution, we solve Problem P2 to obtain the

optimal server assignment Ã. Then, based on the optimized Ã,

we optimize the video frame resolution. After each iteration,

the value of the objective function F is calculated. The FACT

algorithm iteratively optimizes Ã and S until the objective

function F is converged. In the algorithm, we introduce an

arbitrary small positive number τ to evaluate the convergence

of the objective function as shown in line 6 of the pseudo

code. After solving Problem P2, ãk,n are converted to ak,n
according to

ak,n =

{
1, n = argmax

j∈N
ãk,j ,

0, otherwise.
(11)

Theorem 1. The FACT algorithm converges to the optimal
solution.

Proof: The convergence of the FACT algorithm to optimal

solution can be proved by showing that Problem P2 is

strictly convex with respect to each block of variables, e.g.,

Ã and S [25]. The convexity of Problem P2 is proved by

lemma 1 and 2. Hence, the optimality and convergence of the

FACT algorithm is guaranteed.

Lemma 3. The FACT algorithm has a sub-linear convergence
rate.

Proof: The block coordinate descent method ensures a

sub-linear convergence rate [27]. The FACT algorithm is

designed based on the block coordinate descent method. Thus,

it has a sub-linear convergence rate.

V. SIMULATION RESULTS

In this section, we evaluate the FACT algorithm through

large-scale simulations. We simulate an edge network with

50 wireless access points and 20 servers. The distribution

of the wireless access points and the user traffic are derived

based on network traffic traces collected from an operating

mobile network consisting of 10000 base stations and 50000

mobile users. The edge servers are randomly deployed in

the network. The network latency between wireless access

points and edge servers are generated according to the nor-

mal distribution with the mean value of 50ms. The network

latency between the wireless access points and the cloud

server are also generated based on the normal distribution

but with the mean value of 150ms. The wireless data rates

of users are uniformly distributed between 1 to 10 Mbps.

Based on the measurements from our experiments, we adopt

ck = ψ(s2k) = 7 × 10−10sk
3 + 0.083 TFLOPS as the

computational complexity of analyzing a sk×sk video frame.

In the simulation, the computing capacities of the cloud and

edge servers are set to 10 and 2 TFLOPS, respectively. We
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Figure 3: The Pareto boundary derived by the FACT algorithm.

model as Ak = ξ(s2k) = 1−1.578e−6.5×10−3sk as the analytics

accuracy function on both cloud and edge servers. The default

value of β is 20, and the minimum video frame resolution is

40000 pixels (200× 200).

In the simulation, we compare the FACT algorithm with the

three categories of algorithms summarized in Table I.

• Baseline: the baseline algorithm has a fixed video frame

resolution and randomly assigns servers to MAR users.

• Server assignment optimized: this category of algo-

rithms optimize the server assignments, but the video

frame resolution is predefined. We implement maximum

accuracy (maxA) and minimum latency (minL) algorithms

which adopt the largest and smallest frame resolutions,

respectively.

• Frame resolution optimized: these algorithms optimize

the frame resolution, but the server assignments are not

optimized. We implement two methods: random server

selection (RandS) and least workload server selection

(LoadS).

Table I. Algorithm Comparison

frame resolution server selection

fixed optimized random greedy optimized

FACT x x

Baseline x x

MaxA x x

MinL x x

LoadS x x

RandS x x

A. The impact of β

The value of β impacts the tradeoff between the service

latency and analytics accuracy in the edge based MAR system.

As shown in Fig. 3, by varying the value of β, we derive

the Pareto boundary which characterizes the latency-accuracy

tradeoff obtained by the FACT algorithm.

Fig. 4 shows the impact of β on the service latency and

analytics accuracy of different algorithms. When β increases,

the MAR system emphasizes on the performance of the

analytics accuracy. As a result, the FACT algorithm trades the

service latency for the analytics accuracy. Since the maxA,

minL, and baseline algorithms do not optimize the video

frame resolution, the variation of β does not change the

latency-accuracy tradeoff. Hence, the performance of these
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algorithm does not show many changes versus β. The latency

fluctuation of the baseline algorithm is because of the random

server assignments. This simulation result also shows that, as

compared to the baseline algorithm, the FACT algorithm is

able to reduce about 26% service latency while maintaining

the similar analytics accuracy (β = 20), and enhance about

8% analytics accuracy when ensuring a similar service latency

(β = 90).

B. The impact of AR video frame resolution

The AR video frame resolution impacts not only the

transmission and computational latency but also the analytics

accuracy. In order to evaluate such impacts, we vary the

minimum video frame resolutions in the simulation. The

maximum video frame resolution is fixed at 600× 600 pixels.

The optimized video frame resolution is between the minimum

and maximum video frame resolutions. The video frame

resolution of the baseline algorithm is defined as the mean

value of the minimum and maximum video frame resolutions.

As shown in Fig. 5 (a), the service latency of the minL and

baseline algorithm increases versus the minimum video frame

resolution. When the minimum video frame resolution is less

than 350 × 350 pixels, the FACT algorithm maintains the

system performance (both the service latency and analytics

accuracy) because of the frame resolution optimization. When

the minimum video frame resolution is larger than 500× 500
pixels, the FACT algorithm has the same service latency as

the minL algorithm because of the optimal frame resolution

equals to the minimum frame resolution. Fig. 5 (b) shows

that the FACT algorithm obtains a lower latency at the cost

of analytics accuracy. However, the latency-accuracy tradeoff

is mitigated. For example, as compared with the baseline

algorithm, the FACT algorithm reduces about 40% latency at

the cost of around 3% accuracy when the minimum video

frame resolution is 400× 400 pixels.

C. The impact of the number of users

Fig. 6 evaluates the impact of the number of users on

the performance of the edge-based MAR system. When the

number of users increases, the edge servers experience more

workloads. Thus, the computational latency increases. As

compared with the other algorithms, the FACT algorithm

achieves the smallest latency. Since the FACT, LoadS and

RandS algorithms optimize the video frame resolution, the

performance differences between the FACT algorithm and the

other two algorithms shows the improvement gained from

the optimal server assignment. Both RandS and baseline

algorithms adopt the random server selection. Hence, the

performance difference between these algorithms reflect the

advantages of the frame resolution optimization.

As compared with the baseline algorithm, the FACT algo-

rithm gains up to 38% service latency reduction with less

than 10% loss of analytics accuracy when the number of

users is 100. When the number of users increases, the servers

are overloaded. In order to maintain a low service latency,

the FACT algorithm aggressively reduces the video frame

resolution, which is the reason for the 10% loss in the analytics

accuracy. As compared with LoadS and RandS algorithms,

the FACT algorithm improves both the latency and accuracy

performance.

D. The impact of the average network latency

Fig. 7 shows the impact of the average network latency

on the performance of the edge-based MAR system. Here,
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the average network latency reflects the average transmission

delay between the wireless access points and servers. As

shown in the figure, the service latency of the MAR system

increases versus the average network latency. However, the

FACT algorithm is able to minimize the service latency at the

cost of a slight decrease of the analytics accuracy. The latency

gap between the FACT, LoadS and RandS algorithms reflects

the gain obtained through optimizing the server assignment.

The latency gap between the baseline and RandS algorithms

is due to the video frame resolution optimization.

VI. THE SYSTEM IMPLEMENTATION AND EXPERIMENTS

In this section, we implement the edge-based MAR system

including the edge network orchestrator, MAR clients and

MAR servers, and develop the corresponding MAR commu-

nication protocol. We conduct experiments based on the im-

plementation to validate the performance of the edge network

orchestrator and MAR communication protocol.

A. The edge-base MAR system implementation

Fig. 8 overviews the edge-based MAR system which con-

sists of three major components: the edge network orchestra-

tor, MAR client and MAR server.

The edge network orchestrator: the orchestrator is re-

sponsible for optimizing the server assignment and video

frame resolution for MAR users. The core of the orchestrator

is the FACT algorithm which performs the optimization. In

order to realize the FACT algorithm, three auxiliary modules

are implemented. The first one is the request handler which

puts the incoming service requests into a FIFO queue and

dispatches the server assignments and video frame resolutions

derived from the FACT algorithm to the corresponding MAR

users. The second module is the scheduler which manages

the service queue and invokes the FACT algorithm based on

the queue length and predefined optimization interval. In the

implementation, the FACT algorithm is invoked if the queue

length equals to 10 or a 100ms timer is expired after the

last optimization. The optimization trigger, e.g., the queue

length and timer, is adjustable in the implementation. The

third module is the system status monitor which monitors

and collects the system information including users’ wireless

data rates, network latency between users and servers, and

workloads on servers. This information is inputted to the FACT

algorithm for optimizing the server assignment and video

frame resolution. The orchestrator is deployed at network edge

and can be accessed by MAR users with very short latency. We

also implement the baseline, maxA, minL, LoadS, and RandS

algorithms in the network orchestrator for the performance

comparison.

The MAR Client: The MAR client captures the real-world

video, sends frames to a server and overlays the received

information with its corresponding objects. There are four

functional modules implemented in the MAR client. The first

one is the network status monitoring module which measures

wireless data rates and the network latency between the user

and servers. This model also triggers a service request to the

orchestrator for the performance optimization when the user’s

service quality is lower than a threshold. The second one is

the user interface that captures the real-world environments

and display the analytics results received from the server.

The third one is the service request module which sends

service request to the orchestrator. The service request message

contains the information of the user’s wireless data rate and

network latency toward edge and cloud servers. It also parses

the control information about the frame resolution and server

assignment received from the orchestrator. The fourth module

is the data communication module which streams the AR video

frames to an assigned server, and receives the analytics results

from the server. This module is also responsible for resizing

the video frames according to the frame resolution selected by

the orchestrator. Since the current implementation of our MAR

server only supports six video frame resolutions, we select one

of the supported resolutions to approximate the video frame

resolution determined by the orchestrator.

The MAR Server: The MAR server is developed to process

the video frames and send the analytics results back to

MAR users. The server is designed to serve multiple users

simultaneously through multi-threading. There are four major

modules implemented on the server. The first one is the

service handler module which performs the authentication and

establishes a socket connection with MAR users. This module

is also responsible for dispatching the analytics results to

corresponding MAR users.

The second one is the object analytics module, which



decompresses the frames and performs the object analytics for

MAR users. The object analytics module is designed based on

the YOLO framework with the GPU acceleration [5]. In order

to allow the object analytics module to analyze video frames

with different resolutions, we trained six CNN models and

corresponding weights by using PASCAL VOC 2007 dataset.

Therefore, the implemented object analytics module supports

six video frame resolutions. If the resolution of incoming video

frames does not match any of these video frame resolutions,

the object analytics module resizes the input video frames into

one of the supported resolutions and then analyzes the resized

video frames.

The third one is the results processing module which

prepares the information related to the recognized objects.

The fourth module is the workload monitor which monitors

workloads on the server and updates the workload information

to the orchestrator periodically.

B. The edge-based MAR communication protocol

As illustrated in Fig. 9, the proposed communication pro-

tocol enables the MAR service in five steps.

1) The MAR user sends a service request to the orchestrator.

The service request message also includes the user’s wire-

less data rates and network latency measurements. After

the service is initialized, the service request message is

used to periodically update the user’s wireless data rates

and network latency measurements to the orchestrator.

2) Upon receiving the service request, the orchestrator de-

cides the server assignment and frame resolution, and

sends them back to the user.

3) The user establishes a connection to the assigned server,

and informs the server of its configuration information.

4) After the connection is established, the user sends its AR

video frames to the server for the object analytics.

5) The MAR server detects and recognizes objects in the

video frames, and sends the results back to the user.

C. Performance evaluation

An edge-based MAR testbed as shown in Fig. 10 is de-

veloped to evaluate the performance of the proposed edge

network orchestrator. The MAR clients are implemented in

Raspberry Pis and LXC containers connected to the emulated

network via wireless routers. The edge network is emulated

by Mininet [28]. Using Mininet, we can configure the core

network latency and evaluate its impact on the system per-

formance. Three edge MAR servers are implemented using

three NVIDIA Jetson TX development kits, and one cloud

MAR server is implemented on a Dell workstation with Nvidia

Quadro M4000 GPU.

Fig. 11 (a) shows the latency and accuracy versus the num-

ber of users. Although the latency increase with the growth

of number of users, the FACT algorithm achieves significant

latency reduction as compared to the other algorithms. For

example, when the number of users is 8, the FACT algorithm

reduces 27% latency with only 1% accuracy loss as compared

to the baseline algorithm.

Mininet

Linksys EA7500

Linksys 1900AC

LXC Container

DELL Precision 
5810 with Nvidia 

Quadro M4000 GPU
Raspberry Pi Nvidia Jetson TX2Nvidia Jetson TX2

Nvidia Jetson TX2
Orchestrator

The FACT algorithm

Figure 10: The edge-base MAR testbed.

Fig. 11 (b) shows the service latency and analytics accuracy

versus the core network latency. The service latency increases

with the growth of the core network latency. However, the

FACT algorithm outperforms the other algorithms. For in-

stance, it achieves about 25% latency reduction at the cost

of less than 1% accuracy loss when the average core network

latency is 100 ms.

Fig. 11 (c) evaluates the impact of wireless channel condi-

tions on the service latency and analytics accuracy. We use the

Keysight J7211A attenuation control unit to vary the channel

fading between the wireless access point and a MAR user. In

this way, we evaluate the system performance under different

wireless channel conditions. A larger channel fading increases

the signal attenuation and leads to a lower wireless data rate.

As a result, the service latency increases. Owing to the video

frame resolution optimization, the FACT algorithm is able

to achieve a low service latency while maintaining a high

analytics accuracy.

Fig 12 shows the tradeoff between the latency and accuracy

with different β. A larger β indicates the system prefers a

higher analytics accuracy. When β is small, e.g., β = 20, the

FACT algorithm trades the analytics accuracy for the service

latency. Therefore, it achieves more than 40% service latency

reduction at the cost of about 10% analytics accuracy loss as

compared with the maxA algorithm. When β is large, e.g.,

β = 60, the FACT algorithm prioritizes the analytics accuracy

improvement. As a result, it achieves an almost perfect analyt-

ics accuracy. At the same time, the FACT algorithm achieves

a lower latency than the maxA, LoadS, and RandS algorithms.

VII. CONCLUSION

In this paper, we design an edge network orchestrator to

improve the responsiveness and analytics accuracy of the edge-

based MAR system. We build analytical models for studying

the latency-accuracy tradeoff in edge-based MAR systems,

and develop the FACT algorithm to improve the system

performance by optimizing the server assignment and frame

resolution selection. The performance of the FACT algorithm

is evaluated through network simulations. In addition, we

implement the edge-based MAR system with the proposed

network orchestrator and the corresponding communication

protocol. The performance of the edge network orchestrator
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Figure 11: The system performance measurements with different configurations.

and the edge-based MAR system is validated in our experi-

ments.
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