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Abstract—Mobile augmented reality (MAR) involves high com-
plexity computation which cannot be performed efficiently on
resource limited mobile devices. The performance of MAR would
be significantly improved by offloading the computation tasks to
servers deployed with the close proximity to the users. In this
paper, we design an edge network orchestrator to enable fast
and accurate object analytics at the network edge for MAR. The
measurement-based analytical models are built to characterize
the tradeoff between the service latency and analytics accuracy
in edge-based MAR systems. As a key component of the edge
network orchestrator, a server assignment and frame resolution
selection algorithm named FACT is proposed to mitigate the
latency-accuracy tradeoff. Through network simulations, we
evaluate the performance of the FACT algorithm and show
the insights on optimizing the performance of edge-based MAR
systems. We have implemented the edge network orchestrator
and develop the corresponding communication protocol. Our
experiments validate the performance of the proposed edge
network orchestrator.

Index Terms—Mobile augmented reality; edge network orches-
tration; Mobile edge computing

I. INTRODUCTION

Mobile augmented reality (MAR) augments a real-world
environment by computer-generated sensory information such
as text, sound, and graphics. With advanced MAR technolo-
gies, the information about a person’s surrounding physical
environment can be brought out of the digital world and
overlaid with the person’s perceived real world. MAR will
be widely adopted in various industries such as tourism,
entertainment, advertisement, education, manufacture and so
on [1]. According to Digi-Capital, MAR will become the
primary driver of a $108 billion virtual/augmented reality
market by 2021 [2].

Since MAR performs in the semantic context of the real-
world, the fast and accurate object analytics is the key compo-
nent for integrating digital information with environment ele-
ments in MAR applications [3]. Although the object detection
and recognition have been well studied in computer vision
researches, the existing solutions are designed to run with
powerful CPU/GPU and cannot be applied to MAR directly
due to the limited computing resource in mobile devices [4]-
[7]. Two research directions emerge for solving this problem.
The first direction is tailoring the compute-intensive computer
vision algorithms for executing on mobile devices [8], [9].
The state-of-the-art object analytics latency in mobile devices
is about 600ms per frame [8] which is still longer than the
expected latency of MAR [1].

The other research direction is offloading the compute-
intensive object analysis to powerful cloud servers [10]-
[13]. The cloud-based MAR solutions significantly reduce
the computational latency by exploiting high-end CPU/GPU
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Figure 1: The cloud-based vs. edge-based MAR system.

in cloud servers. However, offloading video frames to cloud
may introduce excessive network latency because of the time-
varying and capacity-constrained wireless channels. Therefore,
reducing the network latency becomes one of the focal points
in designing cloud-based MAR systems. The fundamental idea
of reducing the network latency is reducing the amount of data
required to be transmitted to cloud servers. The data transmis-
sion can be reduced by methods such as the frame selection,
target area/object selection, and feature extraction [11]-[13].

Mobile edge computing (MEC) is a new networking
paradigm in which computing nodes are placed in close
proximity to mobile devices for highly responsive cloud ser-
vices [14], [15]. Leveraging MEC, cloud-based MAR systems
can further improve their responsiveness and potentially enable
large-scale MAR services. However, it is not trivial to push
cloud servers to the edge of the network. Edge servers are
usually less powerful than cloud servers. A single edge server
may be easily overloaded by MAR services [16]. Therefore,
multiple edge servers are necessary to provisioning MAR ser-
vices for a large number of users. Meanwhile, the distribution
of mobile users exhibits highly spatial diversity [17]. Such
a user distribution will lead to imbalanced workloads among
edge servers, which impairs the performance of MAR in terms
of the service latency. Therefore, a well designed network
orchestrator, which can dynamically dispatch MAR related
computing workloads to edge servers, is needed in an edge-
based MAR system as illustrated in Fig. 1.

The major challenge of designing the edge network or-
chestrator lies in the difficulty of mitigating the tradeoff
between the analytics accuracy, network latency, and com-
putational latency. A higher-resolution video frame usually
allows a better analytics accuracy at the cost of longer network
and computational latency [18]. Meanwhile, the network and
computational latency may not be minimized simultaneously
because of diverse workloads and heterogeneous edge servers.
Since the network latency largely depends on the location
of the server, an edge server with the closest proximity to a
mobile user can provide the lowest network latency. However,
the computational latency is contingent on the computing



resources and workloads in the edge server. Therefore, the
edge server with lowest network latency may cause higher
computational latency because of the limited computing re-
sources.

In this paper, we design and implement an edge network
orchestrator which enables fast and accurate object analytics
in an edge-based MAR system. In order to address the
aforementioned challenge, we model the network latency,
computational latency, and analytics accuracy in an edge-based
MAR system according to the performance measurements
obtained from our MAR testbed. Then, we formulate a multi-
objective optimization problem which aims to mitigate the
tradeoff between the network latency, computation latency and
analytics accuracy by optimizing the edge server assignment
and video frame resolution selection for MAR users. We
develop a fast and accurate object analytics (FACT) algorithm
which solves the multi-object optimization problem based on
convex optimization theory. We evaluate the FACT algorithm
through both network simulations and experiments with our
edge-based MAR system implementation.

To the best of our knowledge, our work is the first to design
an edge network orchestrator for edge-based MAR systems.
Our contributions are summarized as follows:

o We build analytical models for investigating the tradeoff
between the network latency, computational latency and
analytics accuracy in an edge-based MAR system.

o We design an edge network orchestration algorithm named
FACT which boosts the performance of an edge-based
MAR system by optimizing the edge server assignment
and video frame resolution selection for MAR users. We
evaluate the performance of the FACT algorithm and pro-
vide insights on optimizing the edge-based MAR system
through network simulations.

o We develop an edge-based MAR system, implement the
FACT algorithm as the edge network orchestrator, and
design the corresponding MAR communication protocol.
We conduct experiments and validate the performance of
the edge-based MAR system.

The rest of this paper is organized as follows. Section II
briefly reviews the related work. Section III presents the
system model and problem formulation. Section IV develops
the FACT algorithm. Section V evaluates the performance
of the FACT algorithm through network simulations. Sec-
tion VI details the system implementation and experiments.
Section VII concludes the paper.

II. RELATED WORK

Our work relates to cloud-based MAR systems and edge
cloud load balancing algorithms. The cloud-based MAR sys-
tem design has attracted many research efforts recently [1].
The main objectives in designing cloud-based MAR systems
are improving the object recognition accuracy and reducing
the service latency. Chen et al. propose a continuous real-
time object recognition system which implements an active
cache mechanism to improve the recognition accuracy and
and exploits a trigger frame selection method to reduce the

latency caused by wireless networks [11]. Jain et al. propose
two methods to improve cloud-based MAR systems [3], [12].
The first method is to improve the accuracy and latency of the
object recognition by using a location-free geometric to prune
down the visual search space [3]. The second method is to
reduce the network latency by only transferring the distinctive
features of images to the server [12].

On designing cloud-based MAR systems, the existing work
does not consider the heterogeneous computing capability and
diverse workloads on edge servers. Therefore, no solution is
provided to properly dispatch computing workloads among
edge servers for MAR services. In addition, the existing
work does not allow the adaptation of video frame resolution
(the amount of data transferred to servers) based on the
performance of edge servers and networks.

There are many studies on the edge cloud load balanc-
ing problem. The basic idea of the existing solutions is to
mitigate the tradeoff between the computational and network
latency [16], [19], [20]. Jia et al. propose a task redirection
algorithm to balance workloads among edge cloudlets and
show that the load balancing scheme can significantly reduce
the service response time of edge cloudlets [19]. Tong et al.
propose a hierarchical architecture for edge clouds and design
a heuristic workload dispatch algorithm to minimize the aver-
age program execution delay by adaptively placing workloads
among different tires of servers [16]. Tan et al. propose an
online job dispatching and scheduling algorithm to minimize
total weighted service response time in edge clouds. [20].
These existing edge cloud load balancing solutions only fo-
cus on reducing the service latency. However, the analytics
accuracy is as important as the service latency for MAR.
Therefore, mitigating the tradeoff between the service latency
and analytics accuracy is indispensable in designing workload
dispatching algorithms for edge-based MAR systems.

IIT. ANALYTICAL MODEL OF EDGE-BASED MAR SYSTEM

In this section, we describe the system model for analyzing
the edge-based MAR system. The system model includes
network latency, computational latency, and analytics accuracy
models. The computational latency and analytics accuracy
models are derived based on the performance measurements
obtained from our MAR testbed.

We consider a mobile edge network with X' MAR users and
N heterogeneous servers including both the cloud and edge
servers. Denote X and A\ as the set of MAR users and servers,
respectively. The MAR users communicate with servers via
wireless access points such as cellular base stations and WiFi
hotspots. The object analytics is performed on either edge
servers or cloud server. The average service latency of the
kth MAR user can be defined as

Ly =Ly + L, + L%, (1

where L} is the wireless latency incurred by sending a video
frame from the kth user to its associated wireless access point;
Lt is the core network latency caused by transferring the
frame from the wireless access point to the server assigned



to the user; and LY is the computational latency of the object
analytics on the server.

A. Network Latency Model

The network latency is composed of the wireless and core
network latency. The wireless latency is determined by the
user’s video frame resolutions and wireless data rates. Since
the data size of analytics results is usually small, we do
not model the latency caused by transmitting the analytics
results [21]. We assume that the AR video of the kth user is
preprocessed into video frames with the resolution of sj X s
pixels. In this paper, we use s; (the number of pixels) to
represent the video frame resolution of the kth MAR user.
Denote o as the number of bits required to represent the
information carried by one pixel. Denote S = {s} |k € K}
as the set of users’ frame resolutions. The data size of a video
frame is calculated as o's? bits. Let Ry, be the average wireless
data rate of the kth user. The wireless latency experienced by
the kth user is modeled as

y_ o
Ly = R 2)
Note that we consider the simplified wireless latency model
(Eq. 2) because we focus on the system level performance
rather than wireless link level performance in this paper.

Since the core network usually has very high transmission
capacity, its latency is mainly determined by the aggregated
traffic loads in the network and the geo-distance between the
wireless access points and the servers. The impact of the video
frame size of a single user on the link latency of the core
network is negligible. Therefore, we do not consider such an
impact in our core network latency model. Denote ay, €
{0,1} as the server assignment indicator which indicates the
kth user is served by the nth server if aj , = 1. Denote A =
{akn |k € K,n € N'} as the set of users’ server assignments.
Here, we set ay, 5, as a binary variable to restrict that a user can
be served by only one server at a time. Let [, be the core
network latency between the kth user’s associated wireless
access point and the nth server, the core network latency of
the kth user can be expressed as

Lt = Z ak,nlk,n. (3)
neN

B. Computational Latency Model

The computational latency is closely related to the computa-
tional complexity of a user’s task and available computational
resources on servers [21]. Let ¢ and f,, be the computational
complexity of analyzing the kth user’s video frame and
the available computational resources on the nth server. We
assume that the available computational resources on a server
are evenly shared by the users associated with the server. Then,
In/> mex @mon is the computational resources allocated to
one user on the mth server. Therefore, the computational
latency experienced by the kth user can be modeled as

LZ = Z ak,n% Z Am,n- (4)
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Figure 2: The latency and accuracy vs. the frame resolution.

In order to characterize the computational latency, we
have to figure out the relationship between the computational
complexity ¢ and the video frame resolution sy, X s5. To do so,
we implement two object recognition algorithms, YOLO [5]
and SSD [6], on our Dell workstation with Nvidia Quadro
M4000 GPU. The original YOLO algorithm resizes incoming
video frames to a predefined resolution, e.g., 448 x 448, before
performing the object analytics. In order to measure the impact
of the video frame resolution on the object analytics perfor-
mance, we modify the YOLO algorithm to resize incoming
video frames to different resolutions and perform the object
analytics based on resized video frames. Since the workstation
is fully occupied by the object recognition algorithm, the
computational latency measured in the experiments reflects
the computational complexity of the object recognition under
different video frame resolutions.

Fig. 2 (a) shows that the computational latency increases
when the video frame resolution becomes higher. The speed of
the latency increase become faster at a higher video frame res-
olution. Such a relationship between the computational com-
plexity and the video frame resolution can be characterized
by a convex function. For example, the measurement data can
be fitted by a convex function f(s?) =7 x 1071%s;3 +0.083
with the root mean square error (RMSE) of 0.01. Based on
these observations, we model the computational complexity
cr = (s2) where 9(s3) is convex with respect to the video
frame resolution s.

C. Analytics Accuracy Model

The analytics accuracy highly depends on the resolutions
of the AR video frame. The higher video frame resolution
usually results in a better mean average precision of an object
recognition function [18]. Therefore, we model the analytics
accuracy as a function of the video frame resolution. We define
the analytics accuracy as the ratio between the number of
correctly recognized objects and that of total objects in a video
frame. We build the analytics accuracy model based on the
aforementioned performance measurement. On calculating the
accuracy, we assume that the YOLO algorithm can detect all
objects in a video frame when the video frame resolution is
600 x 600 pixels.

Fig. 2 (b) shows the analytics accuracy of the YOLO and
SSD algorithm under different video frame resolutions. There
are two observations. The first one that a higher video frame



resolution enables a better analytics accuracy. The second
observation is that the performance gain narrows down at a
high video resolution. Based on these observations, we can
use a concave function to define the relationship between
the analytics accuracy and the video frame resolution. For
example, the concave function f(s2) = 1—1.578¢~6-5x10 sk
can fit the measurement data with less than 0.03 RMSE.
Therefore, we model the analytics accuracy A = &(s?)
where £(s?) is a concave function with respect to video frame
resolution s3.

D. Problem Formulation

Based on the analytical model, the total service latency of

the MAR users is
52 52
Q + Ak.n lk,n + M Z Am,n )
Rk fn mekC

L=2 2,
neN kekK

&)

and the summation of the analytics accuracy of the MAR users

A= "&(sh).

kel

(6)

On designing the edge network orchestrator, we aim to
minimize the overall service latency and maximize the total
analytics accuracy of the MAR users. Therefore, designing the
orchestrator is a multi-objective optimization problem [22].
There is a tradeoff between the service latency and analytics
accuracy. In order to characterize the tradeoff, we introduce a
positive weight parameter 5 which reflects the preference be-
tween the service latency and analytics accuracy in optimizing
the MAR system. We adopt the weighted sum method [23] to
express the multi-object optimization problem as

Pl min F=L-pA
{A,S}
s.t. Ch: &(s3) > 6, Vk € K, (7)

Co: Y penn =1k €K,
Cs: apn€{0,1},Vke K,Vn e N

where §j is the minimum analytics accuracy requirement
of the kth user; the constraints C5 and C3 ensure that an
individual user is assigned to one and only one server. The
weight parameter 3 controls the latency-accuracy tradeoff. For
example, a larger /3 indicates that the MAR system prefers a
higher accuracy. As a result, the optimal solution of Problem
Z1 trades the average service latency for enhancing the
analytics accuracy.

IV. THE FACT ALGORITHM

Problem £1 is a mixed-integer nonlinear programming
problem (MINLP) which is difficult to solve [24]. We develop
the FACT algorithm to solve the problem based on the block
coordinate descent method [25].

To solve Problem £?1, we relax binary Va~riables

ay, to continuous variables aj,. Denote A =
{ak.n |k € K,n € N'}. The relaxed problem is
2 min F=L-pA )
s.t.  Cq,Cq,ar €10,1].

Algorithm 1: The FACT Algorithm

Input: The weight 3, the convergence condition 7, the
initial set of frame resolutions Sp.
Output: The set of server assignments A, the set of
frame resolutions S.
S« Sp,i + 0;
while True do

1
2
3 A < solve Problem 222 with fixed S
4 S + solve Problem £22 with fixed fl;
5 F; «+ L — BA,
6 if|(FZ—FZ_1)/FZ| < 7 then
7 L break;
8 141+ 1;
9 for £k € K do
10 for n ¢ N do
11 if n = argmaxay ; then
JEN
12 | akn 1
13 else
14 L agn < 0;

15 S < solve Problem £22 with A;
16 return A, S

Lemma 1. The Problem &2 is strictly convex with respect to
the relaxed server assignments A.

Proof: For any feasible ay, ,,, @i j, Vm,i € K,¥n,j € N,

2¢(s7)
= fi 7
0,

. . 2
The Hessian matrix H = (ﬁ)
#30%m.n ) KN X KN

and positive definite. The constraints C and Cj are linear. The
constraints C; are irreleyant to A. Therefore, 222 is strictly
convex with respect to A [26]. [ |

0*F
0a; Ot

¢t =7 and m = n,

9
i#j or m#n, ®

is symmetric

Lemma 2. The Problem &2 is strictly convex with respect to
frame resolution S.

Proof: For any feasible variable s2,s2, Vi,j € K, we

R
have
o din = o? S

O°F gomer 2 P Gma — By, 1=,
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Since 1)(sj;) is convex function, 5707 1S non-negative. Since

2

9% . .
Sy is non-positive. Hence, the

&(s?) is concave function
Hessian matrix H = (%)
definite. Constraints 'y are convex, and Constraints C's and C3
do not apply to S. Therefore, Problem 72 is strictly convex
with respect to S [26]. [ |

Lemmas 1 and 2 lay the foundation for solving Problem
222 with the block coordinate descent method [25]. Based on

is symmetric and positive



this method, we develop a fast and accurate object analytics
(FACT) algorithm which solves Problem £22 by sequentially
fixing one variable, i.e., A or S, and updating the other
one. The pseudo code of the FACT algorithm is presented
in Algorithm 1. At the beginning of the algorithm, the weight
/3 and video frame resolution S are initialized. With the fixed
video frame resolution, we solve Problem £?2 to obtain the
optimal server assignment A. Then, based on the optimized A,
we optimize the video frame resolution. After each iteration,
the value of the objective function F' is calculated. The FACT
algorithm iteratively optimizes A and S until the objective
function F' is converged. In the algorithm, we introduce an
arbitrary small positive number 7 to evaluate the convergence
of the objective function as shown in line 6 of the pseudo
code. After solving Problem 2, ay ,, are converted to aj
according to

L,
Ak.n =
0,

Theorem 1. The FACT algorithm converges to the optimal
solution.

n = arg maxdy,;,
JEN
otherwise.

Y

Proof: The convergence of the FACT algorithm to optimal
solution can be proved by showing that Problem 472 is
strictly convex with respect to each block of variables, e.g.,
A and S [25]. The convexity of Problem 22 is proved by
lemma 1 and 2. Hence, the optimality and convergence of the
FACT algorithm is guaranteed. [ ]

Lemma 3. The FACT algorithm has a sub-linear convergence
rate.

Proof: The block coordinate descent method ensures a
sub-linear convergence rate [27]. The FACT algorithm is
designed based on the block coordinate descent method. Thus,
it has a sub-linear convergence rate. [ ]

V. SIMULATION RESULTS

In this section, we evaluate the FACT algorithm through
large-scale simulations. We simulate an edge network with
50 wireless access points and 20 servers. The distribution
of the wireless access points and the user traffic are derived
based on network traffic traces collected from an operating
mobile network consisting of 10000 base stations and 50000
mobile users. The edge servers are randomly deployed in
the network. The network latency between wireless access
points and edge servers are generated according to the nor-
mal distribution with the mean value of 50ms. The network
latency between the wireless access points and the cloud
server are also generated based on the normal distribution
but with the mean value of 150ms. The wireless data rates
of users are uniformly distributed between 1 to 10 Mbps.
Based on the measurements from our experiments, we adopt
e, = P(s3) = 7 x 10703 + 0.083 TFLOPS as the
computational complexity of analyzing a s x s video frame.
In the simulation, the computing capacities of the cloud and
edge servers are set to 10 and 2 TFLOPS, respectively. We
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Figure 3: The Pareto boundary derived by the FACT algorithm.

model as Aj, = £(s2) = 1—1.578¢6-5%10" sk 4 the analytics
accuracy function on both cloud and edge servers. The default
value of (3 is 20, and the minimum video frame resolution is
40000 pixels (200 x 200).

In the simulation, we compare the FACT algorithm with the
three categories of algorithms summarized in Table 1.

« Baseline: the baseline algorithm has a fixed video frame
resolution and randomly assigns servers to MAR users.

o Server assignment optimized: this category of algo-
rithms optimize the server assignments, but the video
frame resolution is predefined. We implement maximum
accuracy (maxA) and minimum latency (minL) algorithms
which adopt the largest and smallest frame resolutions,
respectively.

o Frame resolution optimized: these algorithms optimize
the frame resolution, but the server assignments are not
optimized. We implement two methods: random server
selection (RandS) and least workload server selection
(LoadS).

Table I. Algorithm Comparison

frame resolution server selection
fixed | optimized | random | greedy | optimized
FACT X X
Baseline X X
MaxA X
MinL X X
LoadS X X
RandS X X

A. The impact of 8

The value of S impacts the tradeoff between the service
latency and analytics accuracy in the edge based MAR system.
As shown in Fig. 3, by varying the value of (3, we derive
the Pareto boundary which characterizes the latency-accuracy
tradeoff obtained by the FACT algorithm.

Fig. 4 shows the impact of /5 on the service latency and
analytics accuracy of different algorithms. When /3 increases,
the MAR system emphasizes on the performance of the
analytics accuracy. As a result, the FACT algorithm trades the
service latency for the analytics accuracy. Since the maxA,
minL, and baseline algorithms do not optimize the video
frame resolution, the variation of 3 does not change the
latency-accuracy tradeoff. Hence, the performance of these
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Figure 6: The system performance vs. number of users.

algorithm does not show many changes versus . The latency
fluctuation of the baseline algorithm is because of the random
server assignments. This simulation result also shows that, as
compared to the baseline algorithm, the FACT algorithm is
able to reduce about 26% service latency while maintaining
the similar analytics accuracy (S = 20), and enhance about
8% analytics accuracy when ensuring a similar service latency

(8 = 90).

B. The impact of AR video frame resolution

The AR video frame resolution impacts not only the
transmission and computational latency but also the analytics
accuracy. In order to evaluate such impacts, we vary the
minimum video frame resolutions in the simulation. The
maximum video frame resolution is fixed at 600 x 600 pixels.
The optimized video frame resolution is between the minimum
and maximum video frame resolutions. The video frame
resolution of the baseline algorithm is defined as the mean
value of the minimum and maximum video frame resolutions.
As shown in Fig. 5 (a), the service latency of the minL and
baseline algorithm increases versus the minimum video frame
resolution. When the minimum video frame resolution is less
than 350 x 350 pixels, the FACT algorithm maintains the
system performance (both the service latency and analytics
accuracy) because of the frame resolution optimization. When
the minimum video frame resolution is larger than 500 x 500
pixels, the FACT algorithm has the same service latency as
the minL. algorithm because of the optimal frame resolution
equals to the minimum frame resolution. Fig. 5 (b) shows
that the FACT algorithm obtains a lower latency at the cost
of analytics accuracy. However, the latency-accuracy tradeoff
is mitigated. For example, as compared with the baseline

Network latency (ms)
(a) (b)

Figure 7: The system performance vs. core network latency.

algorithm, the FACT algorithm reduces about 40% latency at
the cost of around 3% accuracy when the minimum video
frame resolution is 400 x 400 pixels.

C. The impact of the number of users

Fig. 6 evaluates the impact of the number of users on
the performance of the edge-based MAR system. When the
number of users increases, the edge servers experience more
workloads. Thus, the computational latency increases. As
compared with the other algorithms, the FACT algorithm
achieves the smallest latency. Since the FACT, LoadS and
RandS algorithms optimize the video frame resolution, the
performance differences between the FACT algorithm and the
other two algorithms shows the improvement gained from
the optimal server assignment. Both RandS and baseline
algorithms adopt the random server selection. Hence, the
performance difference between these algorithms reflect the
advantages of the frame resolution optimization.

As compared with the baseline algorithm, the FACT algo-
rithm gains up to 38% service latency reduction with less
than 10% loss of analytics accuracy when the number of
users is 100. When the number of users increases, the servers
are overloaded. In order to maintain a low service latency,
the FACT algorithm aggressively reduces the video frame
resolution, which is the reason for the 10% loss in the analytics
accuracy. As compared with LoadS and RandS algorithms,
the FACT algorithm improves both the latency and accuracy
performance.

D. The impact of the average network latency

Fig. 7 shows the impact of the average network latency
on the performance of the edge-based MAR system. Here,
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Figure 8: The overview of edge-based MAR system.

the average network latency reflects the average transmission
delay between the wireless access points and servers. As
shown in the figure, the service latency of the MAR system
increases versus the average network latency. However, the
FACT algorithm is able to minimize the service latency at the
cost of a slight decrease of the analytics accuracy. The latency
gap between the FACT, LoadS and RandS algorithms reflects
the gain obtained through optimizing the server assignment.
The latency gap between the baseline and RandS algorithms
is due to the video frame resolution optimization.

VI. THE SYSTEM IMPLEMENTATION AND EXPERIMENTS

In this section, we implement the edge-based MAR system
including the edge network orchestrator, MAR clients and
MAR servers, and develop the corresponding MAR commu-
nication protocol. We conduct experiments based on the im-
plementation to validate the performance of the edge network
orchestrator and MAR communication protocol.

A. The edge-base MAR system implementation

Fig. 8 overviews the edge-based MAR system which con-
sists of three major components: the edge network orchestra-
tor, MAR client and MAR server.

The edge network orchestrator: the orchestrator is re-
sponsible for optimizing the server assignment and video
frame resolution for MAR users. The core of the orchestrator
is the FACT algorithm which performs the optimization. In
order to realize the FACT algorithm, three auxiliary modules
are implemented. The first one is the request handler which
puts the incoming service requests into a FIFO queue and
dispatches the server assignments and video frame resolutions
derived from the FACT algorithm to the corresponding MAR
users. The second module is the scheduler which manages
the service queue and invokes the FACT algorithm based on
the queue length and predefined optimization interval. In the
implementation, the FACT algorithm is invoked if the queue
length equals to 10 or a 100ms timer is expired after the
last optimization. The optimization trigger, e.g., the queue
length and timer, is adjustable in the implementation. The
third module is the system status monitor which monitors
and collects the system information including users’ wireless
data rates, network latency between users and servers, and

Figure 9: The MAR communication protocol.

workloads on servers. This information is inputted to the FACT
algorithm for optimizing the server assignment and video
frame resolution. The orchestrator is deployed at network edge
and can be accessed by MAR users with very short latency. We
also implement the baseline, maxA, minL, LoadS, and RandS
algorithms in the network orchestrator for the performance
comparison.

The MAR Client: The MAR client captures the real-world
video, sends frames to a server and overlays the received
information with its corresponding objects. There are four
functional modules implemented in the MAR client. The first
one is the network status monitoring module which measures
wireless data rates and the network latency between the user
and servers. This model also triggers a service request to the
orchestrator for the performance optimization when the user’s
service quality is lower than a threshold. The second one is
the user interface that captures the real-world environments
and display the analytics results received from the server.
The third one is the service request module which sends
service request to the orchestrator. The service request message
contains the information of the user’s wireless data rate and
network latency toward edge and cloud servers. It also parses
the control information about the frame resolution and server
assignment received from the orchestrator. The fourth module
is the data communication module which streams the AR video
frames to an assigned server, and receives the analytics results
from the server. This module is also responsible for resizing
the video frames according to the frame resolution selected by
the orchestrator. Since the current implementation of our MAR
server only supports six video frame resolutions, we select one
of the supported resolutions to approximate the video frame
resolution determined by the orchestrator.

The MAR Server: The MAR server is developed to process
the video frames and send the analytics results back to
MAR users. The server is designed to serve multiple users
simultaneously through multi-threading. There are four major
modules implemented on the server. The first one is the
service handler module which performs the authentication and
establishes a socket connection with MAR users. This module
is also responsible for dispatching the analytics results to
corresponding MAR users.

The second one is the object analytics module, which



decompresses the frames and performs the object analytics for
MAR users. The object analytics module is designed based on
the YOLO framework with the GPU acceleration [5]. In order
to allow the object analytics module to analyze video frames
with different resolutions, we trained six CNN models and
corresponding weights by using PASCAL VOC 2007 dataset.
Therefore, the implemented object analytics module supports
six video frame resolutions. If the resolution of incoming video
frames does not match any of these video frame resolutions,
the object analytics module resizes the input video frames into
one of the supported resolutions and then analyzes the resized
video frames.

The third one is the results processing module which
prepares the information related to the recognized objects.
The fourth module is the workload monitor which monitors
workloads on the server and updates the workload information
to the orchestrator periodically.

B. The edge-based MAR communication protocol

As illustrated in Fig. 9, the proposed communication pro-
tocol enables the MAR service in five steps.

1) The MAR user sends a service request to the orchestrator.
The service request message also includes the user’s wire-
less data rates and network latency measurements. After
the service is initialized, the service request message is
used to periodically update the user’s wireless data rates
and network latency measurements to the orchestrator.

2) Upon receiving the service request, the orchestrator de-
cides the server assignment and frame resolution, and
sends them back to the user.

3) The user establishes a connection to the assigned server,
and informs the server of its configuration information.

4) After the connection is established, the user sends its AR
video frames to the server for the object analytics.

5) The MAR server detects and recognizes objects in the
video frames, and sends the results back to the user.

C. Performance evaluation

An edge-based MAR testbed as shown in Fig. 10 is de-
veloped to evaluate the performance of the proposed edge
network orchestrator. The MAR clients are implemented in
Raspberry Pis and LXC containers connected to the emulated
network via wireless routers. The edge network is emulated
by Mininet [28]. Using Mininet, we can configure the core
network latency and evaluate its impact on the system per-
formance. Three edge MAR servers are implemented using
three NVIDIA Jetson TX development kits, and one cloud
MAR server is implemented on a Dell workstation with Nvidia
Quadro M4000 GPU.

Fig. 11 (a) shows the latency and accuracy versus the num-
ber of users. Although the latency increase with the growth
of number of users, the FACT algorithm achieves significant
latency reduction as compared to the other algorithms. For
example, when the number of users is 8, the FACT algorithm
reduces 27% latency with only 1% accuracy loss as compared
to the baseline algorithm.

Nvidia Jetson TX2

@ LXC Orchestrator
P —— > =
«— ; l——
. The FACT algorithm
LXC Container
e f————— _¢ _T ___________ 1
Mininet

|
Linksys EA7500 |

S — |

Linksys ]900AC L

& i : DELL Precision
% 5810 with Nvidia
N2 - - Quadro M4000 GPU
Raspberry Pi Nvidia Jetson TX2 Nvidia Jetson TX2

Figure 10: The edge-base MAR testbed.

Fig. 11 (b) shows the service latency and analytics accuracy
versus the core network latency. The service latency increases
with the growth of the core network latency. However, the
FACT algorithm outperforms the other algorithms. For in-
stance, it achieves about 25% latency reduction at the cost
of less than 1% accuracy loss when the average core network
latency is 100 ms.

Fig. 11 (c¢) evaluates the impact of wireless channel condi-
tions on the service latency and analytics accuracy. We use the
Keysight J7211A attenuation control unit to vary the channel
fading between the wireless access point and a MAR user. In
this way, we evaluate the system performance under different
wireless channel conditions. A larger channel fading increases
the signal attenuation and leads to a lower wireless data rate.
As a result, the service latency increases. Owing to the video
frame resolution optimization, the FACT algorithm is able
to achieve a low service latency while maintaining a high
analytics accuracy.

Fig 12 shows the tradeoff between the latency and accuracy
with different 8. A larger § indicates the system prefers a
higher analytics accuracy. When f is small, e.g., 8 = 20, the
FACT algorithm trades the analytics accuracy for the service
latency. Therefore, it achieves more than 40% service latency
reduction at the cost of about 10% analytics accuracy loss as
compared with the maxA algorithm. When § is large, e.g.,
8 = 60, the FACT algorithm prioritizes the analytics accuracy
improvement. As a result, it achieves an almost perfect analyt-
ics accuracy. At the same time, the FACT algorithm achieves
a lower latency than the maxA, LoadS, and RandS algorithms.

VII. CONCLUSION

In this paper, we design an edge network orchestrator to
improve the responsiveness and analytics accuracy of the edge-
based MAR system. We build analytical models for studying
the latency-accuracy tradeoff in edge-based MAR systems,
and develop the FACT algorithm to improve the system
performance by optimizing the server assignment and frame
resolution selection. The performance of the FACT algorithm
is evaluated through network simulations. In addition, we
implement the edge-based MAR system with the proposed
network orchestrator and the corresponding communication
protocol. The performance of the edge network orchestrator
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Figure 11: The system performance measurements with different configurations.
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