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Abstract

We introduce a new distance-preserving compact representation of multi-dimensional point-sets.
Given n points in a d-dimensional space where each coordinate is represented using B bits (i.e., dB bits
per point), it produces a representation of size O(d log(dB/ε) + log n) bits per point from which one
can approximate the distances up to a factor of 1± ε. Our algorithm almost matches the recent bound
of [IW17] while being much simpler. We compare our algorithm to Product Quantization (PQ) [JDS11],
a state of the art heuristic metric compression method. We evaluate both algorithms on several data sets:
SIFT (used in [JDS11]), MNIST [LC98], New York City taxi time series [GMRS16] and a synthetic
one-dimensional data set embedded in a high-dimensional space. With appropriately tuned parameters,
our algorithm produces representations that are comparable to or better than those produced by PQ, while
having provable guarantees on its performance.

1 Introduction

Compact distance-preserving representations of high-dimensional objects are very useful tools in data
analysis and machine learning. They compress each data point in a data set using a small number of bits
while preserving the distances between the points up to a controllable accuracy. This makes it possible
to run data analysis algorithms, such as similarity search, machine learning classifiers, etc, on data sets
of reduced size. The benefits of this approach include: (a) reduced running time (b) reduced storage and
(c) reduced communication cost (between machines, between CPU and RAM, between CPU and GPU,
etc). These three factors make the computation more efficient overall, especially on modern architectures
where the communication cost is often the dominant factor in the running time, so fitting the data in a single
processing unit is highly beneficial. Because of these benefits, various compact representations have been
extensively studied over the last decade, for applications such as: speeding up similarity search [Bro97,
IM98, KOR00, TFW08, WTF09, JDS11, NFS12, SL14], scalable learning algorithms [WDL+09, LSMK11],
streaming algorithms [M+05] and other tasks. For example, a recent paper [JDJ17] describes a similarity
search software package based on one such method (Product Quantization (PQ)) that has been used to solve
very large similarity search problems over billions of point on GPUs at Facebook.

The methods for designing such representations can be classified into data-dependent and data-oblivious.
The former analyze the whole data set in order to construct the point-set representation, while the latter apply
∗Code available at https://github.com/talwagner/quadsketch.
†Authors ordered alphabetically.
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a fixed procedure individually to each data point. A classic example of the data-oblivious approach is based
on randomized dimensionality reduction [JL84], which states that any set of n points in the Euclidean space
of arbitrary dimension D can be mapped into a space of dimension d = O(ε−2 log n), such that the distances
between all pairs of points are preserved up to a factor of 1± ε. This allows representing each point using
d(B + logD) bits, where B is the number of bits of precision in the coordinates of the original pointset. 1

More efficient representations are possible if the goal is to preserve only the distances in a certain range. In
particular, O(ε−2 log n) bits are sufficient to distinguish between distances smaller than 1 and greater than
1 + ε, independently of the precision parameter [KOR00] (see also [RL09] for kernel generalizations). Even
more efficient methods are known if the coordinates are binary [Bro97, LSMK11, SL14].

Data-dependent methods compute the bit representations of points “holistically", typically by solving
a global optimization problem. Examples of this approach include Semantic Hashing [SH09], Spectral
Hashing [WTF09] or Product Quantization [JDS11] (see also the survey [WLKC16]). Although successful,
most of the results in this line of research are empirical in nature, and we are not aware of any worst-case
accuracy vs. compression tradeoff bounds for those methods along the lines of the aforementioned data
oblivious approaches.

A recent work [IW17] shows that it is possible to combine the two approaches and obtain algorithms that
adapt to the data while providing worst-case accuracy/compression tradeoffs. In particular, the latter paper
shows how to construct representations of d-dimensional pointsets that preserve all distances up to a factor of
1± ε while using only O((d+ log n) log(1/ε) + log(Bn)) bits per point. Their algorithm uses hierarchical
clustering in order to group close points together, and represents each point by a displacement vector from a
near by point that has already been stored. The displacement vector is then appropriately rounded to reduce
the representation size. Although theoretically interesting, that algorithm is rather complex and (to the best of
our knowledge) has not been implemented.

Our results. The main contribution of this paper is QuadSketch (QS), a simple data-adaptive algorithm,
which is both provable and practical. It represents each point using O(d log(dB/ε) + log n) bits, where
(as before) we can set d = O(ε−2 log n) using the Johnson-Lindenstrauss lemma. Our bound significantly
improves over the “vanilla” O(dB) bound (obtained by storing all d coordinates to full precision), and comes
close to bound of [IW17]. At the same time, the algorithm is quite simple and intuitive: it computes a
d-dimensional quadtree2 and appropriately prunes its edges and nodes.3

We evaluate QuadSketch experimentally on both real and synthetic data sets: a SIFT feature data set
from [JDS11], MNIST [LC98], time series data reflecting taxi ridership in New York City [GMRS16] and
a synthetic data set (Diagonal) containing random points from a one-dimensional subspace (i.e., a line)
embedded in a high-dimensional space. The data sets are quite diverse: SIFT and MNIST data sets are
de-facto “standard” test cases for nearest neighbor search and distance preserving sketches, NYC taxi data
was designed to contain anomalies and “irrelevant” dimensions, while Diagonal has extremely low intrinsic
dimension. We compare our algorithms to Product Quantization (PQ) [JDS11], a state of the art method for
computing distance-preserving sketches, as well as a baseline simple uniform quantization method (Grid).
The sketch length/accuracy tradeoffs for QS and PQ are comparable on SIFT and MNIST data, with PQ
having higher accuracy for shorter sketches while QS having better accuracy for longer sketches. On NYC
taxi data, the accuracy of QS is higher over the whole range of sketch lengths . Finally, Diagonal exemplifies
a situation where the low dimensionality of the data set hinders the performance of PQ, while QS naturally
adapts to this data set. Overall, QS performs well on “typical” data sets, while its provable guarantees ensure

1The bounds can be stated more generally in terms of the aspect ratio Φ of the point-set. See Section 2 for the discussion.
2Traditionally, the term “quadtree” is used for the case of d = 2, while its higher-dimensional variants are called “ hyperoc-

trees” [YS83]. However, for the sake of simplicity, in this paper we use the same term “quadtree” for any value of d.
3We note that a similar idea (using kd-trees instead of quadtrees) has been earlier proposed in [AZ14]. However, we are not

aware of any provable space/distortion tradeoffs for the latter algorithm.
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robust performance in a wide range of scenarios. Both algorithms improve over the baseline quantization
method.

2 Formal Statement of Results

Preliminaries. Let X = {x1, . . . , xn} ⊂ Rd be a pointset in Euclidean space. A compression scheme
constructs from X a bit representation referred to as a sketch. Given the sketch, and without access to the
original pointset, one can decompress the sketch into an approximate pointset X̃ = {x̃1, . . . , x̃n} ⊂ Rd. The
goal is to minimize the size of the sketch, while approximately preserving the geometric properties of the
pointset, in particular the distances and near neighbors.

In the previous section we parameterized the sketch size in terms of the number of points n, the dimension
d, and the bits per coordinate B. In fact, our results are more general, and can be stated in terms of the aspect
ratio of the pointset, denoted by Φ and defined as the ratio between the largest to smallest distance,

Φ =
max1≤i<j≤n‖xi − xj‖
min1≤i<j≤n‖xi − xj‖

.

Note that log(Φ) ≤ log d + B, so our bounds, stated in terms of log Φ, immediately imply analogous
bounds in terms of B.

We will use [n] to denote {1, . . . , n}, and Õ(f) to suppress polylogarithmic factors in f .

QuadSketch. Our compression algorithm, described in detail in Section 3, is based on a randomized variant
of a quadtree followed by a pruning step. In its simplest variant, the trade-off between the sketch size and
compression quality is governed by a single parameter Λ. Specifically, Λ controls the pruning step, in which
the algorithm identifies “non-important” bits among those stored in the quadtree (i.e. bits whose omission
would have little effect on the approximation quality), and removes them from the sketch. Higher values of Λ
result in sketches that are longer but have better approximation quality.

Approximate nearest neighbors. Our main theorem provides the following guarantees for the basic variant
of QuadSketch: for each point, the distances from that point to all other points are preserved up to a factor of
1± ε with a constant probability.

Theorem 1. Given ε, δ > 0, let Λ = O(log(d log Φ/εδ)) and L = log Φ + Λ. QuadSketch runs in time
Õ(ndL) and produces a sketch of size O(ndΛ + n log n) bits, with the following guarantee: For every
i ∈ [n],

Pr
[
∀j∈[n]‖x̃i − x̃j‖ = (1± ε)‖xi − xj‖

]
≥ 1− δ.

In particular, with probability 1−δ, if x̃i∗ is the nearest neighbor of x̃i in X̃ , then xi∗ is a (1+ε)-approximate
nearest neighbor of xi in X .

Note that the theorem allows us to compress the input point-set into a sketch and then decompress it
back into a point-set which can be fed to a black box similarity search algorithm. Alternatively, one can
decompress only specific points and approximate the distance between them.

For example, if d = O(ε−2 log n) and Φ is polynomially bounded in n, then Theorem 1 uses Λ =
O(log log n+ log(1/ε)) bits per coordinate to preserve (1 + ε)-approximate nearest neighbors.

The full version of QuadSketch, described in Section 3, allows extra fine-tuning by exposing additional
parameters of the algorithm. The guarantees for the full version are summarized by Theorem 3 in Section 3.

3



Table 1: Comparison of Euclidean metric sketches with maximum distortion 1± ε, for d = O(ε−2 log n) and
log Φ = O(log n).

REFERENCE BITS PER POINT CONSTRUCTION TIME

“Vanilla” bound O(ε−2 log2 n) –

Algorithm of [IW17] O(ε−2 log n log(1/ε)) Õ(n1+α + ε−2n) for α ∈ (0, 1]

Theorem 2 O(ε−2 log n (log log n + log(1/ε))) Õ(ε−2n)

Maximum distortion. We also show that a recursive application of QuadSketch makes it possible to
approximately preserve the distances between all pairs of points. This is the setting considered in [IW17].
(In contrast, Theorem 1 preserves the distances from any single point.)

Theorem 2. Given ε > 0, let Λ = O(log(d log Φ/ε)) and L = log Φ + Λ. There is a randomized algorithm
that runs in time Õ(ndL) and produces a sketch of sizeO(ndΛ+n log n) bits, such that with high probability,
every distance ‖xi − xj‖ can be recovered from the sketch up to distortion 1± ε.

Theorem 2 has smaller sketch size than that provided by the “vanilla” bound, and only slightly larger
than that in [IW17]. For example, for d = O(ε−2 log n) and Φ = poly(n), it improves over the “vanilla”
bound by a factor of O(log n/ log log n) and is lossier than the bound of [IW17] by a factor of O(log log n).
However, compared to the latter, our construction time is nearly linear in n. The comparison is summarized
in Table 1.

We remark that Theorem 2 does not let us recover an approximate embedding of the pointset, x̃1, . . . , x̃n,
as Theorem 1 does. Instead, the sketch functions as an oracle that accepts queries of the form (i, j) and return
an approximation for the distance ‖xi − xj‖.

3 The Compression Scheme

The sketching algorithm takes as input the pointset X , and two parameters L and Λ that control the amount
of compression.

Step 1: Randomly shifted grid. The algorithm starts by imposing a randomly shifted axis-parallel grid on
the points. We first enclose the whole pointset in an axis-parallel hypercube H . Let ∆′ = maxi∈[n]‖x1−xi‖,
and ∆ = 2dlog ∆′e. Set up H to be centered at x1 with side length 4∆. Now choose σ1, . . . , σd ∈ [−∆,∆]
independently and uniformly at random, and shift H in each coordinate j by σj . By the choice of side
length 4∆, one can see that H after the shift still contains the whole pointset. For every integer ` such that
−∞ < ` ≤ log(4∆), let G` denote the axis-parallel grid with cell side 2` which is aligned with H .

Note that this step can be often eliminated in practice without affecting the empirical performance of the
algorithm, but it is necessary in order to achieve guarantees for arbitrary pointsets.

Step 2: Quadtree construction. The 2d-ary quadtree on the nested grids G` is naturally defined by
associating every grid cell c in G` with the tree node at level `, such that its children are the 2d grid cells in
G`−1 which are contained in c. The edge connecting a node v to a child v′ is labeled with a bitstring of length
d defined as follows: the jth bit is 0 if v′ coincides with the bottom half of v along coordinate j, and 1 if v′

coincides with the upper half along that coordinate.
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In order to construct the tree, we start with H as the root, and bucket the points contained in it into the 2d

children cells. We only add child nodes for cells that contain at least one point of X . Then we continue by
recursing on the child nodes. The quadtree construction is finished after L levels. We denote the resulting
edge-labeled tree by T ∗. A construction for L = 2 is illustrated in Figure 1.

Figure 1: Quadtree construction for points x, y, z. The x and y coordinates are written as binary numbers.

We define the level of a tree node with side length 2` to be ` (note that ` can be negative). The degree of a
node in T ∗ is its number of children. Since all leaves are located at the bottom level, each point xi ∈ X is
contained in exactly one leaf, which we henceforth denote by vi.

Step 3: Pruning. Consider a downward path u0, u1, . . . , uk in T ∗, such that u1, . . . , uk−1 are nodes with
degree 1, and u0, uk are nodes with degree other than 1 (uk may be a leaf). For every such path in T ∗, if
k > Λ + 1, we remove the nodes uΛ+1, . . . , uk−1 from T ∗ with all their adjacent edges (and edge labels).
Instead we connect uk directly to uΛ as its child. We refer to that edge as the long edge, and label it with the
length of the path it replaces (k − Λ). The original edges from T ∗ are called short edges. At the end of the
pruning step, we denote the resulting tree by T .

The sketch. For each point xi ∈ X the sketch stores the index of the leaf vi that contains it. In addition it
stores the structure of the tree T , encoded using the Eulerian Tour Technique4. Specifically, starting at the
root, we traverse T in the Depth First Search (DFS) order. In each step, DFS either explores the child of the
current node (downward step), or returns to the parent node (upward step). We encode a downward step by 0
and an upward step by 1. With each downward step we also store the label of the traversed edge (a length-d
bitstring for a short edge or the edge length for a long edge, and an additional bit marking if the edge is short
or long).

Decompression. Recovering x̃i from the sketch is done simply by following the downward path from the
root of T to the associated leaf vi, collecting the edge labels of the short edges, and placing zeros instead
of the missing bits of the long edges. The collected bits then correspond to the binary expansion of the
coordinates of x̃i.

More formally, for every node u (not necessarily a leaf) we define c(u) ∈ Rd as follows: For j ∈
{1, . . . , d}, concatenate the jth bit of every short edge label traversed along the downward path from the root
to u. When traversing a long edge labeled with length k, concatenate k zeros.5 Then, place a binary floating
point in the resulting bitstring, after the bit corresponding to level 0. (Recall that the levels in T are defined

4See e.g., https://en.wikipedia.org/wiki/Euler_tour_technique.
5This is the “lossy” step in our sketching method: the original bits could be arbitrary, but they are replaced with zeros.
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by the grid cell side lengths, and T might not have any nodes in level 0; in this case we need to pad with 0’s
either on the right or on the left until we have a 0 bit in the location corresponding to level 0.) The resulting
binary string is the binary expansion of the jth coordinate of c(u). Now x̃i is defined to be c(vi).

Block QuadSketch. We can further modify QuadSketch in a manner similar to Product Quantization [JDS11].
Specifically, we partition the d dimensions into m blocks B1 . . . Bm of size d/m each, and apply QuadSketch
separately to each block. More formally, for each Bi, we apply QuadSketch to the pointset (x1)Bi . . . (xn)Bi ,
where xB denotes the m/d-dimensional vector obtained by projecting x on the dimensions in B.

The following statement is an immediate corollary of Theorem 1.

Theorem 3. Given ε, δ > 0, and m dividing d, set the pruning parameter Λ to O(log(d log Φ/εδ)) and the
number of levels L to log Φ + Λ. The m-block variant of QuadSketch runs in time Õ(ndL) and produces a
sketch of size O(ndΛ + nm log n) bits, with the following guarantee: For every i ∈ [n],

Pr
[
∀j∈[n]‖x̃i − x̃j‖ = (1± ε)‖xi − xj‖

]
≥ 1−mδ.

It can be seen that increasing the number of blocks m up to a certain threshold ( dΛ/ log n ) does not
affect the asymptotic bound on the sketch size. Although we cannot prove that varying m allows to improve
the accuracy of the sketch, this seems to be the case empirically, as demonstrated in the experimental section.

4 Experiments

We evaluate QuadSketch experimentally and compare its performance to Product Quantization (PQ) [JDS11],
a state-of-the-art compression scheme for approximate nearest neighbors, and to a baseline of uniform scalar
quantization, which we refer to as Grid. For each dimension of the dataset, Grid places k equally spaced
landmark scalars on the interval between the minimum and the maximum values along that dimension, and
rounds each coordinate to the nearest landmark.

All three algorithms work by partitioning the data dimensions into blocks, and performing a quantization
step in each block independently of the other ones. QuadSketch and PQ take the number of blocks as a
parameter, and Grid uses blocks of size 1. The quantization step is the basic algorithm described in Section 3
for QuadSketch, k-means for PQ, and uniform scalar quantization for Grid.

We test the algorithms on four datasets: The SIFT data used in [JDS11], MNIST [LC98] (with all vectors
normalized to 1), NYC Taxi ridership data [GMRS16], and a synthetic dataset called Diagonal, consisting of
random points on a line embedded in a high-dimensional space. The properties of the datasets are summarized
in Table 2. Note that we were not able to compute the exact diameters for MNIST and SIFT, hence we only
report estimates for Φ for these data sets, obtained via random sampling.

The Diagonal dataset consists of 10, 000 points of the form (x, x, . . . , x), where x is chosen independently
and uniformly at random from the interval [0..40000]. This yields a dataset with a very large aspect ratio Φ,
and on which partitioning into blocks is not expected to be beneficial since all coordinates are maximally
correlated.

For SIFT and MNIST we use the standard query set provided with each dataset. For Taxi and Diagonal
we use 500 queries chosen at random from each dataset. For the sake of consistency, for all data sets, we
apply the same quantization process jointly to both the point set and the query set, for both PQ and QS. We
note, however, that both algorithms can be run on “out of sample” queries.

For each dataset, we enumerate the number of blocks over all divisors of the dimension d. For QuadSketch,
L ranges in 2, . . . , 20, and Λ ranges in 1, . . . , L− 1. For PQ, the number of k-means landmarks per block
ranges in 25, 26, . . . , 212. For both algorithms we include the results for all combinations of the parameters,
and plot the envelope of the best performing combinations.
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Table 2: Datasets used in our empirical evaluation. The aspect ratio of SIFT and MNIST is estimated on a
random sample.

Dataset Points Dimension Aspect ratio (Φ)
SIFT 1, 000, 000 128 ≥ 83.2

MNIST 60, 000 784 ≥ 9.2

NYC Taxi 8, 874 48 49.5

Diagonal (synthetic) 10, 000 128 20, 478, 740.2

We report two measures of performance for each dataset: (a) the accuracy, defined as the fraction of
queries for which the sketch returns the true nearest neighbor, and (b) the average distortion, defined as
the ratio between the (true) distances from the query to the reported near neighbor and to the true nearest
neighbor. The sketch size is measured in bits per coordinate. The results appear in Figures 2 to 5. Note that
the vertical coordinate in the distortion plots corresponds to the value of ε, not 1 + ε.

For SIFT, we also include a comparison with Cartesian k-Means (CKM) [NF13], in Figure 6.

4.1 QuadSketch Parameter Setting

We plot how the different parameters of QuadSketch effect its performance. Recall that L determines the
number of levels in the quadtree prior to the pruning step, and Λ controls the amount of pruning. By
construction, the higher we set these parameters, the larger the sketch will be and with better accuracy. The
empirical tradeoff for the SIFT dataset is plotted in Figure 7.

The optimal setting for the number of blocks is not monotone, and generally depends on the specific
dataset. It was noted in [JDS11] that on SIFT data an intermediate number of blocks gives the best results,
and this is confirmed by our experiments. Table 3 lists the performance on the SIFT dataset for a varying
number of blocks, for a fixed setting of L = 6 and Λ = 5. It shows that the sketch quality remains essentially
the same, while the size varies significantly, with the optimal size attained at 16 blocks.

# Blocks Bits per coordinate Accuracy Average distortion
1 5.17 0.719 1.0077

2 4.523 0.717 1.0076

4 4.02 0.722 1.0079

8 3.272 0.712 1.0079

16 2.795 0.712 1.008

32 3.474 0.712 1.0082

64 4.032 0.713 1.0081

128 4.079 0.72 1.0078

Table 3: QuadSketch accuracy on SIFT data by number of blocks, with L = 6 and Λ = 5.

5 Proofs

In this section we prove Theorems 1 and 2. Recall that we have a pointset x1, . . . , xn ∈ Rd with aspect ratio
Φ, and given error parameters ε, δ > 0. For the remainder of the section we fix the setting

Λ = log(16d1.5 log Φ/(εδ)).
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Figure 2: Results for the SIFT dataset.

Figure 3: Results for the MNIST dataset.

Figure 4: Results for the Taxi dataset.

Figure 5: Results for the Diagonal dataset.
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Figure 6: Additional results for the SIFT dataset.

Figure 7: On the left, L varies from 2 to 11 for a fixed setting of 16 blocks and Λ = L− 1 (no pruning). On
the right, Λ varies from 1 to 9 for a fixed setting of 16 blocks and L = 10. Increasing Λ beyond 6 does not
have further effect on the resulting sketch.

Recall that in Section 3 we let G` denote the grid with side length 2` for every integer `. Our analysis is
based on the observation that randomly shifting the grids, which is used as the first step of our algorithm,
induces a padded decomposition [Bar96] of the pointset. We now define this formally.

Definition 1 (padded point). We say that a point xi is (ε,Λ, `)-padded, if the grid cell in G` that contains xi
also contains the ball of radius ρ(`) centered at xi, where

ρ(`) = 8ε−12`−Λ
√
d.

We say that xi is (ε,Λ)-padded in the quadtree T , if it is (ε,Λ, `)-padded for every level ` of T .

Note that d and Λ are fixed parameters for a given input. We omit their dependence from the notation
ρ(`) for simplicity.

We now prove Theorem 1. It follows directly from combining the following two lemmas.

Lemma 1. If the grids are randomly shifted, as in Section 3, then every point xi is (ε,Λ)-padded in T with
probability 1− δ.

Proof. Fix a point xi, a coordinate k ∈ {1, . . . , d} and a level `. Let xi(k) denote the value of xi in coordinate
k. Along this coordinate, we are randomly shifting a 1-dimensional grid partitioned into intervals of length 2`.
Since the shift is uniformly random, the probability for xi(k) to be at distance at most ρ(`) from an endpoint
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of the interval that contains it equals 2ρ(`)/2`. By plugging our setting of ρ(`) and Λ, this probability equals
δ/(d log Φ). Taking a union bound over the d coordinates, we have probability at most δ/ log Φ for xi to be
at distance at most ρ(`) from the boundary of the cell of G` that contains it. In the complement event xi is
(ε,Λ, `)-padded in G`. Taking another union bound over the log Φ levels in the quadtree, xi is (ε,Λ)-padded
with probability at least 1− δ.

Lemma 2. If a point xi is (ε,Λ)-padded in T , then for every j ∈ [n],

(1− ε)‖x̃i − x̃j‖ ≤ ‖xi − xj‖ ≤ (1 + ε)‖x̃i − x̃j‖,

where {x̃i} are as defined in Section 3.

Proof. We recall that T is a pruned quadtree in which every node v is associated with a grid cell of an
axis-parallel grid G` with side length 2`, which is aligned with and contained in H . We call ` the level of v,
and denote it henceforth by `(v). We will use the term “bottom-left corner” of a grid cell for the corner that
minimizes all coordinate values (i.e., the high-dimensional analog of a bottom-left corner in the plane).

Let r be the root of T . We may assume w.l.o.g. that the bottom-left corner of H is the origin in Rd, since
translating H together with the entire pointset does not change pairwise distances. Under this assumption,
we make the following observation, illustrated in Figure 8.

Observation 1. Let v be a node in T . If the path from r to v contains only short edges, then c(v) (defined by
the decompression algorithm in Section 3) is the bottom-left corner of the grid cell associated with v.

Figure 8: By collecting the edge label bits along every dimension from the root to a node, and padding with
zeros as necessary, we obtain the binary expansion of the bottom-left corner of the associated grid cell.

Let xi be a padded point, and xj be any point. Recall that we denote by vi and vj the leaves corresponding
to xi and xj respectively (see Section 3). Let w be the lowest common ancestor of vi and vj in T . Since
xi and xj are in separate grid cells of G`(w)−1, and the cell containing xi also contains the ball of radius
ρ(`(w)− 1) around xi, we have

‖xi − xj‖ ≥ ρ(`(w)− 1) = 8ε−12`(w)−1−Λ
√
d. (1)

Let ui be the lowest node on the downward path from w to vi, that can be reached without traversing a
long edge. Similarly define uj for vj . See Figure 9 for illustration.

Note that ui must be either the leaf vi, or an internal node whose only outgoing edge is a long edge. In
both cases, ui is the bottom of a path of degree-1 nodes of length Λ:

10



• If ui is a leaf: Since the pointset has aspect ratio Φ, then after log Φ levels the grid becomes sufficiently
fine such that each grid cell contains at most one point xi. Since we generate the quadtree with
L = log Φ + Λ levels, then each point xi is in its own grid cell for at least the bottom Λ levels of the
quadtree.

• If ui is an internal node which is the head of a long edge: Since the pruning step only places long edges
at the bottom of degree-1 paths of length Λ, then ui must be the bottom node of such path.

On the other hand w is an ancestor of ui, and it has degree at least 2, since it is also an ancestor of uj .
Hence w is at least Λ levels above ui, implying `(vi) ≤ `(w)− Λ. Applying the same arguments to uj we
get also `(vj) ≤ `(w)− Λ.

Figure 9: In the proof of Lemma 2, w is the lowest common ancestor of vi, vj , the leaves corresponding to
xi, xj . ui is the lowest node on the downward path from w to vi which is achievable without traversing any
long edges (marked in red). uj is defined similarly for vj .

Let c∗(ui), c∗(uj) ∈ Rd be the bottom-left corners of the grid cells associated with ui and uj . If all edges
on the downward paths from the root of T to ui and uj were short, then Observation 1 would yield that
c∗(ui) = c(ui) and c∗(uj) = c(uj). In general, there might be some long edges on those paths, but they all
must lie on the subpath from the root of T down to w, which is the same for both paths. This is because by
the choice of ui and uj , all downward edges from w to either of them are short. Therefore c(ui) and c(uj)
are shifted from the true bottom-left corners by the same shift, which we denote by

η = c∗(ui)− c(ui) = c∗(uj)− c(uj).

Next, observe that the grid cell associated with ui has side 2`(ui) and it contains both c∗(ui) and xj .
Therefore ‖xi − c∗(ui)‖ ≤ 2`(ui)

√
d.

Furthermore, since ui is an ancestor of vi, then by the definition of c(ui) and c(vi), in each coordinate,
the binary expansions of these two vertices are equal from the location `(ui) and up. In the less significant
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locations, c(ui) is zeroed while c(vi) may have arbitrary bits. This means that the difference between c(ui)
and c(vi) in each coordinate can be at most 2`(ui) in the absolute value, and consequently ‖c(vi)− c(ui)‖ ≤
2`(ui)

√
d. Recalling that the decompression algorithm defines x̃i = c(vi), we get ‖x̃i − c(ui)‖ ≤ 2`(ui)

√
d.

Collecting the above inequalities, we have

‖xi − η − x̃i‖ = ‖xi − c(ui)− η + c(ui)− x̃i‖
= ‖xi − c∗(ui) + c(ui)− x̃i‖
≤ ‖xi − c∗(ui)‖+ ‖c(ui)− x̃i‖

≤ 2 · 2`(ui)
√
d

≤ 2 · 2`(w)−Λ
√
d.

Similarly for j we have ‖xi − η − x̃i‖ ≤ 2 · 2`(w)−Λ
√
d. Together, by the triangle inequality,

‖x̃i − x̃j‖ = ‖x̃i + η − xi + xi − xj + xj − η − x̃j‖
= ‖xi − xj‖ ± (‖xi − η − x̃i‖+ ‖xi − η − x̃i‖)

= ‖xi − xj‖ ± 4 · 2`(w)−Λ
√
d.

To complete the proof of Lemma 2 it remains to show 4 · 2`(w)−Λ
√
d ≤ ε · ‖xi − xj‖, which follows from

Equation (1).

5.1 Sketch Size and Running Time

Lemma 3. QuadSketch produces a sketch of size O(ndΛ + n log n) bits.

Proof. The tree T has n leaves, and we have pruned each non-branching path in it to length Λ. Hence its
total size is O(nΛ), and its structure can be stored with this many bits using (for example) the DFS scan
described in Section 3. Each short edge label is d bits long, so together they consume O(ndΛ) bits. As for
the long edges, there can be at most O(n) of them, since the bottom of each long edge is either a branching
node or a leaf. The long edge labels are lengths of downward paths in the non-pruned tree T ∗, whose height
bounded by is O(log Φ + Λ). Together the long edge labels consume O(n log(log Φ + Λ)) bits, which is
dominated by O(nΛ). Finally for each point xi we store the index of its corresponding leaf vi, and since
there are n leaves, this requires O(n log n) additional bits to store.

Lemma 4. The QuadSketch construction algorithm runs in time O(ndL).

Proof. Given a quadtree cell and a point contained in it, in order to bucket the point into a cell in the next
level, we need to check for each coordinate whether the point falls in the upper or lower half of the cell.
This takes time O(d). Since each point is bucketed once in every level, and we generate T ∗ for L levels, the
quadtree construction time is O(ndL). The pruning step requires just a linear scan of T ∗, in time O(nL).

5.2 Maximum Distortion

We now prove Theorem 2.

Sketching algorithm Given a pointset X , apply QuadSketch to X and let T1 be the resulting tree. Let
Q ⊂ X be the padded points in T1 (meaning those for which the condition of Lemma 1 is satisfied for T1).
Continue by recursion on X \Q, until all points in X are padded in some tree. The returned sketch contains
all trees T1, . . . , Tk constructed during the recursion, and in addition, for every point xi we store the index γi
of the tree in which it is padded.
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Query algorithm Given two point indices i, j, assume w.l.o.g. γ(i) ≤ γ(j), then the tree Tγ(i) has
corresponding leaves for both xi and xj . We decompress x̃i and x̃j from Tγ(i) and return ‖x̃i − x̃j‖.

Analysis The correctness of the estimate up to distortion 1 ± ε follows from Lemma 2. We now bound
the sketch size and the running time. Lemma 1 with δ = 0.25 implies that in each of the trees T1, . . . , Tk,
the expected fraction of padded points is 0.75. Hence by Markov’s inequality, with probability 0.5 at least
half the points are padded. Since the calls to QuadSketch are independent (and its success probability
depends only on its internal randomness and not on the input points), with probability 0.5dlog2 ne ∼ 1/n this
happens in each of the first k = dlog2 ne iterations. This probability can be amplified to constant by O(log n)
independent repetitions. If this event has happened then the sketching algorithm terminates since Q becomes
empty. Therefore the total running time of a successful execution is O(log2 n) calls to QuadSketch, which
by Lemma 4 is Õ(ndL).

Furthermore, since the number of padded points decreases by at least half in every iteration, the total size
of the sketches T1, . . . , Tk is

O

(
k−1∑
k′=0

n

2k′
(dΛ + log

n

2k′
)

)
= O(n(dΛ + log n)),

the same as in Theorem 1 up to a constant factor. Finally, since each γ(i) is index in {1, . . . , dlog2 ne}, the
γ(i)’s only take additional O(n log log n) bits to store.
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