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Abstract—Distributed energy resources (DERs) in distribution
networks have great potential for providing capacity reserves to
the transmission systems. In this context, this paper focuses on
optimizing the aggregated flexibility of DERs in power distribu-
tion networks, involving both network-wide voltage constraints,
and individual device operating constraints. The intended task
is first formulated as a convex program, and several critical
properties of the underlying optimal aggregation solution are
then highlighted via rigorous convex analysis. Leveraging the
special problem structure, a decentralized solver is further
developed to efficiently find the optimal aggregation trajectory
with limited communication. Performance tests on the IEEE 37-
bus benchmark are conducted to verify the theoretical findings
and demonstrate the impact of various network configurations.

I. INTRODUCTION

The bulk grid infrastructure is on the verge of a ma-
jor paradigm shift to a cyber-enabled “smart” one. Among
several attractive features, the smart grid will embrace re-
newable energy sources thanks to their environment-friendly
and price-competitive advantages over conventional generation
[2]. However, high penetration of renewables introduces new
challenges for system operation, such as stringent requirement
of ramping flexibility due to their high fluctuations [3].

To tackle this challenge, a prevalent solution is to har-
ness the flexibility provided by distributed energy resources
(DERs), such as photovoltaic (PV) systems, on-site energy
storage and thermostatically controlled loads (TCLs). Most
existing efforts in this discipline focus on real-time control
of individual distribution-level DER devices to track a time-
varying reference signal set by a transmission system operator
such as Independent Service Operator (ISO) [4]-[7]. This is
usually referred as disaggregation. In contrast, aggregation
is a bottom-up procedure representing a collection of DERs
as a single resource to the upper-level transmission system
[8]. The idea is to allow the aggregator (e.g., feeder of a
distribution network) to participate in the electricity markets,
and provide auxiliary service as a virtual power plant by
using the accumulated flexibility from individual devices. The
challenges naturally arise due to the distribution network
constraints, and the local device constraints such as the upper
and lower limits of the energy-level in storage devices and
temperature limits of TCLs [9]. Therefore, how to aggregate
millions of kilowatt-level DERs in distribution networks into
the gigawatt-level power dispatch in transmission networks
remains to be explored [3].

Related work. Our motivation here is to thoroughly under-
stand how much flexibility the distribution-level DERs can
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provide within a dispatch horizon. A few recent efforts have
been put forth to study the optimal flexibility aggregation task
[3], [8]-[11]. Specifically, security-aware flexibility manage-
ment between transmission-level systems was studied in [9],
and an efficient coordination protocol was proposed therein.
Targeting a succinct representation of aggregate TCLs profiles
in distribution systems, a simple yet effective “virtual” battery
model was developed in [10]. Leveraging such models, a
geometric approach was put forth in [11] to obtain the feasible
trajectories of virtual batteries with affordable complexity. Yet,
the approaches in [10], [11] mainly focus on modeling specific
DERs (e.g., TCLs), and the effect of network constraints in
the distribution systems has not been considered. Real-time
aggregation of flexible resources was studied in [8], with the
goal of developing a light-weight scheme suitable for running
on millisecond time scale. In a recent work [3], flexibility
aggregation was studied in the context of multi-period OPF,
where heterogeneous constraints for local devices and distri-
bution networks were considered. However, the structure of
the optimal solution and the performance limit have not been
explored, and the decentralized solver has not been developed.

Our contributions. The primary goal of this paper is to
conduct a comprehensive study on the aggregate flexibility
provided by DERs, along with development of decentralized
solvers for finding the feasible trajectories of interest.

Relative to existing work, the main contributions of the
paper are summarized as follows.

cl) We formulate the optimal flexibility aggregation prob-
lem in the distribution network as a convex program, and
further establish several elegant properties of it characterizing
the optimal aggregation solution (Section III).

c2) Leveraging the problem structure, we develop an ef-
ficient decentralized solver based on the predictor-corrector
proximal multiplier algorithm, which finds the optimal aggre-
gation solution using local computation and communication
(Section 1V).

¢3) Simulations based on the IEEE 37-bus benchmark and
real load and PV data verify our theoretical findings, and
demonstrate the impact of different network configurations on
the performance (Section V).

II. GRID MODELING PRELIMINARIES

Consider a distribution network represented by a graph G =
(N, &), where the set of nodes Ay corresponds to N+1 buses,
and the edges in £ correspond to F distribution lines [12]. The
feeder bus is indexed by 0, whereas every non-feeder bus is
n € N :={1,...,N}. Thus, we have N := N [J{0}. The
time is discrete and indexed by ¢ within a finite time horizon
T = {1,...,T}. The duration of a time slot could either
coincide with realtime market periods (e.g., 5 minutes), or
be even shorter (30 seconds), depending on the variability of



active powers and cyber resources (sensing, communication,
and computation delays) [2], [4].

Power flow models. Per bus n € N, let v, be the squared
voltage magnitude, and p,, + jg,, the complex power injected
to the network through the bus. For brevity, we use vectors
= [Pnyqn] ", and s :=[s{,...,s\]". Time subscript ¢ will
be included whenever needed; e.g., s, ; and s;. We assume
that power distribution networks have a tree structure with the
feeder as their root. Let 7(n) denote the unique parent bus of
bus n. We will simply index the edge (w(n),n) as n, and the
power flow on edge n seen at the sending bus 7(n) will be
denoted by P, ; + jQy. With S,, := [P,,Q,] . We adopt the
linear approximation of the branch flow model' [5]

Pot= Y Pui—P (1a)
keCn

It =Y Qrt—Qny (1b)
keCy,

Un,t = Urn(n),t — 2(TnPn,t + ann,t) (IC)

U, S Un,t S @n (1d)

where C,, denotes the set of the children nodes for bus n,
rn+jT, the impedance on line n, and v,,, ¥,, denote the limits
of voltage square magnitudes. For the feeder (root) bus 0, we
use po,; and go,; to denote the active and reactive injections
to the external grid. The following supply-demand equations

hold:
Pot= Y Pnt Wr= Y Gt (2
neN neN

and

If po+ > 0 (go,c > 0), the distribution network generates active
(reactive) power, otherwise, it consumes power. The active and
reactive power injection at bus n can be decomposed into its
generation and consumption components as

Pt =Dt — Dot ot =G0yt —Gne TNEN.  (3)

The following sections will specify these components, along
with their operational constraints.

Power consumption includes non-controllable (e.g., illumi-
nation demand from residential areas), and controllable loads
(e.g., demand from data centers and electric vehicles).

Non-controllable loads. For bus n with non-controllable
loads, the consumed active power is given by pj, , > 0, and
its reactive power ¢y, , > 0 is typically proportional to pf, , via
a constant factor. Both Py, and gg, , can not be changed.

Controllable loads. In contrast to non-controllable loads that
must be satisfied per slot, the controllable loads at buses N
provide some flexibility in power dispatch. For bus n € N
with controllable loads, denote the consumed active power as
Py, ¢ and its reactive power gy, ,, both of which can be adjusted
but confined in a bounded interval, given by

PZ p < pfl,t < ﬁ%,ta QZ ‘ < q’rCL,t < CYZ,t 4)

where pi, ; (5 ) and p¢  (g¢ ) are pre-defined upper and
lower limits for active (reactive) loads.

PV systems. If bus n € N, corresponds to a PV system,
it generates active power with capacity over the interval

'The power flow model can be replaced by more complicated models, such
as the nonlinear branch flow model, or other linear models in [6].

[pn f,pn ,] and its inverter has capability §,,. Here, p? . and
Sy are pre- determlned constants, that e.g., depend on deV1ce
constraints, while 10n . 1s given by the on-site PV availabihty
Thus, the controllable PV power generation pn . and qn  obey

(5,)%, ¥n € Nyy. (5)

If the voltage constraint (1c) is not considered, the PV device
simply obeys p? | < py, y < wy ¢, With wy, ¢ := min{pj, ;, 5n}.
Energy storage devices. If bus n € Ny corresponds to an
energy storage device e.g., a battery, it can act either as power
generator (pY , > 0) or as consumer (pnt < 0) [13]. If by, ¢
represents the battery s state of charge (SOC) at the beginning
of period ¢, the controllable generation pf, , and ¢ , satisfy

(6a)
(6b)

p,ght S pn,t S ﬁn,t’ (pn,t) +(qn t)

- 5Tp£r]L ts bn < bn,t < Bn
(pr,t)Q + (qn t) (SH)Q? vn € tha te T

where 07 is the slot duration, and s,, is the capacity of battery
at bus n. Constraints (6) capture the battery dynamics over
consecutive slots as well as the SOC within the allowable lev-
els [b,,, by]. To simplify analysis, we assume the (dis)charging
coefficients to be 1 in (6a), which also appears in [13], [14].

For the notational brevity, we will further assume that each
bus is associated with a single controllable power device either
power load or generation. But the ensuing formulation, anal-
ysis and decentralized algorithm can be readily generalized to
the case with multiple devices at each bus.

Aggregate flexibility. To quantify the system flexibility, we
define two trajectories of power injections at each bus of
the distribution network over the given horizon 7, given by

bn,t-‘rl - bn t

the active injections p;” := [py%, ... ,pju\,t] and pY =
[PY, ..., P T, along with the reactive ones q;” and qi®

Accordingly, the complex power trajectories are s, =
(pr)7(a") 7], and s = (o), (@) 7] The
corresponding active power injections from the distribution
network to grid are pOt and pOt, and obey the following
conservation law (cf. (2))

> oo Sy, o
neN neN
The generic variables {p,,;} are used in (1)-(6), but whenever
appropriate, they should be understood as {pﬁpf} for the upper
trajectory, and likewise {plow} for the lower trajectory.

The system flexibility is determined by the difference be-
tween the aggregated power injections (negative power con-
sumptions) of the distribution network under the upper and
lower trajectories; that is, the difference between pgg and
p%)ozv, see e.g., Fig. 1. Utility of such a figure of merit
will be evaluated by a (possibly time-varying) concave func-
tion of the power injection difference py"; — p})‘j‘t”, given by
ZZ;I f(poh — peY)- Intuitively, this function should be a
nondecreasing function of flexibility py" p%)ofiv An interesting
choice of the objective corresponds to the logarithmic function

of pg’ — pgy, namely

Z f(pg t p%)o;v
t=1

Clearly, maximizing (8) is tantamount to maximizing the
volume of the tube between two trajectories {p,"; } and {pe¥ }:

up

pO = an d plow

T
= log(pph —piy) - ®
t=1
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Fig. 1. An example of optimal upper and lower trajectories. The shaded

region represents the range of all feasible trajectories, including {pgf} from
the actual transmission-level power dispatch.

that is, Hle (0% — pg¥). In addition, the log function can
ensure fairness across slots because for a fixed total amount of
T L T X .
>-; Ys maximizing ), log(y.) will lead to equally allocating
y¢ per slot. If the system aggregator would choose to prioritize
flexibility on certain time slots, the aggregator can introduce
weight factors {u;} and modify the objective to maximize

T
>op uelog(ppy — piy)-

III. FLEXIBILITY AGGREGATION VIA
CONVEX OPTIMIZATION

Building on the system model of Section II, we formulate
the problem and analyze the optimal solution in this section.

A. Problem statement

With the local constraints and objective in mind, the overall
goal of the network operator is to find the upper and lower
trajectories {s;?, s }T | to maximize the system flexibility
in terms of the aggregated active power at the substation,
subject to local constraints. Concretely, we aim at solving the
following aggregation problem

T
fr= o ; f (po: = w5y (%a)
sto sfP >V vieT (9b)
(1) —(6) (9¢)

where the generic variables in (1)-(6) should be augmented
with subscript up or low indicating trajectories {s;*} or
{slo¥1. The objective (9a) is concave, and the constraints
(9b)-(9c) define a convex feasible set; hence, (9) is a convex
program. Available convex programming solvers such as the
gradient-type (or interior-point) iterative algorithms can be
employed to solve the problem in a centralized fashion. And
the optimal solution of (9) essentially contains the upper and
lower aggregate traces shown in Fig. 1.

Notice that we introduce a monotonic constraint (9b) in (9)
to guarantee that any aggregate trajectory within the shaded
region of Fig. 1 is achievable by properly coordinating local
devices in real-time power balancing. The next theorem will
formally establish the existence of feasible disaggregation
solutions given aggregate power trajectories.

Theorem 1. Consider the problem (9) and the correspond-
ing optimal trajectories {$;", é%‘)w}le. For any aggregation
trajectory {Po+}i_, at the substation satisfying

Boy = Pou = oy, VEeT (10)
that
there exist

there exists a disaggregation trajectory {8;}}_,
is feasible with respect to (1)-(6), namely,
{pn,ta An,t, Pn,ta Qn,h Un,t} satisfying

Dot = Z Pnt (11a)
neN
(1), (3) — (6). (11b)

Building on the aggregation problem defined in this section,
we will proceed to explore the underlying structure of the
optimal solution along with its performance limit.

B. Optimal aggregation policy

To begin with, we use the following definitions to de-
scribe the planned trajectories {s; ", sl }L .. Specifically, the
planned trajectories are [15]

o dl) feasible, if {s‘tlp,siltOW ;:1 satisfy (9b)-(9¢c);

o d2) optimal, if {s;”,s°"}{_, are feasible, and yield the

optimal objective f* in (9a); and
o d3) water-filling, if {s}”, sl°"}T_, are feasible, and satisfy

low

poy —poy =W —RJ]"+R VteT

12)

where W € R is some constant,
Z ( up low)

nENp UNo Pt — Pnt )
Before formally establishing the structure of optimal poli-

cies, we assume that the following condition are satisfied.

and R; :=

Assumption 1. For every t, the objective function f(-) is
strongly concave, and increasing.

Assumption 2. There exist trajectories {s;’,si°} that are
feasible w.r.t. (9), and satisfy bzl?T 41 = b, and blf"% 41 = bn.

“Zns

Note that Assumption 1 is readily satisfied by e.g., a
quadratic or a logarithmic objective in (8); and, Assumption
2 holds also without sacrificing much generality. Relying on
these desirable properties, the next lemma argues that the
water-filling solution would be an appealing solution.

Lemma 1. For (9), if {s}"", si°} admit the water-filling struc-
wre (cf. (12)) and satisfy Y ,c+(pp5 — PLY) = bn — by, the
battery operations are optimal given the current trajectories
of other controllable devices {p,";, ply,n € Npy U Na}.

Although Lemma 1 does not admit a closed-form solution
due to intertwined physical constraints, it unveils a concise yet
fundamental insight. Specifically, complementing the flexibil-
ity provided by PV and controllable loads, the energy storage
devices can adapt their (dis)charging operations to fill the
flexibility valley (low flexibility), thus smoothing the tempo-
ral curve of aggregate flexibility. In other words, while the
flexibility provided by PV and flexible loads is instantaneous
and variable, the batteries mitigate the temporal variability to
offer stationary capacity reserves. This water-filling structure
is numerically shown in Figs. 2(c), 3(c), 6 and 8 of Section V.

With the insights gained on the optimal aggregation at
substation level, the next lemma characterizes the optimal



behavior of individual devices. Let us term (9) without voltage
constraints (1d) as the simplified problem

T

= { g}alicw} Zf (0% — PY) (13a)
Se ST 4y

sto (12) — (1b), (3) — (6), (9b). (13b)

Different from (9), the feasible set of (13) does not include
coupled constraints across the network. Therefore, it reveals a
neat optimal solution for each device highlighted next.

Lemma 2. Considering the problem (13) and the optimal
trajectories {8}, 81°V}, the following statement holds:

o s1) the optimal PV injections are ﬁ%’_iow = QfL v and
ﬁi’ftlp = min{ﬁi,t» Sn}s VN € Npy)
e s2) the optimal controllable loads are pfllf Y =pg ., and

C,u

Py = P, Vne N, and,
e 53) at the end of the time horizon, the energy levels

of batteries under the optimal trajectories are given by
bgf’TH =", and bﬁv}ﬂ = by, Yn € Npy.

Lemma 2 characterizes the optimal local operations by
unfolding the optimal global trajectories, most of which also
meet our intuition. Although Lemma 2 is for (13) that does
not include the voltage constraints, it still provides useful in-
formation about the behavior of individual devices, especially
when the voltage constraints are not binding.

Combining Lemmas 1 and 2, we can readily reach the
following conclusion.

Theorem 2. Under the conditions of Lemma 1, if the constant
in the water-filling solution {s}'® sV} is given by (cf. (12))

Y (min{ph b —p? )+ D (B —p5,) (14)

nENpy neNq

Rt =

they are the optimal trajectories of (9).

Before delving to algorithmic issues, we next establish the
maximum flexibility of the distribution network.

Proposition 1. The fundamental limit of the average system
flexibility (in the sense of (9a)) is given by

1 T
72 f 00 = piy)
t=1

<f (; > (bn—b,)/0r + % > (A + Ap?)) (15)

n€Npt teT

which depends on the maximum flexibility from PV generation
Apy =3 en, (P —D? ). from controllable loads Ap§t:=

Y onen, Pt — BZ, ,)» and the aggregate battery capacity.

Proposition 1 asserts that the aggregate flexibility of a power
distribution network is uniformly upper bounded under all
possible trajectories of (re-)active power injections at all buses.
When the local operating conditions of heterogeneous devices
(e.g., batteries, PV inverters, and appliances) vary, the limit of
the aggregate flexibility only depends on the flexible portion of
PV generation and loads, as well as the aggregate battery ca-
pacity. From a system design perspective, this bound provides
practical guidance to increase the operational flexibility.

IV. DECENTRALIZED FLEXIBILITY AGGREGATION
SOLVERS

A decentralized solver will be developed here for the
optimal flexibility aggregation in (9). With voltage constraint
(1c), (9) is challenging since the objective and the constraints
couple the power injections at all the buses. Observe that the
constraints that couple decision variables across buses are (1)
and (2), while the active power constraint in (2) can be merged
into (la) by letting p07t+ZkGCOPk»t = 0. Leveraging this
structure, we will develop a decentralized solver using the
predictor-corrector proximal multiplier (PCPM) method? [17].

Consider the dual variables {a; }, {~:}, and {v; } associated
with the active, reactive, and voltage constraints (la)-(1c),
respectively. With superscripts denoting the upper and lower
trajectories, they are {a®, ;P v,'P, alo% 1oV plov}. With
proper initialization, the PCPM algorithm operates in the
following three steps: dual prediction, primal correction, and
dual correction. Specifically, at each iteration 7, the dual
prediction is given by (stepsize p > 0)

G, = ¢ (1) 41 (ot (T)+D ke, Prot (7))

Gt =t (T)+ 1 (Pt (T) =Y pec, Prt (1) 4+ Pt (7))
At =Yt (7)1 (@t (T) =D e, Qut (T)+Qn i (7))
U 4=, (T)+ 1 (Un,t (7) = V() £ (T) F2rn Pt (T) 4220, Q ¢ (T))

where {&p ¢, n,t, Un,¢} are auxiliary variables, and (16) is
repeated for multipliers with both upper and lower trajectories.
The primal correction at the substation is (stepsize 1 > 0)

(16)

T
min, S~ (f (055~ pbY) + gt + abiol
R o e T 0T
1 2 1 2
+ g0 (8% =P8 4 5 Y o)) A

and the correction step at each bus n is given by
T

min E (OA[UP pup 4 pup +OA[IOW plow+Plow
(1d),(3)=(6),(9b) pot n,t( n,t n,t) n,t( n,t n,t )
AUpP p_ Al It ~up / _up up ~1 1 1
T Pr(n),t n,t_a;(v'rvz), nc,):fN_FfYn,t(q7z,t+Qn,t)+7nC:?(q7:),\£v+ 'r?,\:fv)

~up up ~ low low AUp /, Up up up
- ’-YT{'(TL)7th7t - ’Yﬂ'(n)}t n,t + Vn,t(vn,t+2TnPn,t+2ann,t)

+ ﬁiﬁ?(viﬁ?—i—QTHP}ff+2anl§>"§) - Zkecn ﬁllcoivvia?
-3 pPyP 4 L (vup — P (7'))2—|—L (vl"w —1}1‘3‘”(7'))2
keCp “kit"n,t T 2n n,t n,t 2n n,t n,t

1 ||quP up 2 1 ||low _ clow 2
+ 2n Hsn,t - Sn,t(T)H + 2n Hsn,t —Spit (T)H

u u 2 2

2 [ISi = S m)|” + & ISy - siey@)*). a8
Finally, dual correction follows the steps in (16), except that
the auxiliary variables in the LHS are replaced by {a, (7 +
1), Ynt(7 + 1), vn (7 + 1)}, and the primal variables in the
RHS are replaced by the updated version from (17)-(18).

For the PCPM updates in (16)-(18), each bus only needs
to communicate with its one-hop neighbors, and the exact
convergence of the primal-dual sequences can be rigorously
established under the proper choice of stepsizes [17].

Remark 1 (Spatio-temporal decoupling). The current primal
steps in (17) and (18) need to solve a multi-period convex

2Qther decentralized solvers such as ADMM [16] can be also applied here.
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program at each bus. To further reduce the computation
burden, we can introduce additional dual variables associated
with the time-coupling battery dynamics in (6a), and the cor-
responding PCPM updates can be similarly derived. In such a
case, the primal step boils down to multiple spatio-temporally
decoupled subproblems, where the performance gain comes
from the ease of distributed and parallel implementation.

V. NUMERICAL TESTS

In this section, we numerically solve the flexibility aggre-
gation problem in (9) using the IEEE 37-bus test system.
Specifically, buses 4, 7, 10, 13, 17, 20, 22, 23, 26, 28, 29,
30, 31, 32, 33, 34, 35, and 36 are connected with PV systems,
and their generation profile is simulated based on the real solar
irradiance data in [18]; and buses 3, 8, 11, 14, 16, 19, 24, and
25 are equipped with batteries, for which the maximum state
of charge is 400 kWh, and the (dis)charging rate is 300 kVA.
The ratings of PV inverters are 300 kVA for bus 10, 350 kVA
for buses 33, 34, and 200 kVA for the remaining inverters.
The loads in the original dataset are replaced with real data
measured from feeders in Anatolia, CA during the week of
August 2012 [18], and the loads at buses 2, 5, 6, 9, 18, 21,
and 27 are assumed to be controllable with p® = 0.9p7; ; in

(4); see the aggregate real data traces reported in Fig. 4. The

voltage limits {7,,} and {v,,} are set to 1.05 pu and 0.95 pu,
respectively. Line impedances, shunt admittances, and other
details on parameters can be found in [6]. We evaluate the
allocation performance in terms of the aggregate flexibility at
the substation (cf. (8)) over the given horizon of T' = 72 slots
with each slot denoting 20 mins.

For these parameter settings, we first plot the optimal
aggregate injections, the aggregate injections from batteries,
and the aggregate flexibility in Fig. 2. Interesting enough,
the optimal upper trajectory {pg"} in Fig. 2(a) has a similar
shape as the difference between the PV and load traces in
Fig. 4, while the lower one {p{°Y'} shares a similar shape
with the negative load trace. Intuitively, this is because the
upper trajectory intends to admit all the PV generation and
curtail all flexible loads, while the lower one is likely to
shed all PV and satisfy all flexible loads, as highlighted in
Lemma 2. Such intriguing properties can be also inferred
from Fig. 2(b), where two trajectories have quite opposite
(dis)charging behavior when the PV generation is low, e.g.,
flexibility needs to be provided by batteries. And the water-
filling structure discussed in Lemma 1 can be also observed
in Fig. 2(c), where the “flexible PV+loads” curve denotes

— up low
Ry = NENHyUN (pn,t — Pnt )

Effect of voltage constraints. To demonstrate the effect of
voltage constraints on the optimal trajectories, we test the
algorithm under a stricter voltage limit, allowing only 1% devi-
ation from the nominal value. Compared to the corresponding
trajectories in Fig. 2, the aggregate power injections as well
as the aggregate flexibility in the distribution network remain
almost unchanged; see e.g., Figs. 3(a) and 3(c). Under such
a strict constraint however, the traces of battery injections in
Fig. 3(b) are distorted relative to those in Fig. 2(b), since the
batteries have to frequently adjust charging and discharging
rates to compensate for the load fluctuations.

Effect of PV flexibility. As PV generation is assumed fully
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controllable in the above tests, we have pg . =0 in (5) To [2] G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. F.

demonstrate the effect of variable PV ﬂex1b111ty, the optimal
trajectories under limited PV flexibility are presented in Figs.
5 and 6; i.e. pg = 0. 5pnt Relative to those in Figs. 2(a)
and 2(c), the aggregate flexibility is lower during the peak sun-
hours (cf. Fig. 6). This is because the lower trace also partially
admits PV generation, which leads to a larger power injection
thus a smaller gap relative to the upper trace (cf. Fig. 5).

Effect of battery size. Figs. 7 and 8 depict the optimal
trajectories under larger battery sizes, namely, b, ; = 1200
kWh with p9 = 0. 5p;, ;- An interesting observation here is

that the gap between the upper and lower trajectories in Fig. 7
becomes much more flat, compared to that in Fig. 5. A similar
conclusion can be also drawn from Fig. 8, since the flexibility
uniformly increases during the off-peak sun-hours. Together
with the arguments on flexibility limits in Prop. 1, we deduce
that the battery capacity indeed plays an important role in
maximizing aggregate flexibility of distribution networks.

VI. CONCLUSIONS

In this paper, we studied the optimal flexibility aggregation
in distribution networks, including both network-wide con-
straints, and local operational constraints. By formulating the
pertinent optimization problem as a convex program, we re-
vealed several interesting properties of the underlying optimal
aggregation solution. Building upon the predictor-corrector
proximal multiplier method, we developed a decentralized
solver for efficiently finding the optimal aggregation trajectory.
Performance of the proposed algorithm was evaluated using
the IEEE 37-bus benchmark and the real solar and load
measurements.
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