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Abstract

Disease modelers have been modeling progression of diseases for several decades using tools such as Markov Models
or microsimulation. However, they need to address a serious challenge; many models they create are not reproducible.
Moreover, there is no proper practice that ensures reproducible models, since modelers rely on loose guidelines that
change periodically, rather than well-defined machine-readable standards. The Systems Biology Markup Language
(SBML) is one such standard that allows exchange of models amongst different software tools. Recently, the SBML
Arrays package has been developed, which extends the standard to allow handling simulation of populations. This
paper demonstrates through several abstract examples how microsimulation disease models can be encoded using
the SBML Arrays package enabling reproducible disease modeling.
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Introduction

Disease models attempt to explain phenomena observed by
clinical trials and follow-up of patient populations through
time. Such phenomena include complications of chronic
diseases such as diabetes (1) and cardiovascular diseases (2),
infectious diseases such as Ebola (3) and HIV (4), or even
mental health conditions (5). Beyond complications, models
can also include economic aspects, such as costs or quality
of life related health utility scores. Models describe those
phenomena using mathematical and statistical equations or
other programmatic constructs.

In the past, differential equations have been used, which
are still very dominant in the infectious disease domain (3).
However, other disease models have used state transitions
mechanisms. Markov cohort models have been prevalent
in the past (5), but modern disease models tend to
use microsimulation (1), where simulation considers each
individual in the population separately. Some infectious
disease models are also moving in the direction of individual-
based simulation (6).

Individualization of computation makes models more
flexible, but also more complex to understand. Therefore,
clarity in model publication and transparency are essential.
However, modeling practices in the field lack support for
reproducibility. Publication of models’ source code is rare
(7; 8; 9; 10). The norm is still publication of descriptive-
only models in papers in which they appear, and only rarely
do authors attempt to publish in a way that their work can
be reproduced. However, publishing models within a paper
does not allow full reproducibility as numeric examples
provided in papers have insufficient precision and are prone
to misinterpretation (see, for example (1)).

The Mount Hood Diabetes Challenge highlighted
this reproducibility problem (see https://www.

mthooddiabeteschallenge.com/). The challenge
revolved around reproducing models from two published
papers. Multiple modeling teams around the world attempted
to reproduce these published models, and they were
unsuccessful. This is conclusive proof that a new method for
model reproducibility is needed since models that cannot be
reproduced are perceived to be non-credible.

To date, disease modelers have been trying to improve
their model publication methods by publishing guidelines.
Yet a better solution is to provide modeling tools that
are reproducible to allow model exchange. This is exactly
what the Systems Biology Markup Language (SBML) (11)
and associated languages such as PharmML (12) and its
counterpart Model Description Language (MDL) (13) are
designed for. This paper continues the first attempt to
reproduce disease models in such modeling languages that
started with (14), which demonstrated how a disease model
can be reproduced in three languages: SBML, PharmML,
and MIcro Simulation Tool (MIST) (15). When the first
paper was written, SBML capabilities lacked a definition of
more complex models using microsimulation. SBML, as a
community-driven standard, have biannual meetings about
how SBML can be improved (16). Recently, the community
talked about how to represent agent-based models in SBML
at the COMBINE 2017 meeting, but such representation has
not reached consensus. Nonetheless, SBML has evolved with
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the recent introduction of the SBML Arrays draft package
specification that can handle more complex models using
microsimulation. This paper demonstrates this through a
few abstract disease modeling examples that can now be
implemented using SBML Arrays.

SBML Arrays

SBML is a standard representation that primarily targets
chemical reaction networks. However, SBML has strong
discrete event support in its core constructs, which allows the
representation of a wide range of models other than chemical
reaction networks in the form of Boolean networks (17),
Petri nets (18), and Markov chains (19), among others. In
addition, SBML has support for package extensions that
enhances the standard even further with new constructs
beyond the core constructs (20; 21; 22). In particular,
the SBML Arrays package enables the instantiation of
a specified number of identical model objects facilitating
the representation of populations (23). SBML Arrays has
been implemented within the C/C++ library of SBML
called libSBML (24) and the Java library of SBML called
JSBML (25). The JSBML library also supports validation
and flattening of arrays.

Using SBML’s discrete event support coupled with arrays,
SBML can be used to represent microsimulation disease
models. Disease models in SBML are probabilistic models
that use arrays of parameters to encode each individual,
where each index in the array represents a single person.
Each possible state for an individual (e.g. Healthy, Sick,
Dead, etc.) is created as an array of parameters, where each
parameter is treated as a Boolean variable. SBML Events are
used to transition states for each individual. Those events are
not part of the model to be transported, they are used as an
implementation mechanism to describe the desired model in
SBML.

Disease Modeling Examples

To illustrate the requirements for disease models, the
following sections presents several abstract examples that
are successfully implemented using SBML coupled with the
SBML Arrays package. We start with the same examples
given in (14) and add microsimulation components to those
that were not originally modeled by those discrete time
Markov models. We then add two more examples that
are impossible to model without SBML Arrays. Important
nuances are discussed for each example.

Example 1: Simple Example
The first simple example (depicted in Figure 1) can be
modeled as a cohort model as demonstrated before in (14),
where the number of individuals in each state is counted
for each time step. However, this paper implements it using
microsimulation where each individual is processed through
the model using Monte Carlo simulation with the probability
defined. SBML Arrays defines an array of individuals, where
each can be either Alive or Dead. Unlike cohort models
where simulation continues for each time step until the end,
microsimulation models can stop for individuals who reach
a terminal state. In all simulations in this paper, this would

be represented by the Dead state. This mechanism is used
in disease models to shorten simulation time and to indicate
non-existence of a record for a human in years after death,
effectively diminishing cohort size.

Figure 1. State transition diagram of a simple Markov model.
The model uses two disease states: Alive and Dead, where the
Dead state terminates simulation. The yearly probability of
transition between states Alive and Dead is: 0.05
Initial conditions: 100 people start in Alive and none in Dead.
Output: Number of people in each state for years 1-10.

This entire simulation is implemented as SBML events
as can be seen in Table 1. SBML events are triggered if
their trigger condition is previously false and then evaluated
to true during simulation. This SBML mechanism is used
to create a sequence of time steps that guides simulation.
The InstructionNumber parameter helps SBML to control
the firing sequence of events and specific events competing
in time. This competition of events is an important SBML
element and is not related to the model being implemented.
Therefore the addition of the InstructionNumber parameter
that forces discrete times for the sequence of occurrences.
Also note that model time and SBML implementation time
are different. In this example, there is a header of events
enumerated as #0 ,#1,#2 that start each time step in the
simulation. Event #0 advances the Time parameter. Event
#1 provides a point where the user can take a snapshot of
the data to represent the state of the system in the time
step. Event #2 is used for termination. The last three events
represent transitions. Namely, Event #3 generates a random
number and stores it in the Random variable. Event #4 tests
if the drawn random number matches the transition criteria
and, if so, updates the states and increases the instruction
count to progress the simulation. Event #5 is a counter
event for event #4 that is triggered if event #4 does not
happen. It is essential to advance the simulation by setting
the InstructionNumber. Unless set, the simulation would not
continue, since there would not be another event for the
individual, which is how event #3 terminates simulation.
Alternatively, termination can happen if the simulation time
limit is reached. Future examples follow this structure. The
models shown here are generated using the SBML Arrays
package that automatically generates any arbitrary number
of individual copies, which is 100 for the examples shown.

Example 2: Three State Markov Model
The next example (depicted in Figure 2) is a simple extension
of the first one. This example demonstrates how new
transitions are added by introducing more events. Table 2
represents the events implemented to run this simulation.
Events #0-#2 form a simulation header. Events #3-#6
represent transitions originating from the Healthy state while
#7-#10 represent transitions originating from the Sick state.
Each state has three events since there are two transitions
emanating from each event and therefore three competing
options have to be checked: taking the first transition, taking
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Table 1. SBML events for Example 1.

Trigger Assignments

0 InstructionNumber[d0] = 0 Time[d0] = Time[d0] + 1
InstructionNumber[d0] = 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] = 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧ Time[d0] < 10 InstructionNumber[d0] = 1

3 InstructionNumber[d0] = 1 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 1.5

4 InstructionNumber[d0] = 1.5 ∧ Alive[d0] = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <
(0 + 0.05)

Alive[d0] = 0
Dead[d0] = 1
InstructionNumber[d0] = 0

5 InstructionNumber[d0] = 1.5 ∧ Alive[d0] = 1 ∧ Random[d0] ≥ (0 + 0.05) ∧
Random[d0] < 1

InstructionNumber[d0] = 0

Figure 2. State transition diagram of a three state Markov
model. There are 3 disease states: Healthy, Sick, and Dead,
where the Dead state is terminal The yearly transition
probabilities are: Healthy to Dead: 0.01; Healthy to Sick: 0.2;
Sick to Healthy: 0.1;Sick to Dead: 0.3.
Initial conditions: Healthy = 100, Sick = 0 and Dead = 0.
Output: Number of people in each state for years 1-10.

the second transition, or not taking any transition. Our
simulation generates a random variable and stores it in the
Random parameter. The three events afterward check the
three different possible options using the Random parameter
and transition thresholds. This structure is used in all the
remaining examples.

Example 3: Stratified Markov Model
This example (depicted in Figure 3) starts introducing
microsimulation concepts since a parameter governs the
transition probability. In this example, males become
sick with higher probability than females and therefore
simulation should show a higher sickness and death rate
amongst males. This example is still simple enough to
implement as two separate cohort models as can be seen
in Table 3. The transition probabilities are controlled by
the Male parameter, which is used in event #5 and in the
counter event #6. Other than that, this example is similar to
the previous example. Yet microsimulation becomes more
significant and challenging when individuals have more
characteristics. This is explored further in the next example.

Example 4: State Transition Model Dependent
on Changing Parameters
This example (depicted in Figure 4) can no longer be
implemented using Markov cohort models due to the

Figure 3. State transition diagram of a simple Markov model.
There are 3 disease states: Healthy, Sick, and Dead, where the
Dead state is terminal. The yearly transition probabilities are:
Healthy to Dead: 0.01; Healthy to Sick: 0.2 for Male and 0.1 for
Female; Sick to Healthy: 0.1; Sick to Dead: 0.3. The transition
probability now depends on the cohort (Male or Female) and
can be expressed as a function of a Boolean covariate Male.
Initial conditions: Healthy = (50 Male, 50 Female), Sick = (0,0)
and Dead = (0,0).
Output: Number of men and women in each disease state for
years 1-10.

yearly change in Age and the stratification by Male and
Age of the transition probabilities. This example captures
the heterogeneity of the population by describing each
individual’s behavior. SBML arrays allows for the definition
of distinct individuals. Table 4 presents the event sets for this
example. SBML events plays a crucial role by increasing the
Age every year before transition probabilities are calculated.
The new element in this model is the change of Age before
determining transitions in each simulation timestep. This
can be seen in Instructions #3 to #5 that behave similar
to transitions - note that some of the code is redundant
and can be replaced by one event since event #5 never
fires. However, this example maintains this code structure
for compatibility and future extendibility. Once again, our
method uses InstructionNumber to guide the model during
simulation such that state transitions are considered at each
simulation time step only after InstructionNumber reaches
the value of 2.

Despite the complexity of this example, it is not yet
representative of the full range of phenomena we wish to
model that include treatment and cost. The next example
shows how this is accomplished.
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Table 2. SBML events for Example 2.

Trigger Assignments

0 InstructionNumber[d0] = 0 Time[d0] = Time[d0] + 1
InstructionNumber[d0] = 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] = 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧ Time[d0] < 10 InstructionNumber[d0] = 1

3 InstructionNumber[d0] = 1 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 1.5

4 InstructionNumber[d0] = 1.5 ∧ Healthy[d0] = 1 = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <
(0 + 0.01)

Healthy[d0] = 0
Dead[d0] = 1
InstructionNumber[d0] = 0

5 InstructionNumber[d0] = 1.5 ∧ Healthy[d0] = 1 = 1 ∧ Random[d0] ≥ (0 + 0.01) ∧
Random[d0] < (0 + 0.01) + 0.2

Healthy[d0] = 0
Sick[d0] = 1
InstructionNumber[d0] = 0

6 InstructionNumber[d0] = 1.5 ∧ Healthy[d0] = 1 ∧ Random[d0] ≥ (0 + 0.01) + 0.2 ∧
Random[d0] < 1

InstructionNumber[d0] = 0

7 InstructionNumber[d0] = 1 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 1.5

8 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <
(0 + 0.1)

Sick[d0] = 0
Healthy[d0] = 1
InstructionNumber[d0] = 0

9 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 = 1 ∧ Random[d0] ≥ (0 + 0.1) ∧
Random[d0] < (0 + 0.1) + 0.3

Sick[d0] = 0
Dead[d0] = 1
InstructionNumber[d0] = 0

10 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 ∧ Random[d0] ≥ (0 + 0.1) + 0.3 ∧
Random[d0] < 1

InstructionNumber[d0] = 0

F1(Age,Male) = Min(0.8, 0.1 · (1 + Male) + 0.01 · Age)
F2(Age,Male) = Min(0.9, 0.01 · Age + 0.2 · Male)

Figure 4. State transition model dependent on changing
parameters. There are 3 disease states: Healthy, Sick, and
Dead, where the Dead state is terminal. The yearly transition
probabilities are: Healthy to Dead: Age/1000; Healthy to Sick:
according to function F1 depending on Age and Male
parameters; Sick to Healthy: 0.1; Sick to Dead: according to
function F2 depending on Age and Male parameters.
Pre-Transition Rules: Age increased by 1 each cycle.
Initial conditions: Healthy = (50 Male, 50 Female with Age
=1,2,,50 for each individual), Sick = (0,0) and Dead = (0,0).
Output: Number of men and women in each disease state for
years 1-10 and their ages in each state.

Example 5: State Transition Model with
Treatment and Costs
This example (depicted in Figure 5 adds Blood Pressure (BP)
as another parameter that increases yearly at different rates.
Once BP is above a threshold, treatment is administered

that drops it back closer to previous values. Moreover, costs
include elements of Age and Treatment. Even this relatively
simple example is complex enough to show why individual
modeling is needed, and hence making SBML Arrays
essential. Table 5 shows the event scheme implementation
in SBML. Notice that in this example there are multiple
post transition rules implemented as event triplets: #3-#5
handle Age increment in pre-transition, #6-#8 handle BP pre-
transition update, #17-#19 determine whether treatment is
administered post-transition, #20-#22 adjust BP according
to treatment for next timestep post-treatment calculation,
#23-#25 calculate yearly cost that includes treatment cost,
and finally #26-#28 accumulate total cost. The important
elements of this simulation are the pre-transition rules and
post-transition rules. Each of those rule sets needs to be
executed in sequential order during simulation. SBML events
allow for timing these using the InstructionCounter.

Results

The examples described above are implemented as a
combination of the Python programming language and
SBML files to define the models and then simulated
using iBioSim, which supports SBML Arrays. Since these
examples are not intuitive, a reference is needed to
provide some comparison of results. The MIcro Simulation
Tool (MIST) is used to implement the same examples.
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Table 3. SBML events for Example 3.

Trigger Assignments

0 InstructionNumber[d0] = 0 Time[d0] = Time[d0] + 1
InstructionNumber[d0] = 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] = 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧ Time[d0] < 10 InstructionNumber[d0] = 1

3 InstructionNumber[d0] = 1 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 1.5

4 InstructionNumber[d0] = 1.5 ∧ Healthy[d0] = 1 = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <
(0 + 0.01)

Healthy[d0] = 0
Dead[d0] = 1
InstructionNumber[d0] = 0

5 InstructionNumber[d0] = 1.5 ∧ Healthy[d0] = 1 = 1 ∧ Random[d0] ≥ (0 + 0.01) ∧
Random[d0] < (0 + 0.01) + 0.1 ∗ (1 + Male[d0])

Healthy[d0] = 0
Sick[d0] = 1
InstructionNumber[d0] = 0

6 InstructionNumber[d0] = 1.5 ∧ Healthy[d0] = 1 ∧ Random[d0] ≥ (0 + 0.01) + 0.1 ∗ (1 +
Male[d0]) ∧ Random[d0] < 1

InstructionNumber[d0] = 0

7 InstructionNumber[d0] = 1 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 1.5

8 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <
(0 + 0.1)

Sick[d0] = 0
Healthy[d0] = 1
InstructionNumber[d0] = 0

9 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 = 1 ∧ Random[d0] ≥ (0 + 0.1) ∧
Random[d0] < (0 + 0.1) + 0.3

Sick[d0] = 0
Dead[d0] = 1
InstructionNumber[d0] = 0

10 InstructionNumber[d0] = 1.5 ∧ Sick[d0] = 1 ∧ Random[d0] ≥ (0 + 0.1) + 0.3 ∧
Random[d0] < 1

InstructionNumber[d0] = 0

Since MIST is particularly designed for disease modeling,
comparable results provide sufficient support to the claim
that SBML Arrays is suitable to create reproducible disease
models. Figures 6, 7, 8 presents the result of simulation
using MIST compared to SBML Arrays implemented in
iBioSim. Since this is random simulation, results should
not match exactly using a single run of the simulation,
Figure 6 shows this case, yet they are comparable enough
to indicate a similar simulation. To verify that the models
indeed are identical, the models are executed 10 times and
results are averaged as shown in Figure 7. The average
results of 100 repetitions are shown in Figure 8. The
plots show clear convergence as more repetitions are added.
To provide additional support, we conducted statistical
analysis of results for each example in a similar way. The
models were executed with MIST, which includes utilities
to run simulations multiple times and extract statistics from
multiple simulations. These statistics include mean, standard
deviation, minimum, and maximum of results reported by
different repetitions. The same models were executed on
iBioSim and statistics were extracted using a dedicated script
that was written for this paper. Finally a python script
collected the results and generated the graphics presented in
the figures in this paper. All scripts are provided in the Github
Repository. Statistical analysis results are provided for each
example: Example 1 (Figure 9), Example 2 (Figure 10),
Example 3 (Figures 11,12), Example 4 (Figures 13,14),and

Example 5 (Figures 15,16 17,18). In these analyses, the
vertical axis represents the absolute difference between
MIST and iBioSim results. The left column shows the mean
as circles and standard deviation as squares for each year in
simulation. The right column shows the average difference of
all years and the horizontal axis represents repetitions. The
convergence of the model results is clearly seen from those
statistics for most plots where both the mean and standard
deviation difference is reduced by adding iterations. There
are several outliers where mean does not follow this trend,
such as in example 3 healthy male 10 repetitions mean,
yet even in those cases standard deviation statistic improves
or stays similar implying convergence. In Example 5 there
are three cases where standard deviation does not improve
for 100 repetitions: dead young male and age old female,
and cost old female. However, in those examples the mean
statistic improves and considering that example 5 is highly
stratified, has some relatively rare events and has somewhat
volatile changes in age, so it is quite reasonable and expected.
Therefore, we conclude that the examples are reproduced
properly between tools as clearly seen in 8.

To support this reproducibility, the models, example
code, and results for both implementations are available
at: https://github.com/Jacob-Barhak/

DiseaseModelsSBML. This repository includes detailed
instructions to replicate the results in this paper in both MIST
and iBioSim as well as python code to assist SBML creation
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Table 4. SBML events for Example 4.

Trigger Assignments

0 InstructionNumber[d0] = 0 Time[d0] = Time[d0] + 1
InstructionNumber[d0] = 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] = 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧ Time[d0] < 10 InstructionNumber[d0] = 1

3 InstructionNumber[d0] = 1 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 1.5

4 InstructionNumber[d0] = 1.5 ∧ 1 Age[d0] = Age[d0] + 1
InstructionNumber[d0] = 2

5 InstructionNumber[d0] = 1.5 ∧ 0 InstructionNumber[d0] = 2

6 InstructionNumber[d0] = 2 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 2.5

7 InstructionNumber[d0] = 2.5 ∧ Healthy[d0] = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <(
0 + Age[d0]

1000

) Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 1.5

8 InstructionNumber[d0] = 2.5 ∧ Healthy[d0] = 1 ∧ Random[d0] ≥
(
0 + Age[d0]

1000

)
∧

Random[d0] <
(
0 + Age[d0]

1000

)
+ min(0.8, 0.1 ∗ (1 + Male[d0]) + 0.01 ∗ Age[d0])

Sick[d0] = 1
Healthy[d0] = 0
InstructionNumber[d0] = 0

9 InstructionNumber[d0] = 2.5 ∧ Healthy[d0] = 1 ∧ Random[d0] ≥
(
0 + Age[d0]

1000

)
+

min(0.8, 0.1 ∗ (1 + Male[d0]) + 0.01 ∗ Age[d0]) ∧ Random[d0] < 1
InstructionNumber[d0] = 0

10 InstructionNumber[d0] = 2 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 2.5

11 InstructionNumber[d0] = 2.5 ∧ Sick[d0] = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <
(0 + 0.1)

Sick[d0] = 0
Healthy[d0] = 1
InstructionNumber[d0] = 0

12 InstructionNumber[d0] = 2.5 ∧ Sick[d0] = 1 ∧ Random[d0] ≥ (0 + 0.1) ∧ Random[d0] <
(0 + 0.1) + min(0.9, 0.2 ∗ Male[d0] + 0.01 ∗ Age[d0])

Sick[d0] = 1
Healthy[d0] = 0
InstructionNumber[d0] = 0

13 InstructionNumber[d0] = 2.5 ∧ Sick[d0] = 1 ∧ Random[d0] ≥ (0 + 0.1) + min(0.9, 0.2 ∗
Male[d0] + 0.01 ∗ Age[d0]) ∧ Random[d0] < 1

InstructionNumber[d0] = 0

and additional statistical analysis. Although the results
were generated with MIST and iBioSim. It is important to
remember that this paper promotes SBML with arrays as a
transfer mechanism between systems rather than focusing
on a specific system. In addition, all of the examples
have been uploaded to the BioModels database (26). The
models used in this paper have been assigned the following
identifiers: MODEL1803120002, MODEL1803120003,
MODEL1803120004, MODEL1803120005, and
MODEL1803120006 for Example 1, Example 2, Example
3, Example 4, and Example 5 respectively.

Discussion

The long term goal of this effort of implementing disease
modeling examples in SBML is to eventually allow
converting MIST examples to SBML using the SBML
Arrays package. The provided examples pave the way in this
direction.

Those examples do not cover all possible modeling
elements used in epidemiological modeling, such as

infectious disease modeling, discrete event simulation, or
population generation. Only the very basic essential building
block elements, that are regularly used to model chronic
disease progression at the individual level, are presented
here. Those examples are sufficient to support tasks such as
life expectancy estimation and cost effectiveness analysis,
which are core uses of disease models. Future work will
include adding more elements such as handling event states,
splitting and joining disease processes and other elements
supported by MIST with the intention to promote SBML
Arrays to be part of the SBML standard. In this work, the
model transport is partially manual since MIST did not write
the SBML code that was transported to iBioSim. Future work
will address automation of this mechanism. This work is
intended to establish feasibility of SBML Arrays as a model
transport mechanism. It is only a step towards adoption
by SBML editors into the SBML standard, which already
provides SBML Arrays specification and tools towards such
a goal.
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Table 5. SBML events for Example 5.

Trigger Assignments

0 InstructionNumber[d0] = 0 Time[d0] = Time[d0] + 1
InstructionNumber[d0] = 0.1

1 InstructionNumber[d0] = 0.1 InstructionNumber[d0] = 0.2

2 InstructionNumber[d0] = 0.2 ∧ Dead[d0] = 0 ∧ Time[d0] < 10 InstructionNumber[d0] = 1

3 InstructionNumber[d0] = 1 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 1.5

4 InstructionNumber[d0] = 1.5 ∧ 1 Age[d0] = Age[d0] + 1
InstructionNumber[d0] = 2

5 InstructionNumber[d0] = 1.5 ∧ 0 InstructionNumber[d0] = 2

6 InstructionNumber[d0] = 2 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 2.5

7 InstructionNumber[d0] = 2.5 ∧ 1 InstructionNumber[d0] = 3
BP[d0] = BP[d0] + Age[d0]

10

8 InstructionNumber[d0] = 2.5 ∧ 0 InstructionNumber[d0] = 3

9 InstructionNumber[d0] = 3 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 3.5

10 InstructionNumber[d0] = 3.5 ∧ Healthy[d0] = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <(
0 + Age[d0]

1000

) Healthy[d0] = 0
Dead[d0] = 1
InstructionNumber[d0] = 4

11 InstructionNumber[d0] = 3.5 ∧ Healthy[d0] = 1 ∧ Random[d0] ≥
(
0 + Age[d0]

1000

)
∧

Random[d0] <
(
0 + Age[d0]

1000

)
+ min(0.8, 0.1 ∗ (1 + Male[d0]) + 0.01 ∗ Age[d0] +

( BP[d0]−120
100

)2
)

Sick[d0] = 1
Healthy[d0]=0
InstructionNumber[d0] = 4

12 InstructionNumber[d0] = 3.5 ∧ Healthy[d0] = 1 ∧ Random[d0] ≥
(
0 + Age[d0]

1000

)
+

min(0.8, 0.1 ∗ (1 + Male[d0]) + 0.01 ∗ Age[d0] +
( BP[d0]−120

100

)2
) ∧ Random[d0] < 1

InstructionNumber[d0] = 4

13 InstructionNumber[d0] = 3 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 3.5

14 InstructionNumber[d0] = 3.5 ∧ Sick[d0] = 1 ∧ Random[d0] ≥ 0 ∧ Random[d0] <
(0 + 0.1)

Sick[d0] = 0
Healthy[d0] = 1
InstructionNumber[d0] = 4

15 InstructionNumber[d0] = 3.5 ∧ Sick[d0] = 1 ∧ Random[d0] ≥ (0 + 0.1) ∧ Random[d0] <
(0 + 0.1) + min(0.9, 0.2 ∗ Male[d0] + 0.01 ∗ Age[d0])

Sick[d0] = 0
Dead[d0]=1
InstructionNumber[d0] = 4

16 InstructionNumber[d0] = 3.5 ∧ Sick[d0] = 1 ∧ Random[d0] < (0 + 0.1) + min(0.9, 0.2 ∗
Male[d0] + 0.01 ∗ Age[d0] ∧ Random[d0] < 1

InstructionNumber[d0] = 4

17 InstructionNumber[d0] = 4 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 4.5

18 InstructionNumber[d0] = 4.5 ∧ 1 Treatment[d0] = Age[d0] + 1
InstructionNumber[d0] = 5

19 InstructionNumber[d0] = 4.5 ∧ 0 InstructionNumber[d0] = 5

20 InstructionNumber[d0] = 5 Random[d0] = uniform(0, 1)
InstructionNumber[d0] = 5.5

21 InstructionNumber[d0] = 5.5 ∧ 1 BP[d0] = BP[d0] − Treatment[d0]*10
InstructionNumber[d0] = 6

22 InstructionNumber[d0] = 5.5 ∧ 0 InstructionNumber[d0] = 6

23 InstructionNumber[d0] = 6 InstructionNumber[d0] = 6

24 InstructionNumber[d0] = 6.5 ∧ 1 CostThisYear[d0] = Age[d0] +
Treatment[d0] ∗ 10
InstructionNumber[d0] = 7

25 InstructionNumber[d0] = 6.5 ∧ 0 InstructionNumber[d0] = 7

26 InstructionNumber[d0] = 7 InstructionNumber[d0] = 7.5

27 InstructionNumber[d0] = 7.5 ∧ 1 Cost[d0] = Cost[d0] +
CostThisYear[d0]
InstructionNumber[d0] = 0

28 InstructionNumber[d0] = 7.5 ∧ 0 InstructionNumber[d0] = 0
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F1(Age,Male,BP) =
Min(0.8, 0.1 · (1 + Male) + 0.01 · Age + (BP−120

100 )2)
F2(Age,Male) = Min(0.9, 0.01 · Age + 0.2 · Male)

Figure 5. State transition diagram with functions depending on
Age, Male, BP (Blood Pressure). There are 3 disease states:
Healthy, Sick, and Dead, where the Dead state is terminal. The
yearly transition probabilities are: Healthy to Dead: Age/1000;
Healthy to Sick: According to function F1 depending on Age and
Male and BP; Sick to Healthy: 0.1; Sick to Dead: according to
function F2 depending on Age and Male. Pre-Transition Rules:
Age increased by 1 and BP by Age/10 each simulation cycle.
Post-Transition Rules: Treatment = BP > 140 , becomes 1
when BP crosses 140 threshold; BP = BP − Treatment ∗ 10 ,
meaning a drop of 10 once treatment is applied;
CostThisYear = Age + Treatment ∗ 10 , cost depends on age
and if treatment was taken; Cost = Cost + CostThisYear , it
accumulates cost over time.
Initial conditions: Healthy = (50 Male, 50 Female with Age
=1,2,. . . ,50 for each individual), BP =120, Sick = (0,0) and Dead
= (0,0).
Output: Number of men and women in each disease state for
years 1-10 and their ages and costs in each state. A stratified
report by male and female and young up to age 30 and old
above age 30 is produced.

The SBML standard is widely adopted and it is very
active within the Multi-Scale Modeling community
(https://www.imagwiki.nibib.nih.gov/
content/frequently-asked-questions-faq)
that tries to address different types of modeling that
traverse scales, from cells to organs to populations. When
modeling many types of systems in different scales, it is
essential to have many modeling capabilities. SBML has
280 systems reported that support it as well as an established
development process, specifications, and 2 annual meetings.
This makes it an established infrastructure for modeling
transport mechanism. Therefore enriching SBML to support
microsimulation may make it an attractive candidate for
adoption for modelers that need to support many modeling
systems.

There are many modeling systems that support microsim-
ulation as mentioned by a recent review in (27). How-
ever, we are aware of very few other similar approaches
to allow model representation towards transport between
systems. PharmML (12) is a close candidate that was already
addressed in (14) and since it works together with the
human readable MDL (13), we consider them together.
And although PharmML has elements that address individual
modeling and shows promise, it is far from the SBML level
of adoption as easily demonstrated by the large variety and
number of SBML models in biomodels.net. Another
effort worth mentioning towards supporting communicating
models is the ODD protocol (28) used to describe agent
based models. However, this protocol, although helpful to

convey models to humans, is not a model transport mech-
anism that allows transporting models between computing
systems. If we move beyond biomedical models, another
known modeling standard is Discrete Event System Spec-
ification (DEVS) that was introduced about four decades
ago. DEVS allows formalism of a model as a set of states
and transitions and just like SBML it has many exten-
sions to the basic formulation and many implementations
in different computing languages. DEVS basic formulation
is very simple as can be seen in (29) and the authors see
potential in this formulation that supports parallelism (30)
that invites future exploration, yet despite its popularity, it is
not widely used by biomedical communities.However, recent
work connecting between DEVS and SBML (26) shows
promise and contributes to the approach presented in this
paper.

SBML will not replace existing modeling systems that
model in a large variety of tools and languages, instead it
presents a common reproducible standard that communities
may choose to adopt. This paper may influence such
adoption by presenting reproducible examples that others can
follow.

Note that reproducibility has many facets. Different
implementations of the models with different tools may
generate different results. Even if two different tools are
provided the same random numbers sequence to drive the
stochastic model may generate different outcomes using
different tools. Therefore, asking for the exact same output
files generated by two systems is not practical. However, we
do expect that the same tools after receiving the SBML file
will be able to internally be able to repeat the same results
given the same random seed and therefore be deterministic.
We also expect that repetition of the same model simulations
on different systems have to converge towards the same
statistical solution as was demonstrated. In this paper
we made an effort to include all possible information
to allow reproducing our results including attaching code
and describing computing system environment as well as
archiving the output of the systems. However, the core idea is
that we can represent the same model in SBML, which will
allow future exchange between systems.

The ability to transport models between systems may
encourage other modelers to adopt the ideas and follow
these examples to create other microsimulation models
in SBML. We aim toward chronic disease modelers,
yet hope that this will eventually impact infectious
disease modelers who many times use variations of
SIR (Susceptible, Infectious, Recovered) models and their
extensions (3). An example of SIR model implemented
in SBML can be found in: http://www.ebi.ac.

uk/biomodels-main/MODEL1009230000. However,
it does not use utilize SBML Arrays which may open
opportunities in the future to model interactions at the
individual level.

Once disease models are implemented in SBML, it opens a
multitude of software tool options for disease modelers and
may have considerable impact on the field (in particular, a
significant impact on model reproducibility). When model
reproducibility is no longer an issue, model credibility will
certainly increase.
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Reproducibility Information

The following tools were used to generate the results in
this paper: MIST Version 0.92.2.0 using Python 2.7.14 ,
Anaconda2-5.0.1 (64-bit) running on a Windows 10 (64
bit) machine; SBML files were generated with libsbml
experimental version 5.16.0 for Python 2.7 64 bit running
on a Windows 10 (64 bit) machine; SBML files were
imported to iBioSim Version 3.0.0 – freely available for
download at: http://www.async.ece.utah.edu/

ibiosim – running on macOS Sierra. Model files
and results can be obtained from the following GitHub
repository: https://github.com/Jacob-Barhak/

DiseaseModelsSBML
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Figure 6. This figure shows the results comparison between
MIST and iBioSim for one run.

Figure 7. This figure shows the results comparison between
MIST and iBioSim for ten runs.
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Figure 8. This figure shows the results comparison between
MIST and iBioSim for 100 runs.

Figure 9. Statistical analysis for example 1.

Figure 10. Statistical analysis for example 2.
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Figure 11. Statistical analysis for males in example 3. Figure 12. Statistical analysis for females in example 3.
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Figure 13. Statistical analysis for males in example 4. Figure 14. Statistical analysis for females in example 4.
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Figure 15. Statistical analysis for the average age of males
alive and the number of healthy, dead, and sick males in
example 5.

Figure 16. Statistical analysis for the average age of males
alive and the number of healthy, dead, and sick females in
example 5.
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Figure 17. Statistical analysis for blood pressure, cost, and
cost this year for males in example 5.

Figure 18. Statistical analysis for blood pressure, cost, and
cost this year for females in example 5.
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