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Abstract—Mission-critical IoT applications such as wireless-
networked industrial control require reliable wireless communi-
cation. Due to co-channel interference and wireless channel dy-
namics (e.g., multi-path fading), however, wireless communication
is inherently dynamic and subject to complex uncertainties. Joint
scheduling and power control has been explored for reliable wire-
less communication, but existing solutions are mostly centralized
or do not consider real-world challenges such as fast channel
fading. Towards a foundation for mission-critical IoT commu-
nication, we develop a distributed, field-deployable approach to
joint scheduling and power control that adaptively regulates co-
channel interference and ensures predictable IoT communication
reliability in the presence of wireless communication dynamics
and uncertainties. Our approach effectively leverages the Perron-
Frobenius theory, physical-ratio-K (PRK) interference model,
and feedback control for PRK model adaptation and transmission
power update. Through simulation analysis, we have shown that
our approach improves concurrency by 70% than state-of-art
fixed scheduling while ensuring successful SINR tracking over
time. To the best of our knowledge, our approach is the first
distributed scheduling and power control scheme that ensures
predictable wireless communication reliability while considering
real-world challenges such as fast channel fading, and it is
expected to serve as a foundation for real-world deployment of
mission-critical IoT systems.

I. INTRODUCTION

Wireless networks are stepping into a new era from human-
oriented cellular networks to ubiquitous IoT. The emergence
of IoT is changing our vision for future wireless networks.
Wireless network standards such as ISA100.11a and Wire-
lessHART [1] have facilitated applications of IoT in industrial
automation, home intelligence, and health care. While those
standards try to improve wireless communication reliability
through mechanisms such as graph routing [2] and packet
retransmission, their sacrifice in channel spatial reuse and
system capacity have impeded at-scale deployments of IoT.
In the meanwhile, Petersen and Aakwag [3] have verified
that wireless instrumentation for safety-critical applications
in oil and gas industry are still confronted with a serials
of issues such as weak RF signals, interference, and multi-
path fading [4]. Furthermore, wireless networks in the current
IoT practice under star and mesh topologies will inevitably
suffer from increased co-channel interference from close-by
links as network traffic increases and as network scales up.
These issues call for new network designs to enhace the

reliability and capacity of wireless networks for mission-
critical applications.

Uncertainties of wireless networks mainly come from co-
channel interference and channel dynamics (e.g., due to shad-
owing and multi-path fading). It is undoubtable that redundant
designs such as graph routing and packet retransmission can
improve network reliability to some extent, but they can-
not eliminate packet loss from wireless network uncertain-
ties. While cellular networks mitigate co-channel interference
through mechanisms such as cell division, CDMA, and TDMA
[5], current IoT systems have implemented limited strategies to
address co-channel interference. The limitations of traditional
CSMA mechanism have propelled the adoption of TDMA
in IEEE 802.15.4-based standards [6]; however, current IoT
systems including ISA100.11a and WirelessHART only allow
one user at each time slot and frequency or allocate dedicated
time slots to avoid interference, under which system capacity
is underutilized and would potentially lead to inability of
high data-rate and delay-sensitive applications such as real-
time control. Therefore, improved TDMA scheduling will
be desirable. In addition, prior research has confirmed that
power control can improve system capacity [4], and many
studies have showed the benefits of joint power control and
scheduling as well [7][8]. Unfortunately, distributed TDMA
scheduling and power control is challenging due to the NP-
hardness of optimal scheduling and the fact that there may
not always exist a feasible power assignment for every set of
concurrent transmissions. Moreover, despite field experiments
in [9] evidence that the received signal strength across links
of wireless sensor networks changes over time and suggeste
that adaptive power control is required to compensate time-
varying channel attenuation, many of the existing work on
joint scheduling and power control in IoT have overlooked
channel dynamics and assumed constant channel gain.

In this paper, we aim to develop a field-deployable, joint
TDMA scheduling and power control framework for support-
ing reliable wireless networks in IoT systems. This framework
is designed to implement distributed scheduling and power
control with an objective of maximizing concurrency and
tracking SINR over channel dynamics. We dived into the
Perron-Frobenius theory [10] and formulated our problem. We
adopted Physical-Ratio-K (PRK) interference model [11] and
NAMA TDMA scheduling algorithm [12] to build the whole



distributed framework while both were specifically designed
to facilitate distributed scheduling. We employed feedback
control mechanism to adapt scheduling K and transmission
power by current scheduling K and SINR measurement. In a
slowly time-varying system, the scheduling K will be expected
to change at a large time-scale while transmission power
will be updated probably at each time slot depending on the
scale of channel variation. We evaluated our framework and
algorithms, and the simulation results demonstrated significant
improvement in concurrency and successful tracking of target
SINRs. To the best of our knowledge, the proposed scheme in
this paper is the first one that can satisfy SINR requirement
toward channel dynamics without sacrifice in concurrency.
This fundamental design will pave the way for future field
deployment of IoT as the development and penetration of IoT
expands to a large scale.

The remaining parts of this paper are organized as follows:
Section III defines the system model and identifies the prob-
lem; Section IV elaborates on the framework and algorithms;
Section V evaluates the design; Section II highlights related
work and findings; Section VI concludes the paper.

II. RELATED WORK

Foschini and Miljanic’s work in [13] has been widely con-
sidered as a canonical algorithm in the field of power control.
This simple, autonomous, and distributed power control, where
each link updates their transmission power only from their re-
ceived SINR, was proved to converge to a unique fixed point at
which the total energy consumption is minimized under SINR
constraints. Debasis Mitra [14] extended the Foschini and Mil-
janic’s algorithm and verified the asynchronous convergence.
Bambos et al. [15] and Huang et al. [16] have considered fixed-
step power adjustment algorithms for admission control, but
those algorithms do not ensure convergence to the fixed point.
Yates [17] proposed concepts of standard interference function
and standard power control and reveals the convergence con-
ditions for general power control algorithms. While Foschini
and Miljanic’s algorithm has guided the study on distributed
power control, most literature has overlooked the feasibility
condition for power control.

Gupta et al. [18] investigated the system capacity limitation
from co-channel interference and concluded that when iden-
tical randomly located nodes, each capable of transmitting at
Wbits per second, form a wireless network, the throughput
for each node can asymptotically approach 0. This finding
indicates that mitigating co-channel interference by optimally
utilizing power control and scheduling is required in wire-
less networks. Elbatt and Ephremides [7] introduced joint
scheduling and power control framework to address multiple
access issue in wireless ad hoc networks, yet tended to be
implemented in a centralized way. Wan et al. [8] further
suggested that the cumulative co-channel interference beyond
a certain range can be upper bounded under the link-length-
based path loss law and directed the scheduling issue into
selecting a maximum set of independent links. Che et al.
[19] and Wan et al. [8] proposed approximate algorithms in

obtaining the maximum set of independent links. Magnús M.
Halldórsson conducted extensive research on joint scheduling
and power control. Particularly, Magnús M. Halldórsson [20]
proposed to divide all links into equal link-length group and
allocate transmission power for each group; the algorithm
is centralized and does not conisder channel dynamics, thus
unsuitable for distributed scheduling and power control in real-
world networks of fast-varying channel gains.

Lin et al. [9] has evidenced in field tests that the channel
for wireless sensor networks changes over time and adaptive
transmission power is required. Their work, however, did
not consider joint scheduling and power control to ensure
receiver-side SINR all the time. Holliday et al. [21] proposed
adaptive power control with channel dynamics to converge
to a fixed point. However, their algorithm also did not con-
sider joint scheduling and power control, and it only works
for a set of links for which there exist a feasible power
assignment. Kandukuri and Boyd [14] proposed optimal power
control in interference-limited fading wireless channels with
outage-probability specifications. Chiang et al. [22] extended
Kandukuri and Boyd’s work and proposed distributed power
control scheme to converge to the optimal transmission power.
Those algorithms, however, only try to ensure avearge packet
delivery rate without considering per-packet SINR assurance.
Zhang et al. proposed the PRK interference model [11] and a
control-theoretic approach to PRK-based scheduling [23] for
predictable mean communication reliability. However, their
design has only considered scheduling without considering
joint scheduling and power control for predictable instanta-
neous communication reliability.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Given a set of links in wireless sensor networks, each link’s
receiver will receive signals from other links’ senders due to
broadcast nature of electromagnetic wave. The received signals
from other links are called co-channel interference. According
to the SINR model, a link would transmit a packet successfully
if and only if

piGii∑
j 6=i pjGij + ni

≥ βth (1)

where pi is link i′s transmission power; Gii is link i′s channel
gain; Gij is the channel gain from link j′s sender to link i′s
receiver; ni is link i′s receiver-side thermal noise; βth is link
i′s target SINR. We assume all links have the same target
SINR.

As shown in (1), individual link’s SINR depends on other
links’ transmission power. Transform all links′ SINR require-
ments into matrix form. We have

P ≥ FP + η (2)

where

Fij =

{
βthGij/Gii, if i 6= j

0, if i = j



and
ηi = βthni/Gii

Here P is the variant, and F is normalized gain matrix.
Inequality (2) can be regarded as a Linear Programming issue
[24]. Under constraint P > 0, a solution of transmission
power exits if and only if (2) is feasible. On the contrary, if
P ≥ 0, the problem can be converted into joint scheduling and
transmission power where all infeasible links’ transmission
power would be 0.

A. Perron-Frobenius theory and feasibility

Theorem 1. (Perron-Frobenius Theory [25]) If A is a square
non-negative matrix, there exists an eigenvalue λ such that
• λ is real and non-negative;
• λ is larger or equal to any eigenvalue of A;
• there exists an eigenvector x > 0 such that Ax = λx.

Lemma 1. (Feasibility condition [10]) A set of links is feasible
if and only λ(F ) ≤ 1 when η = 0 and λ(F ) < 1 when η 6= 0.

Lemma 2. (Optimum power [10]) If a set of links is feasible,
the optimum power is P ∗ = (F − I)−1η.

In Lemma 1, λ(F ) is the the largest eigenvalue of F , called
Perron root. P ∗ is called fixed point. Lemma 1 can be proved
as in [10] when transforming Inequality (2) into (F−I)P > η.
According to the feasibility condition in Lemma 1, two links
are infeasible if β2

thG12G21 > G11G22. It is obvious that two
close-by links are easily becoming infeasible under constant
path loss law only if the interfering link length is shorter than
signal link length. This is consistent with the requirement for
scheduling in real systems.

Th Perron-Frobenius theory not only suggests the existence
of infeasibility for a set of links but also indicates that a subset
of links can be feasible if λ(Fs) < 1 under thermal noise,
where Fs is the matrix corresponding to a subset of links. In
this sense, we define a maximal feasible subset, called MFS
as a subset into which the addition of any one more link
will make it infeasible. Furthermore, we denote all maximal
feasible subsets as an union

U = {S1, S2, ..., Sm} (3)

and their corresponding optimal power as

P ∗i = {P ∗1 , P ∗2 , ..., P ∗m} (4)

In the best case, all scheduled links at each time slot are
expected to be a MFS and transmit with optimal power so as
to maximize concurrency and guarantee reliability. However,
finding these maximal feasible subsets are known as NP-hard.
Even in a centralized scheme in which all links’ channel infor-
mation are known, it is almost infeasible to obtain the MFS and
their optimal transmission power in reasonable computation
time, not to mention that wireless ad hoc networks are tended
to be distributed. Therefore, we need to figure out a simple
way to identify feasible links and remove infeasible links.

B. Pysical-Ratio-K (PRK) model and feasible scheduling K

The physical-ratio-K(PRK) model [11] is an interference
model that defines the conflict relationship between two links.
In other words, this model determines whether two links can
transmit at the same time or not. According to the PRK model,
a link j conflicts with a link i if

Gij ≥
Gii
Kii

(5)

We find that the parameter Kii of the PRK model is directly
related to the feasibility of gain matrix F . For each link, a
given Kii would divide all links into conflicting links and
concurrent non-interfering links. If Kii is too large, most links
will be regarded as conflicting links and sacrifice concurrency;
if Kii is too small, the concurrent links are not necessarily
non-interfering. Thus finding the exact Kii is very important.

Definition 1. The feasible K for link i, denoted by Ki
f , is

the minimum K such that all links satisfying Gij ≤ Gii

Ki
f

can
transmit with link i at the same time under optimum power.

Out of all MFSs, we represent all the MFSs that include i
as

Ui = {Si1, Si2, ..., Sim} (6)

and corresponding transmission power as

Pi = {Pi1, Pi2, ..., Pim}. (7)

The links in Ui are those links that can transmit at the same
time as i, denoted by Ni. By the definition of Ki

f , we have

Ki
f = min

j∈Ni

Gii
Gij

(8)

We can prove that Ki
f is the minimum K for link i, that

is, the minimum boundary that divides concurrent links and
conflict links. If we have Kii < Ki

f , there must exist a link
which satisfies Gij = Gii/Kii and is allowed to transmit at
the same with link i. However, it is not among concurrent
links since Gij = Gii/Kii > Gii/K

i
f . Allowing this link

to transmit simultaneously would not guarantee feasibility.
Similarly, letting K > Ki

f will miss some concurrent links.
Therefore, Ki

f is the minimum value under optimum power.
Once we find the feasible K for each link and build conflict

relationship, we can use NAMA scheduling [12] to select
concurrent links. NAMA scheduling is a distributed approach
to channel access scheduling for wireless ad hoc networks.
Based on known conflict relationships, each link calculated a
priority for itself and all its conflict links. A link would get
access to the channel if it has the highest priority among all
its conflicting links. The priority is calculated as follows

pti = Rand(k ⊕ t)⊕ t, k ∈Mi ∪ i (9)

where Mi is a set of links that conflict with link i.
Therefore, back to feasibility condition and PRK model, to

ensure reliability becomes finding the feasible K and optimum
transmission power for each link. Under channel dynamics,



feasibility condition would change and scheduling K(i.e., the
parameter K of the PRK model) may change as well. The
next section will present how the system converges to an
near-optimal K and feasible transmission power over channel
variations.

IV. DISTRIBUTED SCHEDULING K AND POWER CONTROL

In this section, we present a distributed framework to obtain
near-optimal scheduling and power control. This framework
consists of the channel measurement module, NAMA schedul-
ing module, SINR measurement module, and PRK adaptation
and transmission power update module. For slowly time-
varying IoT systems, the channel measurement module will
measure average channel at setup stage and update it at a long
timescale. All packets are sent in the data channel. At each
time slot, each sender will run NAMA scheduling to determine
if it can obtain channel access or not. When a sender gets the
channel access, it will send a packet, and its receiver will
then measure current SINR and send it back to the sender
via acknowledgement packet. So the whole system requires
ACK feedback. When the sender receives current SINR, it
will calculate the scheduling K and transmission power for
the next time slot according to current K, transmission power
and SINR. This distributed framework will run as shown in
Algorithm 1.

Input: P 1
i , K1

i , βth
Output: pti, xti
Ḡi,j = MeasureAverageChannel();
for t← 1 to T do

xti = NAMAScheduling(kti , Ḡi,j);
βti = MeasureSINR(pti, x

t
i);

(pt+1
i , kt+1

i ) = UpdateSchedulingKandPower(pti, k
t
i ,

βti , βth);
end

Algorithm 1: Distributed scheduling K and power control

The core part of this framework is updating scheduling K
and transmission power. To update scheduling K and trans-
mission power, we use iterative approach based on feedback
mechanism. Since it is challenging to achieve the exact target
SINR and also not necessary, we set a tolerance area as SINR
target region, [βth, Uβth], to tolerate any slight variation. We
set a reference interval [Klref ,Krref ]. Specifically, Klref =
β/(1+1/U) and Krref = β/(1−1/U). Despite not all links’
feasible K are bound in the reference interval [Klref ,Krref ],
it is a desirable interval for each link considering feasibility
condition. Limiting all links’ K in this interval would lose a
little bit concurrency but the strategy of regulating all links’
interference in a range would keep a balanced interference
among links and maintain a stable system.

The K reference interval and SINR target region divide K−
SINR plane into multiple regions as shown in Figure 1. We
update K and transmission power by this plane. To decouple
the interactive impact of scheduling and power control, we

decrease 

power

decrease K

increase K
Increase 

power

KKlref
Krref

SINR

β

Uβ

Fig. 1. The plane of scheduling K and SINR. Transmission power and K will
be adjusted by their current location in the plane.

first change K under both overshoot and undershoot of SINR.
The rules are as follows:
• Case 1. In case that the current SINR is greater than

SINR margin Uβth, if K > Krref , the scheduling K
should be decreased; otherwise, keep K unchanged and
decrease transmission power.

• Case 2. In case current SINR is smaller than target SINR
βth, if K < Krref , scheduling K should be increased;
otherwise, transmission power should be increased.

The algorithm is as described in Algorithm 2. We explain
how to calculate kt+1

i and pt+1
i .

If βti > Uβth and kti > Krref , we think kti can be
further decreased to tolerate more interference with a benefit
in improving concurrency. Expecting βt+1

i = βth, we have

Iti + ∆It+1
i = pt+1

i Gii/βth (10)

where ∆It+1
i are allowed interference increase from decreas-

ing K. Further,

Iti/Gii +
∑
j∈st+1

i

pt+1
j /kij = pt+1

i /βth (11)

where kij = Gii/Gij and st+1
i is the set of all newly-added

links satisfying kij ≥ kt+1
i . Because it is difficult to obtain the

set st+1
i and know each link’s transmission power, we further

relax (11) to

Iti/Gii + pt+1
i /kt+1

i = pt+1
i /βth (12)

Let Iti/Gii = pti/β
t
i and γti = βth/β

t
i , we obtain kt+1

i =
1/(1 − γti )βth. Since we don’t hope kt+1

i changes too much
at each time slot to cause system oscillation, we limit kt+1

i ≥
klref . It’s worthwhile to note that kt+1

i is an approximate
value. Further adjustment may be needed before converging
to a fixed value.

If βti > Uβth but klref < kti < krref , we think K is within
reference range and doesn’t need to change, we only reduce
power to satisfy βt+1

i = Uβth. Specifically, square root power



control is adopted to avoid large transmission power change. If
βth < βti < Uβth but klref < kti < krref , K and transmission
power will keep unchanged at the next time slot. Once a few
links settle down and impact on other links don’t change, the
whole system will start to converge. In addition, we control
the range of power increase at each time step so as to reduce
the settle-down links to become unstable.

We can use the same approach above to obtain kt+1
i =

1/(γti − 1)βth when kti < krref . If the actual increased kt+1
i

is larger than Krref , we will further increase transmission
power to ensure expected SINR, M = U/2. Let

Iti/Gii − pti/kt+1
i =

pt+1
i

Mβth
(13)

Replace kt+1
i = Krref , we get

pt+1
i = M

Krref − βti
Krref

βth
βti
pti (14)

For wireless sensor networks, SINR overshoot may be
acceptable but undershoot is not desirable. So we attempt
to satisfy SINR requirements right away by scheduling and
further power control when scheduling doesn’t work in the
case the link gain itself is very small.

Input: kti , β
t
i , p

t
i, βth

Output: pti, kti
γti ←

βth

βt
i

if γti < 1/U then
if kti > Krref then

kt+1
i ← max( 1

1−γt
i
βth,Klref )

end
else

p(i)← max(
pti
U ,

√
Uγtip

t
i)

p(i) = max(p(i), Pmin)
p(i) = min(p(i), Pmax)

end
end
if γti > 1 then

if kti < Krref then
kt+1
i ← 1

γt
i−1

βth

if kt+1
i >= Krref then
pti ← min(Upti,M

Krref−βt
i

Krref
γtip

t
i)

kt+1
i ← Krref

end
end
else

pti ← min(Upti,
√
Mγtip

t
i)

end
pti = max(pti, Pmin)
pti = min(pti, Pmax)

end
Algorithm 2: Update Scheduling K and Transmission Power

The whole system is expected to keep scheduling K constant
or change slowly. In the case there is no channel dynamics,

scheduling and transmission power converge to fixed value.
The SINR region can be used to tolerate interference variation
from random NAMA scheduling. Once variations from chan-
nel dynamics are over the system tolerance level and make
links infeasible, the system will recalculate scheduling K and
transmission power.

V. SIMULATION RESULTS

In this section, we verify the convergence property of the
whole framework and algorithms, and evaluate receiver-side
SINR variation and concurrency in networks. We use Matlab
to simulate a network in a rectangle area with network node
density λ, where all senders are randomly and uniformly
distributed and their receivers are around the senders with a
random distance between dmin and dmax. The traffic model
is full-buffer model, which means packets are always ready
to transmit if they get a chance to access the channel.
Constant channel and dynamic channel with Rayleigh multi-
path fading are simulated separately. Maximum transmission
power and minimum transmission power is 5dBm and -
10dBm, respectively. The channel attenuation is in the range
[−70dB,−120dB]. Each time slot is allocated 5ms. All sim-
ulation parameters are showed in Table I.

TABLE I
SIMULATION PARAMETERS

Symbol Parameter Default value
W Network width 100 m
L Network length 100 m
λ Network density 0.005
dmin Minimum link length 5m
dmax Maximum link length 10 m
α Path loss exponent 3.5
µh Rayleigh fading mean 0 dB
ni Thermal noise -99 dBm
βth Target SINR 5 dB
Pmax Maximum transmission power 5 dB
Pmin Minimum transmission power -10 dB
P0 Initial transmission power 0 dB
U SINR margin 2
T Timeslot duration 5 ms

A. Convergence property

Set the default SINR margin U = 2, we have Klref =
2/3βth, Krref = 2βth. Starting with K0 = 3βth and P0 = 0
dBm, we first observe how scheduling K, transmission power,
and SINR change with constant channel. Fig. 2 shows that
scheduling K for each link will be fixed around 50 time
slots, and Fig. 3 shows that power control will converge
to fixed value around 100 time slots. These results are as
expected while our design has limited the adjustment range of
transmission power at each time slot to obtain a stable system.
As in Fig. 6, all links’ SINR is over the target value. This
suggests that our design ensures tracking and satisfaction of
the required target SINR.
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Fig. 2. Scheduling K converges to a fixed point for each link
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Fig. 3. Transmission power converges to a fixed point for each link

B. Adaptation to dynamic Channels

We model the wireless channel as slowly time-varying
channel. Each link’s channel gain at current time slot is the
average value over channel gains of a few previous time slots
and a random Rayleigh fading. The number of dependent slots
is set as W = 20. Fig. 4 indicates that channel variation is
around 2dB. Under this level of channel dynamics, scheduling
K is mostly the same as constant channel for the same instance
of simulated work, so here we just present the variation of
transmission power. As shown in Fig. 4, for some links,
transmission power is adjusted due to channel dynamics and
then keep stable. Fig. 6 and Fig. 7 are the SINR variation
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Fig. 4. Instantaneous channel gain over time slots under Rayleigh fading

over the same network instantiation under constant channel
and Rayleigh fading. We can see the difference where SINR
has increased and it is a result from transmission power
adjustment.

Time slots, t
0 200 400 600 800 1000

T
ra

n
s
m

is
s
io

n
 p

o
w

e
r 

(d
B

m
)

-10

-5

0

5
Transmission power variation over dynamic channel

link1
link2
link3
link4
link5
link6
link7
link8
link9
link10
link11
link12
link13

Fig. 5. Power update for each link over Rayleigh fading
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C. Concurrency

Concurrency is the main performance we care about. We
compare our schemes with optimal scheduling and power
control and other two typical and state-of-art approaches.
• ALOHA scheduling with Fractional power control.

ALOHA scheduling is random scheduling. Each link has
equal chance to transmit or not. For fractional power
control [26], each link updates their transmission power
by their instantaneous channel gain, Pt+1 = P0/

√
Gii.



• NAMA scheduling with sufficient K and FM control.
We calculate a sufficient K for each link at the first time
slot. This sufficient K will ensure all non-conflicting links
are feasible under constant power. We then run classical
Foschini and Miljanic’s distributed power algorithm [13],
Pt+1 = βth

βt
Pt.

• Optimal scheduling and transmission power. CPLEX
is an optimization tool. We transform (1) into mixed
integer linear programming issue and obtain the maximal
number of feasible links and their transmission power
given the constant gain matrix of a set of links.
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Fig. 8. Comparison of ratio of concurrent links over total links

We run each scheme 50 times and get the average value. Fig.
8 suggests that given a random network, nearly 60% links
can transmit simultaneously under optimal transmission power.
ALOHA scheduling has the least number of feasible links,
which verifies the importance of well-regulating scheduling.
Compared to NAMA scheduling with efficient K, our proposed
scheme improves concurrency by 70%. This result indicates
the benefit of adaptive scheduling.

VI. CONCLUSION

In this paper, we has aimed to leverage scheduling and
power control to support reliable IoT applications. Specifically,
we have focused on ensuring high concurrency while guaran-
teeing application-required communication reliability. We have
adopted the PRK interference model and NAMA scheduling
and proposed our scheduling K and power control framework.
We have conducted experiments and verify that this framework
enables distributed convergence in joint scheduling and power
control with advantages in the ease of implementation, signif-
icant improvement in concurrency and SINR guarantees. The
proposed framework is expected to serve as a foundation for
distributed scheduling and power control as the penetration of
IoT applications expands to scenarios where both the network
capacity and communication reliability becomes critical.
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