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Scheduling with Predictable Link Reliability
for Wireless Networked Control
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Abstract—Predictable link reliability is required for wireless
networked control, yet co-channel interference remains a major
source of uncertainty in wireless link reliability. Formulated
specifically for distributed, predictable control of co-channel
interference, the physical-ratio-K (PRK) interference model in-
tegrates the protocol model’s locality and the physical model’s
high fidelity while addressing their weaknesses, and it transforms
interference control in arbitrary networks to a problem involving
coordination between close-by nodes only. To apply the PRK
model in real-world settings, we design protocol PRKS that
addresses the challenges of model instantiation and protocol
signaling in PRK-based scheduling. In particular, PRKS uses
a control-theoretic approach to instantiate the PRK model in
dynamic, uncertain networks, it uses local signal maps to address
the challenges of large interference range and anisotropic, asym-
metric wireless communication, and it leverages the different
timescales of PRK model adaptation and data transmission to
decouple protocol signaling from data transmission. Through
testbed-based measurement study, we show that, unlike existing
scheduling protocols where link reliability is unpredictable and
the ratio of links whose reliability meets application requirements
can be as low as 0%, PRKS enables predictably high link
reliability (e.g., 95%) for all the links in different network and
environmental conditions without a priori knowledge of these
conditions. Through local, distributed coordination, PRKS also
achieves a channel spatial reuse very close to what is enabled
by the state-of-the-art centralized scheduler while ensuring the
required link reliability. By ensuring the required link reliability
in scheduling, PRKS also enables a lower communication delay
and a higher network throughput than existing scheduling
protocols.

I. INTRODUCTION
Embedded wireless networks are increasingly being ex-

plored for real-time control of physical processes such as those
in industrial IoT systems [1], [2], [3]. In wireless networked
control (WNC), communication across wireless networks is a
basic enabler for the coordination among distributed sensors,
controllers, and actuators; in supporting mission-critical tasks
such as industrial process control, wireless communication
is required to be reliable (i.e., having high delivery ratio)
[2], [3]. Given the varying impact that the reliability, delay,
and throughput of wireless communication have on networked
control and the inherent tradeoff between communication reli-
ability, delay, and throughput, the optimal operation of WNC
systems requires controlling the tradeoff between the reliabil-
ity, delay, and throughput in communication, where controlling
data communication reliability across wireless links (or link
reliability for short) in a predictable manner is a basis for such

The authors’ work is supported in part by NSF awards CNS-1647200 and
CNS-1054634. An extended abstract containing some preliminary results of
this paper appeared in IEEE/ACM IWQoS’15.
Hongwei Zhang, Xiaohui Liu, Chuan Li, Yu Chen, Xin Che, Le Yi Wang,

Feng Lin, and George Yin are with Wayne State University, U.S.A. E-mail:
{ongwei,xiaohui,chuan,yu chen,chexin,lywang,flin,gyin}@wayne.edu.

system-level optimization [2], [4], [5], [6]. Causing collisions
of concurrent transmissions, co-channel interference is a major
source of unpredictability in link reliability [6], [7], [8]. Thus
scheduling transmissions for co-channel interference control is
a basic element of wireless communication in WNC systems.
Distributed scheduling & PRK interference model. In
WNC systems, not only do wireless link dynamics introduce
uncertainty as in traditional wireless sensor networks, dy-
namic control strategies also introduce dynamic network traffic
patterns and pose different requirements on communication
reliability [4]. For agile adaptation to uncertainties and for
avoiding information inconsistency in centralized scheduling,
distributed scheduling becomes desirable for interference con-
trol in wireless control networks. Despite decades of research
on interference-oriented channel access control, most existing
literature are either based on the physical interference model
or the protocol interference model, neither of which is a good
foundation for distributed interference control in the presence
of uncertainties [6], [9], [10], [11]. The physical model
has high-fidelity, but it is non-local and combinatorial and
thus not suitable for distributed protocol design in dynamic,
uncertain settings; the protocol model is local and suitable for
distributed protocol design, but it is inaccurate and does not
ensure reliable data delivery in general [6], [12].
Without field-deployable solutions to predictable co-channel

interference control, current systems practice, such as the
WirelessHART standard for industrial sensing and control
[13], avoids co-channel interference by allowing only one node
in the whole network to transmit in a wireless channel at
any moment in time. Without spatial channel reuse, however,
this approach does not fully utilize wireless network capacity,
which is undesirable for high data-rate control applications
and for new networked control paradigms that involve com-
munications between close-by nodes only [14].
To address the gap between the existing interference models

and the design of distributed, field-deployable scheduling
protocols with predictable data delivery reliability, Zhang et
al. [6] have recently identified the physical-ratio-K (PRK)
interference model that defines pairwise interference rela-
tions between close-by nodes only while ensuring application-
required communication reliability. In the PRK model, a
node C′ is regarded as not interfering and thus can transmit
concurrently with the transmission from another node S to its
receiver R if and only if the following holds:

P (C′, R) <
P (S,R)

KS,R,TS,R

, (1)

where P (C′, R) and P (S,R) is the average strength of
signals reaching R from C′ and S respectively, and
KS,R,TS,R

is the minimum real number chosen such
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that, in the presence of background noise and cumu-
lative interference from all concurrent transmitters in
the network, the probability for R to successfully re-
ceive packets from S is no less than the minimum
link reliability TS,R required by applications (e.g., control

Fig. 1. PRK interference
model

algorithms). As shown in Figure 1,
the PRK model defines, for each
link (S,R), an exclusion region
ES,R,TS,R

around the receiver R

such that a node C ∈ ES,R,TS,R
if

and only if P (C,R) ≥ P (S,R)
KS,R,TS,R

.
Accordingly, every node C ∈
ES,R,TS,R

is regarded as interfer-
ing with and thus shall not trans-
mit concurrently with the trans-
mission from S to R.
For enabling predictable interference control in the presence

of network and environmental uncertainties, the parameter
KS,R,TS,R

of the PRK model adapts to the specific network
and environmental conditions to ensure the application-specific
link reliability requirements. By ensuring the required link
reliability and by using signal strength instead of geographic
distance in model formulation, the PRK model captures the
properties of wireless communication (e.g., cumulative in-
terference, anisotropic signal propagation, and background
noise) and thus is of high-fidelity. For enabling distributed
protocol design and implementation, the PRK model is also
local: 1) The parameters of the PRK model are either locally
measurable (i.e., for the signal strength and link reliability
between close-by nodes) or locally controllable (i.e., for
KS,R,TS,R

of each link (S,R)), thus PRK-based scheduling
does not need to rely on parameters such as nodes’ locations
or channel path loss between far-away nodes which are often
used in physical-model-based scheduling [15] but are difficult
to obtain precisely, especially in a distributed manner; 2) Only
pairwise interference relations between close-by nodes need
to be defined in the PRK model, thus PRK-based scheduling
does not require explicit global coordination which is often
used in physical-model-based scheduling [16], [17]. Through
theoretical analysis based on stochastic geometry [6], simula-
tion with 75,600 different network and environment settings,
and measurement in high-fidelity wireless network testbeds,
Zhang et al. [6] have found that PRK-based scheduling can
enable a channel spatial reuse very close to (e.g., >95%) what
is feasible in physical-model-based scheduling while ensuring
application-required reliability.
Focusing on formulating the PRK interference model and

understanding the theoretically achievable performance of
PRK-based scheduling, Zhang et al. [6] left the design of
distributed protocols for PRK-based scheduling as an open
problem. Yet realizing distributed PRK-based scheduling in
real-world settings poses the following major challenges:

• The parameter KS,R,TS,R
of the PRK model (1) depends

on the specific link (S,R), the application requirement
on the link reliability (i.e., TS,R), as well as the network
and environmental conditions such as traffic pattern and
wireless path loss which may well be dynamic and
unpredictable, thus it is critical to instantiate the PRK

model parameter KS,R,TS,R
on the fly depending on in-

situ application requirements as well as network and
environmental conditions; yet the relations between pa-
rameter KS,R,TS,R

and application requirements as well
as network and environmental conditions are complex
and difficult to characterize in closed-forms, which makes
PRK model instantiation challenging.

• Given a link (S,R) and a specific instantiation of the
PRK model, every node in the exclusion region ES,R,TS,R

should be prevented from transmitting concurrently with
the transmission from S to R. As we will discuss in
detail in Sections III-C and III-D, however, it is difficult
to ensure this property due to large interference range,
anisotropy and asymmetry in wireless communication, as
well as the delay in protocol signaling.

Contributions of this paper. To enable predictable link
reliability in WNC systems, we address the aforementioned
challenges by designing the distributed PRK-based scheduling
protocol PRKS. In PRKS, we formulate the problem of iden-
tifying the PRK model parameter KS,R,TS,R

as a minimum-
variance regulation control problem, and we design distributed
controllers that allow each link to adapt its PRK model
parameter for ensuring the desired link reliability through
purely local coordination. For ensuring that nodes interfering
with one another do not transmit concurrently, we propose
the concept of local signal map that allows close-by nodes to
maintain the wireless path loss among themselves; together
with the PRK model, local signal maps enable nodes to
precisely identify the interference relations among themselves
despite large interference range and anisotropic, asymmetric
wireless communication. To address the inherent delay in
protocol signaling and to avoid interference between protocol
signaling and data transmissions, PRKS decouples protocol
signaling from data transmission by leveraging the different
timescales of PRK model adaptation and data transmission.
We have implemented PRKS in TinyOS. Through mea-

surement study in the NetEye [18] and Indriya [19] wire-
less network testbeds, we demonstrate the following: 1) The
distributed controllers enable network-wide convergence to
a state where the desired link reliabilities are ensured; 2)
With local, distributed coordination alone, PRKS achieves
a channel spatial reuse very close to what is enabled by
the state-of-the-art centralized physical-model-based scheduler
iOrder [20] while ensuring the required link reliability; 3)
Unlike existing scheduling protocols where link reliability is
unpredictable and the ratio of links whose reliability meets
application requirements can be as low as 0%, PRKS enables
predictably high link reliability (e.g., 95%) for all the links
in different network and environmental conditions without
a priori knowledge of these conditions; 4) By ensuring the
required link reliability in scheduling, PRKS also enables a
lower communication delay and a higher network throughput
than existing scheduling protocols.

Organization of the paper. We present in Section II the
network and traffic models as well as the wireless network
testbeds used in this study. Then we elaborate on the design
of PRKS in Section III, and we evaluate the performance of
PRKS in Section IV. We discuss related work in Section V,
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and we make concluding remarks in Section VI.

II. PRELIMINARIES

Network and traffic models & problem definition. As
a first-step towards ensuring predictable link reliability in
distributed scheduling, we consider mostly-immobile wireless
control networks where nodes are statically deployed and are
fixed at specific locations most of the time even though they
may be moved around infrequently. In such networks, the
average background noise power and the average wireless path
loss tend to be stable at timescales of seconds, minutes, or
even longer [21]. Focusing on predictable co-channel interfer-
ence control, we also only consider the cases when the data
transmission power along a link is fixed even though different
links may use different transmission powers; mobile networks
and data transmission power control are relegated as future
research.
Focusing on interference-oriented scheduling of data trans-

missions at the link layer, our study considers one-hop data
transmissions between close-by nodes, but the network itself
is multi-hop and with nodes widely distributed in space.
Note that predictable reliability in one-hop transmissions is
important by itself for new networked control paradigms that
involve communications between close-by nodes only [14],
and predictably reliable one-hop transmission is also a basis
for reliable multi-hop transmission in general as we show in
[12].
With the above network and traffic settings, we study the

online slot-scheduling problem [20] where, given a set of links
in a multi-hop network at any time instant, a maximal subset
of the links need to be scheduled in a distributed manner
to transmit concurrently while ensuring that the mean packet
delivery reliability (PDR) across each of the scheduled links
is no less than an application-required PDR across the link.
To leverage the locality and high-fidelity of the PRK model,
we investigate PRK-based online slot-scheduling.
Wireless network testbeds. The measurement parts of
our study use a publicly available wireless network testbed
NetEye [18]. In a large lab space, NetEye deploys 130 TelosB
motes in a grid with every two closest neighboring motes
separated by 2 feet (i.e., 0.61 meter). The grid deployment
enables the study of both grid networks and random networks,
where random networks can be generated using a subset of
the 130 motes in experiments (e.g., using each mote with a
certain probability). Zhang et al. [6] have shown that, despite
its seemingly uniform deployment pattern, NetEye embodies
many of the complexities and heterogeneity (e.g., asymmet-
ric, anisotropic path loss and channel fading) experienced
in outdoor, real-world deployments; for instance, there is a
high degree of variability in the background noise power at
nodes and in the packet delivery reliabilities for links of equal
length, thus reflecting non-uniform network settings as seen in
practice. Each of these TelosB motes is equipped with a 3dB
signal attenuator and a 2.45GHz monopole antenna. Unless
mentioned otherwise, we use a radio transmission power of
-25dBm (i.e., power level 3 in TinyOS) for data packets such
that the data transmission reliability is over 95% in the absence
of interference for links up to 6 feet (i.e., 1.83 meters) long.

Considering the high fidelity of NetEye, we mainly present
our measurement results in NetEye, but we verify key obser-
vations using the Indriya testbed [19]. Indriya deploys 139
TelosB motes across three floors of the School of Computing
at the National University of Singapore, and it captures real-
world complexities such as asymmetric, anisotropic path loss
and channel fading. The sparse node distribution in a 3D space
in Indriya represents a network and environmental setting
different from that of NetEye.

III. PRK-BASED SCHEDULING

A. Overview
Here we present an overview of our approaches to address-

ing the challenges of PRK-based scheduling as discussed in
Section I. To instantiate the PRK model parameter according
to in-situ network and environmental condition as well as
application requirement on link reliability, we model the PRK
model instantiation problem as a regulation control problem
[22], and we leverage communication theory and model pre-
dictive control theory to derive the optimal controller that
ensures application-required link reliability. Each link executes
the controller in a distributed manner to instantiate and adapt
its PRK model parameter according to in-situ network and
environmental condition as well as application requirement
on link reliability. To apply the instantiated PRK model in
identifying mutual interference relations between links, we
observe that the PRK model is defined based on wireless
signal power between nodes and the instantiated PRK model
parameter. Accordingly, we propose to have close-by nodes
maintain local signal maps that identify wireless signal power
attenuation between themselves, which can be accomplished
through received-signal-strength-indicator (RSSI) sampling at
each node. Using the signal maps, instantiated PRK model
parameters, and knowledge of nodes’ transmission powers,
each node can identify in a distributed manner the set of other
links whose transmissions interfere with its own transmission.
Based on mutual interference relations between links, data
transmissions along different links can be scheduled in a
TDMA manner to ensure predictable interference control and
thus predictable link reliability.
To integrate the above approaches into a field-deployable

solution, we propose the distributed PRK-based scheduling
protocol PRKS whose architecture is shown in Figure 2. In

Fig. 2. Architecture of PRKS
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PRKS, data packet transmissions are executed in the data
plane, and their transmission status (i.e., success or failure)
serve as the feedback to the control plane which schedules data
transmissions to ensure application-required link reliability.
In particular, the status of data transmissions are used by
individual links to estimate their in-situ link reliabilities, which
in turn triggers the PRK model adaptations at individual links.
The instantiated PRK model parameters are used together with
signal maps to identify interference relations between trans-
missions, which in turn are used to enable TDMA scheduling
with predictable link reliability.
In what follows, we elaborate on the individual compo-

nents of the PRKS scheduling protocol. We first present our
control-theoretic approach to instantiating the PRK model in
Section III-B, then we present our protocol signaling method
based on local signal maps in Section III-C, and we present
the detailed design and operation of the PRKS protocol in
Section III-D.

B. A control-theoretic approach to PRK model instantiation
Model predictive regulation control. Given a link (S,R),
the task of instantiating the PRK interference model is to iden-
tify the parameterKS,R,TS,R

such that the resulting scheduling
can ensure the required minimum link reliability TS,R.1 It
is, however, difficult to characterize the relation between
KS,R,TS,R

and the packet delivery reliability along (S,R) in
closed-form, and the relation is complex and dependent on
network and environmental conditions which may well be
unpredictable at design time [6]. To address the challenge,
we observe that the PRK model instantiation problem can
be formulated as an online regulation control problem [22],
where the “plant” is the link (S,R), the “reference input” is
the required link reliability TS,R, the “plant output” is the
actual link reliability YS,R from S to R, the “control input”
is the PRK model parameter KS,R,TS,R

, and the objective of
the regulation control is to adjust the control input so that
the plant output is as close to the reference input as possible.
To address the difficulty in characterizing the “plant model”
on the relation between the control input KS,R,TS,R

and the
plant output YS,R, we observe that changing the PRK model
parameter KS,R,TS,R

changes the exclusion region around
the receiver R and thus the concurrent transmissions along
with the transmission from S to R, which in turn leads to
the change in the average interference power at receiver R.
Accordingly, we propose to regard this change in interference
power, denoted by ∆IR, as the actual control input. This way,
we can leverage the existing communication theory to derive
the plant model on the relation between YS,R and ∆IR as
follows.
For conciseness, we use ĨR(t) and IR(t) to denote, in

units of dBm, the sum of the background noise power and
the power of all interfering signals at the receiver R and
its average respectively at time instant t (t = 1, 2, . . .), with
ĨR(t) = IR(t) + ξR(t) and ξR(t) being a zero-mean random
variable. Assuming a discrete-time model where the changes

1Focusing on interference-oriented scheduling, we only consider the links
whose packet delivery reliabilities are above the required ones in the absence
of interference.

in the average background noise power and average wireless
channel path loss from a time instant t to the next time instant
t + 1 are negligible as compared with the background noise
power and wireless channel path loss themselves, IR(t + 1)
may differ from IR(t) for two possible reasons:2

• From time instant t to t + 1, the PRK model parameter
may change from KS,R,TS,R

(t) to KS,R,TS,R
(t + 1).

Accordingly, the exclusion region around the receiver
R changes from ES,R,TS,R

(t) to ES,R,TS,R
(t + 1). If

KS,R,TS,R
(t+1) > KS,R,TS,R

(t), nodes in ES,R,TS,R
(t+

1) \ ES,R,TS,R
(t) may transmit concurrently with the

transmission from S to R and thus introduce interference
to R at time t but not at time t + 1; similarly, if
KS,R,TS,R

(t+1) < KS,R,TS,R
(t), nodes in ES,R,TS,R

(t)\
ES,R,TS,R

(t+1) may introduce interference to R at time
t + 1 but not at time t. We use ∆IR(t) to denote the
average interference change at receiver R due to the
change of the PRK model parameter from t to t + 1.
Since the receiver R can control the changes of the PRK
model parameter as we will discuss shortly, ∆IR(t) can
be controlled by the receiver R and is thus treated as the
“control input”.

• The set of nodes that are not in the exclusion region
around the receiver R at time instants t and t+1 and are
scheduled to transmit concurrently with the link (S,R)
may change from time t to t+1. Accordingly, the average
interference introduced by nodes outside the exclusion
region around R changes from t to t + 1, and we use
∆IU (t) to denote this change. Since ∆IU (t) is beyond
the local control of link (S,R), we treat ∆IU (t) as
a “disturbance” to the system and denote the mean of
∆IU (t) as µU (t). ∆IU (t) tends to be uncorrelated with
∆IR(t).

Therefore,

IR(t+ 1) = IR(t) + ∆IR(t) + ∆IU (t),

ĨR(t+ 1) = IR(t+ 1) + ξR(t+ 1),

where ∆IR(t) and ∆IU (t) are in units of dB, and ξR(t+1) is
a zero-mean random variable reflecting the impact of factors
such as channel fading.
We use P̃S,R(t) and PS,R(t) to denote the received data

signal power from S to R (in units of dBm) and its average
at time instant t respectively, then communication theory and
practice imply the following [6], [23]:

YS,R(t) = f0(P̃S,R(t)−ĨR(t), t) = f1(PS,R(t)−IR(t))+ξf (t),
(2)

where PS,R(t) − IR(t) approximates, in units of dBs, the
signal-to-interference-plus-noise-ratio (SINR) at time instant
t, f1(.) is a non-linear, increasing function of PS,R(t)− IR(t)
with the specific function form dependent on the modulation
and coding schemes used by the radio, and ξf (t) is a small,
bounded, and zero-mean random perturbation depending on

2In protocol implementation, the actual time interval between t and t + 1
can be chosen to be the small interval required for computing a sample of
link reliability.
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the in-situ network and environmental conditions [23]. There-
fore, the “plant model” for link (S,R) is

ĨR(t+ 1) = IR(t+ 1) + ξR(t+ 1)
= IR(t) + ∆IR(t) + ∆IU (t) + ξR(t+ 1)

P̃S,R(t+ 1) = PS,R(t+ 1) + ξP (t+ 1) = PS,R(t) + ξP (t+ 1)

YS,R(t+ 1) = f0(P̃S,R(t+ 1)− ĨR(t+ 1), t+ 1)
(3)

where (ĨR(.), P̃S,R(.)) and YS,R(.) are the “state” and the
“output” of the plant respectively, and the objective of the
control problem at time t is to select the control input ∆IR(t)
such that YS,R(t+1) is as close to the required link reliability
TS,R as possible.
To address the challenges of the nonlinearity and time-

dependence of function f0(.) in control design, we observe
that, for the control problem mentioned above, we only need
to find another function f(.) that well approximates f0(.) at
the current system operating point (P̃S,R(t)− ĨR(t), YS,R(t))
and the expected target equilibrium point (f−1

1 (TS,R), TS,R)
where the required communication reliability is satisfied. To
this end, we approximate function f0(.), at time t, by the
following affine function f(.) in the neighborhood of the
expected target equilibrium point (f−1

1 (TS,R), TS,R):

f(x) = a(t)x+ b(t),
where a(t) = g(YS,R(t), PS,R(t), IR(t), TS,R)

=
TS,R−YS,R(t)

f
−1

1
(TS,R)−(PS,R(t)−IR(t))

,

b(t) = TS,R − a(t)f−1
1 (TS,R).

(4)

As shown in Figure 3, function f(.) cuts across the current

Fig. 3. Affine approximation of function f0(.) by f(.) in the neighborhood
of the expected equilibrium point (f−1

1 (TS,R), TS,R) at time t

system operating point (P̃S,R(t)− ĨR(t), YS,R(t)) and the ex-
pected target equilibrium point (f−1

1 (TS,R), TS,R). Therefore,
we use the following approximate plant model at time t:

IR(t+ 1) = IR(t) + ∆IR(t) + ∆IU (t)
PS,R(t+ 1) = PS,R(t)
YS,R(t+ 1) = a(t)(PS,R(t+ 1)− IR(t+ 1)) + b(t)

(5)
Accordingly, the system model is as shown in Figure 4,
where Y S,R(t) = cY S,R(t − 1) + (1 − c)YS,R(t), 0 ≤
c < 1, with Y S,R(1) initialized as YS,R(1). To smooth out
the time-varying randomness in YS,R(.), the exponentially-
weighted-moving-average (EWMA) filter in the feedback loop
is introduced to track the link reliability YS,R(.) such that
E[Y S,R(t)] = E[YS,R(t)] but Y S,R(t) has smaller variability
than YS,R(t). The weight factor c determines the tradeoff
between the stability and agility of the EWMA filter; the larger
the c is, the more stable the filter. In our implementation, we

Fig. 4. System diagram of PRK model instantiation as model predictive
regulation control

have tried different values of c, and we find setting c as a
relatively large value (e.g., 15

16 ) is a good choice in enabling
stable link reliability.
Given the probabilistic nature of wireless communication,

the link reliability Y S,R(t) is expected to be inherently ran-
dom. To control Y S,R(t) to be as close to the desired reliability
TS,R as possible, we need to minimize E[(Y S,R(t)−TS,R)

2].
More formally, the control design at time t is a model
predictive control problem as follows:

min∆IR(t) E[(Y S,R(t+ 1)− TS,R)
2]

subject to Y S,R(t+ 1) = cY S,R(t) + (1 − c)YS,R(t+ 1),
Plant model (4) for link (S,R).

(6)
For this control problem, we have
Theorem 1: The optimal solution to Problem (6) is

∆IR(t) =
(1 + c)Y S,R(t)− cY S,R(t− 1)− TS,R

(1 − c)a(t)
− µU (t).

(7)
Applying the above optimal control input ∆IR(t) at time t

makes E[Y S,R(t+1)] = TS,R and the variance of Y S,R(t+1)
minimum.

Proof:

E[(Y S,R(t+ 1)− TS,R)
2]

= E[(cY S,R(t) + (1− c)YS,R(t+ 1)− TS,R)
2]

= E[(cY S,R(t) + (1− c)(a(t)(PS,R(t+ 1)−

IR(t+ 1)) + b(t))− TS,R)
2]

= E[(cY S,R(t) + (1− c)(a(t)(PS,R(t+ 1)−

IR(t+ 1)) + b(t))− TS,R − (1− c)a(t)

(µU (t)− µU (t)))
2]

= E[(X − (1− c)a(t)(∆IU(t)− µU (t)))
2],

where X = cY S,R(t)+(1−c)(a(t)(PS,R(t+1)−IR(t))+b(t))−

TS,R − (1− c)a(t)µU (t)− (1− c)a(t)∆IR(t).
At time t, a(t) is given and E[∆IU (t)− µU (t)] = 0. Thus

E[(1 − c)a(t)(∆IU (t) − µU (t))] = (1 − c)a(t)E[∆IU (t) −
µU (t)] = 0. Given that X and ∆IU (t) are uncorrelated, we
need X = 0 to minimize E[(Y S,R(t)−TS,R)

2]. Accordingly,
the control input that minimizes E[(Y S,R(t)−TS,R)

2] at time
t is as follows:

∆IR(t) =
cY S,R(t)+(1−c)[a(t)[PS,R(t+1)−IR(t)]+b(t)]−TS,R

(1−c)a(t)
− µU (t).
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Since PS,R(t+ 1) = PS,R(t), we have

∆IR(t) =
cY S,R(t)+(1−c)[a(t)[PS,R(t)−IR(t)]+b(t)]−TS,R

(1−c)a(t)
− µU (t)

=
cY S,R(t)+(1−c)YS,R(t)−TS,R

(1−c)a(t)
− µU (t)

=
cY S,R(t)+Y S,R(t)−cY S,R(t−1)−TS,R

(1−c)a(t)
− µU (t)

=
(1+c)Y S,R(t)−cY S,R(t−1)−TS,R

(1−c)a(t)
− µU (t).

Given the above control input ∆IR(t) and considering that
PS,R(t+ 1) = PS,R(t), we have

Y S,R(t+ 1) = cY S,R(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t+ 1))

+ b(t)]

= cY S,R(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)−

∆IR(t)−∆IU (t)) + b(t)]

= cY S,R(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)−

cY S,R(t) + (1− c)YS,R(t)− TS,R

(1− c)a(t)
+ µU (t)−

∆IU (t)) + b(t)]

= cY S,R(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)−

1

(1− c)a(t)
(cY S,R(t) + (1− c)[a(t)[PS,R(t+ 1)−

IR(t)] + b(t)]− TS,R) + µU (t)−∆IU (t)) + b(t)]

= TS,R + (1− c)a(t)(µU (t)−∆IU (t)).

Since E[(1−c)a(t)(µU (t)−∆IU (t))] = 0, E[Y S,R(t+1)] =
TS,R indeed holds. With E[Y S,R(t+1)] = TS,R, the objective
function (6) is the variance of Y S,R(t + 1)]. Hence applying
the optimal control input ∆IR(t) at time t also minimizes the
variance of Y S,R(t+ 1).
From ∆IR(t) to KS,R,TS,R

(t + 1). Given that it is conve-
nient for the receiver R to measure link reliability Y S,R(t)
[8], we propose to execute the model predictive regulation
controller (7) at R. Using similar techniques as what we will
discuss in Section III-C, R can also measure PS,R(t) and
IR(t), thus R can compute a(t). For each time instant t, R can
also derive ∆IU (t−1) based on IR(t), IR(t−1), ∆IR(t−1),
and Equation (3); using these derived samples of IU (.) and
an EWMA filter, R can then estimate µU (.). Therefore, R
can execute the controller (7) using information that is either
locally measured (e.g., for Y S,R(t) and Y S,R(t−1)) or locally
derived (e.g., for a(t) and µU (t)).
After R computes the control input ∆IR(t) at time t, R

needs to compute KS,R,TS,R
(t+ 1) so that











KS,R,TS,R
(t+ 1) = KS,R,TS,R

(t), if ∆IR(t) = 0

KS,R,TS,R
(t+ 1) > KS,R,TS,R

(t), if ∆IR(t) < 0

KS,R,TS,R
(t+ 1) < KS,R,TS,R

(t), if ∆IR(t) > 0

(8)

and that, when the PRK model parameter is
min{KS,R,TS,R

(t),KS,R,TS,R
(t + 1)}, the expected

interference introduced to R by the nodes in either
ES,R,TS,R

(t) or ES,R,TS,R
(t + 1) but not in both is as close

to |∆IR(t)| as possible while ensuring that the expected
link reliability is no less than TS,R when the PRK model
parameter is KS,R,TS,R

(t+1).3 To realize this, we define, for

3Due to the discrete nature of node distribution, the resulting link reliability
may be slightly higher than the required reliability TS,R instead of being
exactly equal to TS,R.

each node C that may be included in the exclusion region
of R during network operation, the expected interference
I(C,R, t) that C introduces to R when C is not in the
exclusion region of R. Then I(C,R, t) = βC(t)P (C,R, t),
where βC(t) is the probability for C to transmit data packets
at time t and P (C,R, t) is the power strength of the data
signals reaching R from C.4 Considering the discrete nature
of node distribution in space and the requirement on satisfying
the minimum link reliability TS,R, we propose the following
rule for computing KS,R,TS,R

(t+ 1):
• When ∆IR(t) = 0, let KS,R,TS,R

(t+1) = KS,R,TS,R
(t).

• When ∆IR(t) < 0 (i.e., need to expand the ex-
clusion region), let ES,R,TS,R

(t + 1) = ES,R,TS,R
(t),

then keep adding nodes not already in ES,R,TS,R
(t +

1), in the non-increasing order of their data signal
power at R, into ES,R,TS,R

(t + 1) until the node
B such that adding B into ES,R,TS,R

(t + 1) makes
∑

C∈ES,R,TS,R
(t+1)\ES,R,TS,R

(t) I(C,R, t) ≥ |∆IR(t)| for

the first time. Then let KS,R,TS,R
(t+ 1) = P (S,R,t)

P (B,R,t) .
• When ∆IR(t) > 0 (i.e., need to shrink the exclusion
region), let ES,R,TS,R

(t + 1) = ES,R,TS,R
(t), then keep

removing nodes out of ES,R,TS,R
(t + 1), in the non-

decreasing order of their data signal power at R, until the
nodeB such that removing any more node after removing
B makes

∑

C∈ES,R,TS,R
(t)\ES,R,TS,R

(t+1) I(C,R, t) >

|∆IR(t)| for the first time. Then let KS,R,TS,R
(t+ 1) =

P (S,R,t)
P (B,R,t) .

For convenience, we call the above rule the PRK-model-
adaptation rule. In our study, we set the initial value of the
PRK model parameter such that the initial exclusion region
around R includes every strong interferer whose transmission
alone, concurrent with the transmission from S to R, can make
the link reliability drop below TS,R. This way, the initial link
reliability is not too far away from TS,R, which helps ensure
the goodness of approximating function f0(.) by f(.) in the
neighborhood of the desired link reliability TS,R.
With the model predictive regulation controller (7) and

the PRK-model-adaptation rule discussed above, scheduling
based on the instantiated PRK model ensures the required link
reliability. Formally, we have
Theorem 2: Applying the PRK-model-adaptation

rule and the control input ∆IR(t + i) =
(1+c)Y S,R(t+i)−cY S,R(t+i−1)−TS,R

(1−c)a(t+i) − µU (t + i) (i = 0, 1, . . .)

starting at a time instant t, E[Y S,R(t + 1 + i)] ≥ TS,R (i =
0, 1, . . .).

Proof: Let ∆ÎR(t) be the absolute value of the change
of the average interference power at the receiver R due to the
change of the PRK model parameter from t to t+1. Applying
the PRK-model-adaptation rule and the predictive minimum-
variance regulation control (6) at a time instant t, E[Y S,R(t+
1)] = TS,R if ∆ÎR(t) = |∆IR(t)|. Due to the discrete nature
of node distribution, however, it may well be the case that
∆ÎR(t) 6= |∆IR(t)|. In this case, if ∆IR(t) < 0, applying the
PRK-model-adaptation rule will expand the exclusion region
such that ∆ÎR(t) > |∆IR(t)|, which makes E[Y S,R(t+1)] >

4P (C,R, t) and βC(t) can be estimated through purely local coordination
between R and C using the protocol signaling mechanism of Section III-C.
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TS,R; on the other hand, if ∆IR(t) > 0, applying the PRK-
model-adaptation rule will shrink the exclusion region such
that ∆ÎR(t) < |∆IR(t)|, which also makes E[Y S,R(t+1)] >
TS,R. Therefore, E[Y S,R(t + 1)] > TS,R holds if ∆ÎR(t) 6=
|∆IR(t)|. For the same reasons as above, E[Y S,R(t+2+i)] ≥
TS,R (i = 0, 1, . . .) holds.
From Theorem 2, it takes one control step (i.e., one adap-

tation of the PRK model parameter) for the PRK model
parameter to converge to a state where the required link
reliability is satisfied. In practice, due to the use of the
approximate function f(.) and the imperfection in estimating
parameters such as µU (t) and βC(t) (which are used in
the ∆IR(t) calculation and in the PRK-model-adaption rule
respectively), it takes more than one control step for the
PRK model parameter to converge. As we will present in our
testbed-based measurement study in Section IV, however, the
PRK model parameters of all the links still converge quickly
to a state where the required link reliabilities are satisfied, for
instance, with a median convergence time of 22 control steps.

C. Protocol signaling for real-world use of the PRK model
Given a link (S,R) and a specific instantiation of the

PRK model, the parameter KS,R,TS,R
(t) defines an exclusion

region ES,R,TS,R
(t) around the receiver R such that a node

C ∈ ES,R,TS,R
(t) if and only if P (C,R, t) ≥ P (S,R,t)

KS,R,TS,R
(t) .

In PRK-based scheduling, every node C ∈ ES,R,TS,R
(t)

should be aware of its existence in ES,R,TS,R
(t) and should

not transmit concurrently with the reception at R. Yet it is
challenging to ensure this property for the following real-world
complexities in wireless communication: 1) node C may be
located beyond the communication range of R such that it is
challenging for R to inform C of its state (e.g., the value of
KS,R,TS,R

(t)); 2) wireless communication may be anisotropic
such that it is difficult for R to transmit protocol signaling
messages that reach and only reach nodes in ES,R,TS,R

(t); 3)
wireless communication may be asymmetric such that nodes
interfering with one another may not know one another’s state
(e.g., KS,R,TS,R

(t)).
Local signal maps. To address these challenges, we propose
that every node R maintains a local signal map that contains
the average signal power attenuation between R and every
node C close-by.5 To identify the signal power attenuation
P ′(C,R) from a node C to another node R, C can inform R

of the transmission power PC used for a data or control packet
that C transmits to R by piggybacking PC onto the packet,
and then R can derive the power attenuation as long as R can
estimate the power of the received signals from C, denoted
by P (C,R). To this end, R samples the RSSI value Ptotal at
an instant right before finishing receiving a packet from C,
and, immediately after receiving the packet, R samples the
RSSI value PI again. As shown in Figure 5, PI is the sum
of the background noise power and the interference power at
R right after the packet reception, and Ptotal = P (C,R)+P ′

I

where P ′
I is the sum of the background noise power and the

interference power at R right before the packet reception. As

5The exact set of close-by nodes that shall be included in the signal map
will be discussed shortly.

Fig. 5. Estimation of signal power
attenuation

we will discuss in
Section III-D, signal
maps are maintained in
the control plane of the
protocol PRKS where
wireless channel access is
based on the traditional
random access method
CSMA/CA as used in IEEE 802.15.4 and 802.11. Given that
Ptotal and PI can be sampled at very short interval (e.g., less
than 0.01 milliseconds for TelosB motes [24]) and that the
background noise power as well as the interference power do
not change much in such short intervals in CSMA/CA-based
wireless networks, the sum of the background noise power
and the interference power do not change much immediately
before and immediately after a packet reception, i.e., P ′

I ≈ PI .
Thus,

P (C,R) = Ptotal − P ′
I ≈ Ptotal − PI . (9)

Once R gets a sample of P (C,R), it can compute a sample
of P ′(C,R) as PC − P (C,R). This way, R can get a series
of samples of P ′(C,R) and then use these samples to derive
the average signal power loss from C to itself.
Using the above method of sampling signal

power attenuation, nodes close-by can establish
their local signal maps through purely local
sampling of their packet receptions without any
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Fig. 6. Relative errors in estimating
link signal power attenuation in Net-
Eye

global coordination in the
network, and the local sig-
nal maps generated in this
manner tend to be very
accurate too. For instance,
Figure 6 shows the CDF of
the relative errors6 in es-
timating power attenuation
across links in the NetEye
[18] sensor network testbed
when all the 130 TelosB
motes transmit packets using the CSMA/CA-based B-MAC
[25] and at an average inter-packet interval of 25 seconds,
2.5 seconds, and 0.1 seconds respectively, which we denote
as light traffic, medium traffic, and heavy traffic respectively.
We see that the estimation is quite accurate. For instance, the
relative estimation errors are all very close to 0 and almost
always within [−2%, 2%]; in addition, the 95% confidence
interval for the median relative error is [−0.0508%, 0.0535%],
[−0.0152%, 0.0280%], and [−0.0087%, 0.0245%] for the
light, medium, and heavy traffic condition respectively, thus
the median estimation error is 0 at the 95% confidence
level for all traffic conditions. We have also observed similar
accuracy for estimating link power attenuation in the Indriya
testbed [19], showing the effectiveness of our method of signal
power attenuation estimation in different network and traffic
conditions; interested readers can find more detailed validation
results for our estimation method in [12].
For protocol signaling in PRK-based scheduling, the local

signal maps maintain bi-directional power attenuation between

6The relative error for a link is defined as the estimated attenuation minus
the ground-truth attenuation and then divided by the ground-truth attenuation.
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each pair of close-by nodes. After estimating P ′(C,R), for
instance, R informs C of P ′(C,R) so that C is aware of the
power attenuation from itself to R.
Protocol signaling based on signal maps. For ensuring
awareness of mutual interference between nodes, the PRK
model parameter KS,R,TS,R

(t) of each link (S,R) needs to be
known by every node C in the exclusion region ES,R,TS,R

(t).
To this end, node R broadcasts signaling packets with the
value of KS,R,TS,R

(t) piggybacked, so that nodes within
the communication range of R get to know KS,R,TS,R

(t).
To ensure that KS,R,TS,R

(t) is also known to every node
C that is in ES,R,TS,R

(t) but is beyond the communication
range of R, every node C′ that has learned KS,R,TS,R

(t)
and is in ES,R,TS,R

(t) can rebroadcast a signaling packet
with the value of KS,R,TS,R

(t) piggybacked, which enables
every node C ∈ ES,R,TS,R

(t) to learn about KS,R,TS,R
(t).

In this process, a node C′ can check whether it is in
ES,R,TS,R

(t) by checking, based on its local signal map,
whether P (C′, R, t) ≥ P (S,R,t)

KS,R,TS,R
(t) . Therefore, local signal

maps enable addressing the challenge of large interference
range in inter-node coordination through signaling-packet re-
lay/rebroadcast within exclusion regions. To reduce the num-
ber of rebroadcasts needed for all the nodes in ES,R,TS,R

(t) to
learn about KS,R,TS,R

(t), certain rebroadcasts are suppressed
based on well-known broadcast-suppression techniques [26],
for instance, giving nodes with lower interference power to R

(i.e., “farther away” from R in the signal map) higher priority
in rebroadcasting and suppressing a node’s rebroadcast if it
has heard rebroadcasts from several close-by nodes.
Once a node C learns about the value of KS,R,TS,R

(t), C
can use its local signal map to decide whether its transmis-
sion may interfere with the transmission from S to R (i.e.,
whether C ∈ ES,R,TS,R

(t)) by checking whether P (C,R, t) ≥
P (S,R,t)

KS,R,TS,R
(t) . Therefore, signaling packets can reach nodes

not in ES,R,TS,R
(t) without falsely including those nodes

into ES,R,TS,R
(t), thus addressing the challenge of anisotropic

wireless communication. Using local signal maps and with
signaling-packet relay as discussed above, a pair of nodes
C and R can inform each other of their respective states
(e.g., the PRK model parameter and the data transmission
probability) even if communications between C and R are
asymmetric, thus addressing the challenge of asymmetric
wireless communication in protocol signaling.
For the correctness of the above protocol signaling method,

the local signal map of a node R should include the set E′ of
nodes whose transmission may interfere with the reception at
R or whose reception may be interfered by the transmission
by R (e.g., the transmission of ACK packets by R). Since
the set E′ may well be dynamic and uncertain depending on
network and environmental conditions, a node R dynamically
adjusts the set of nodes in its local signal map through local
coordination with nodes close-by, and R may also maintain a
relatively large signal map to include the nodes that may be
in E

′ over time.
Together with the PRK model instantiation method dis-

cussed in Section III-B, the above field-deployable signaling
mechanisms enable agile, high-fidelity identification of inter-
ference relations between nodes, thus serving as a foundation

for predictable interference control.

Remarks. For awareness of mutual interference relations,
nodes exchange PRK model parameters and maintain local
signal maps in the aforementioned protocol signaling method.
The frequency of PRK model parameter exchange tends to be
low compared with the frequency of data communications.
For each link, in particular, one link reliability sample is
collected only after everyW number of data packets have been
transmitted along the link, and a new link reliability sample
may trigger one feedback-control update of the PRK model
parameter and its sharing with nodes in the exclusion region.
PRK model parameters can also be piggybacked into the data
packets and control packets (e.g., those for maintaining local
signal maps) that a node has to transmit anyway, thus further
reducing the overhead of exchanging PRK model parameters.
For mostly-immobile wireless control networks which we

consider in this study, the average wireless path loss usually
does not change at short timescales (e.g., minutes or longer),
thus the local signal maps can be maintained through in-
frequent packet exchanges between close-by nodes too. The
control packets for signal map maintenance may be transmitted
at a power level higher than data transmission powers should
nodes beyond data communication ranges interfere with one
another. As a first step towards ensuring predictable interfer-
ence control in data transmission scheduling, our study here
focuses on a single data transmission channel; when multiple
data transmission channels are used, the size of exclusion
regions will significantly decrease [27], and the power level
needed for signal map maintenance will significantly decrease
too. To further reduce power consumption for signal map
maintenance, approximate signal maps may be used such that
power attenuation between nodes beyond data communication
ranges may be estimated based on spatial channel correla-
tions [28], [29] and power attenuation between nodes within
data communication ranges. Detailed study of multi-channel
scheduling and approximate signal maps, however, is beyond
the scope of this paper, which focuses on the feasibility and
basic mechanisms for ensuring predictable interference control
in the presence of uncertainties in data transmission schedul-
ing. The implementation and deployment of our approach in
the NetEye [18] and Indriya [19] wireless network testbeds
with resource-constrained TelosB motes, as we will discuss in
Section IV, also demonstrate the feasibility of our approach in
real-world wireless control networks whose nodes may well
be less resource-constrained than TelosB (which only has a
8MHz processor and 10KB RAM).

D. Protocol PRKS: putting things together

Decoupling of protocol signaling & data transmission.
Based on the methods of PRK model instantiation and protocol
signaling presented in Sections III-B and III-C respectively,
two basic tasks of interference control are 1) enabling nodes
to be accurately aware of the mutual interference relations
among themselves and 2) controlling channel access so that
no two interfering links use the same wireless channel at the
same time. These tasks make the commonly-used contention-
based approach unsuitable for the following reasons:
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• In contention-based channel access control, each data
transmission is usually preceded by a protocol signaling
phase either implicitly through carrier sensing or explic-
itly through RTS-CTS handshake such as in IEEE 802.11.
Due to the probabilistic nature of wireless communica-
tion and the potentially large interference range, it is
difficult to make such per-transmission protocol signaling
perfectly reliable even with the mechanisms discussed in
Section III-C. Accordingly, it is difficult for nodes to be
accurately aware of their mutual interference relations,
thus it is difficult to control interference in a predictable
manner.

• Even if we can make the per-transmission protocol sig-
naling more reliable through mechanisms such as retrans-
mission of signaling packets, this introduces significant
delay and overhead for each data transmission.

To address the aforementioned challenges, we propose
to decouple protocol signaling from data transmission by
leveraging the different timescales of PRK model adaptation
and data transmission. Given a link (S,R), highly accurate
estimation of its reliability usually requires the knowledge of
the transmission status of several (e.g., 20) data transmissions
along (S,R) [8]. Accordingly, it takes time to get a new
link reliability feedback, and the timescale of PRK model
adaptation as well as the resulting change in interference
relations between (S,R) and close-by nodes/links is longer
than the timescale of individual data transmissions along
(S,R). Using the protocol signaling mechanisms discussed in
Section III-C, the receiver R can inform, after each PRK
model adaptation, the relevant nodes of the new value of
parameter KS,R,TS,R

and thus the corresponding change in
interference relations. Therefore, instead of requiring perfectly
reliable signaling for each data transmission as in contention-
based channel access control, we propose to treat protocol
signaling as an independent process which ensures timely
awareness of the mutual interference between nodes/links.
Based on the latest information on mutual interference rela-
tions, data transmissions can be scheduled in a TDMA fashion
without being coupled with protocol signaling.7
Besides enabling precise awareness of mutual interference

relations between nodes/links, the decoupling of protocol
signaling and data transmission also enables separating the
transmission of signaling packets and data packets to prevent
interference between protocol signaling and data transmission.
Since protocol signaling does not introduce high traffic load
and the timescale of PRK model adaptation as well as the
resulting change in interference relations is longer than that of
data packet transmission, we can separate protocol signaling
and data transmission in time, for instance, by dedicating
one time slot for transmitting signaling packets after every
N (e.g., 20) time slots of data packet transmissions. In cases
where there exists a control channel that has been set aside
for control information exchange (e.g., in industry standards
such as IEEE 1609.4 [30] and in research proposals [31],
[32], [33]), we can also separate protocol signaling and data
transmission in frequency by transmitting signaling packets in

7Note that the periodic sampling of physical processes in wireless control
networks also makes TDMA an efficient scheduling mechanism as compared
with contention-based approaches.

the control channel and data packets in the data channel. (We
have experimented with both methods in our implementation
and have observed similar scheduling performance; interested
readers can find more implementation details in [12].)

Protocol PRKS. Based on the above design principles,
we propose the PRK-based scheduling protocol PRKS that
separates the functionalities of PRK-based channel access
control into control plane functions and data plane functions
as shown in Figure 2. In the control plane, the sender S and
the receiver R of a given link (S,R) get to know the set of
links whose transmissions cannot take place concurrently with
the transmission from S to R through the protocol signaling
mechanisms presented in Section III-C, and we define this set
of links as the conflict set of link (S,R). More specifically, a
link (C,D) is in the conflict set of (S,R) and thus conflicting
with (S,R) at a time instant t if links (C,D) and (S,R) share
a common end-node, C ∈ ES,R,TS,R

(t), or S ∈ EC,D,TC,D
(t),

where TS,R and TC,D are the required packet delivery reli-
ability across (S,R) and (C,D) respectively. Based on the
conflict sets of links, data transmissions along individual links
can be scheduled in a distributed, TDMA manner. In this
study, we use the Optimal-Node-Activation-Multiple-Access
(ONAMA) algorithm [34] which is a lightweight, distributed
TDMA scheduling algorithm for wireless networks; we can
also use other TDMA scheduling algorithms [35], but detailed
study of TDMA scheduling itself is beyond the scope of this
work. With the ONAMA algorithm, a link (S,R) is regarded
as active in a time slot if S transmits to R in the slot. Given a
time slot, the sender S first computes the priorities for (S,R)
and the links in the conflict set of (S,R) to be active in the
time slot, then S decides to transmit to R if and only if, for
this time slot, (S,R) has higher priority to be active than
every conflicting link. Every sender in the network computes
link activation priorities in the same manner such that no two
conflicting links will be active in the same time slot as long as
the senders are accurately aware of their mutual interference
relations. If a link (S,R) is active in a time slot, S transmits
data packet(s) to R in this time slot. The statuses (i.e.,
successes or failures) of data transmissions in the data plane
are fed back into the control plane for estimating the in-situ
link reliabilities, which in turn triggers PRK model adaptation
and then the adaptation of the TDMA transmission scheduling
accordingly. In the control plane, nodes transmit signaling
packets based on CSMA/CA since per-transmission reliability
guarantee is not needed for signaling packets; nodes also
leverage the transmissions and receptions of signaling packets
to maintain their local signal maps as we have presented in
Section III-C.

With the above approach to PRK-based scheduling, the
TDMA scheduling of data transmissions happens at the begin-
ning of each time slot based on the PRK model information
that is readily available in the control plane, hence there is
no need for ensuring perfectly reliable protocol signaling on
a per-transmission basis and thus no delay introduced on a
per-transmission basis just for protocol signaling either. Given
that the timescale of PRK model adaptation at a link (S,R) is
longer than that of individual data transmissions along (S,R),
in particular, the time instants ta and tb for two consecutive
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PRK model adaptations at (S,R) tend to be well separated
such that, within the early part of the time window [ta, tb],
the PRK model parameter of link (S,R) generated at time ta
can be reliably delivered to the relevant nodes and then be used
for the TDMA scheduling of data transmissions. In addition,
we do not need perfect information consistency that requires
the same PRK model parameter of a link (S,R) to be used
by link (S,R) and all the links whose transmitters are in the
exclusion region around receiver R. That is, a node can use
the new PRK model parameter of a link the moment the node
learns of the parameter. The intuition of this design is that the
earliest use of new PRK model parameters helps improve data
delivery reliability when the corresponding exclusion regions
expand, or it helps improve the channel spatial reuse and
the concurrency of data transmissions when the corresponding
exclusion regions shrink. (Interested readers can find detailed
discussions of this in [12].)

IV. EXPERIMENTAL EVALUATION

We have implemented PRKS in TinyOS [36], and we
evaluate PRKS through measurement in the NetEye [18] and
Indriya [19] wireless network testbeds.

A. Methodology

Protocols. To understand the design decisions of PRKS,
we have comparatively studied PRKS with its variants; due
to the limitation of space, however, we relegate the detailed
discussions to [12]. Towards understanding the benefits of
predictable interference control in PRKS, we implement in
TinyOS the following distributed scheduling protocols and
comparatively study their behavior with that of PRKS:

• CSMA: a contention-based MAC protocol that uses the
basic CSMA/CA mechanism to ameliorate the impact of
co-channel interference; this represents the interference
control mechanism used by protocols such as B-MAC
[25];

• RTS-CTS: a contention-based MAC protocol that uses
CSMA/CA and RTS-CTS to ameliorate the impact of co-
channel interference and hidden terminals; this represents
the interference control mechanism used by protocols
such as S-MAC [37];

• RIDB: a TDMA scheduling protocol that uses a TDMA
protocol similar to the one used in PRKS and that uses
the physical interference model to derive interference re-
lations between nodes but ignores cumulative interference
in networks [38].

• CMAC: a contention-based MAC protocol where a node
transmits at a time instant only if the SINR of this trans-
mission and the SINRs of other concurrent transmissions
overheard by the node are above a certain threshold (e.g.,
for ensuring a certain link reliability); this represents the
interference control mechanism used by protocols such
as C-MAC [39];

• SCREAM: a TDMA scheduling protocol using the
SCREAM primitive [16] to schedule concurrent transmis-
sions according to the physical interference model; this
represents the interference relation identification mecha-
nism used by protocols such as FDD [16] and DSS [40].

Among these protocols, CSMA and RTS-CTS represent the
protocol-model-based techniques in existing industry stan-
dards such as IEEE 802.15.4 and 802.11p; RIDB, CMAC,
and SCREAM represent the techniques used in existing
physical-model-based scheduling; similar to PRKS, RIDB
and SCREAM also use the technique of separating TDMA-
based data transmission from the control information exchange
needed for generating the TDMA data transmission schedule.
Focusing on predictable co-channel interference control, we
do not compare PRKS with protocols such as WirelessHART
[41] that do not consider channel spatial reuse.
Network and application settings. We use a subset of
the 130 TelosB motes in NetEye by using each mote of
NetEye with probability 0.8. Unless mentioned otherwise,
every mote uses a data transmission power of -25dBm (i.e.,
power level 3 in TinyOS) such that a mote can only reach
motes no more than 6 feet away with a packet delivery
reliability (PDR) of over 95% in the absence of interference,
thus forming a multi-hop network where not every mote can
directly communicate with one another. Focusing on link-layer
scheduling for predictable interference control in this study,
we mainly consider one-hop data traffic where each mote
transmits data packets to one of its neighboring motes to whom
the PDR is above 95% in the absence of interference; if there
are multiple such neighboring motes, each mote is selected as a
receiver with equal probability. For understanding supportable
network throughput while satisfying a certain application PDR
requirement, we consider, unless mentioned otherwise, the
saturated traffic scenario where every mote always has packets
to transmit.
For reflecting different application scenarios, we consider

the cases when the mean PDR requirement for each link are
set to 70%, 80%, 90%, or 95% respectively. To understand the
adaptation of PRKS to online dynamics, we run experiments
where the mean link-PDR requirement changes over time, for
instance, setting the PDR requirement to 70%, 80%, 90%,
95%, 90%, 80%, and 70% over time.
We have experimented with other network and traffic con-

ditions including in the Indriya [19] wireless network testbed
and with heterogeneous PDR requirements, traffic load, and
transmission power across different links, unsaturated and
irregular traffic, temporally-varying traffic, as well as multi-
hop traffic. We have observed similar phenomena as what we
will present in Section IV-B. Interested readers can find the
detailed discussions in [12].

B. Measurement results

Behavior of PRKS. For different PDR requirements, Fig-
ures 7 and 8 show the boxplots of link packet delivery relia-
bility (PDR) and PRK model parameter in PRKS respectively.
We see that PRKS adapts the PRK model parameter according
to different PDR requirements, and that the required minimum
mean PDR is always guaranteed in PRKS through predictable
interference control.8 In particular, the PRK model parameter

8Due to the discrete nature of the spatial distribution of concurrent trans-
mitters, the actual PDR tends to be slightly higher than (instead of being
strictly equal to) the required mean PDR.
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increases with the PDR requirement so that more close-by
nodes are prevented from transmitting concurrently with a
link’s transmission.
To understand the spatial reuse in PRKS, Figure 9 shows

the mean concurrency (i.e., number of concurrent transmis-
sions at a time instant) and its 95% confidence interval9 in
PRKS as well as in a state-of-the-art, centralized scheduling
protocol iOrder [20] which maximizes channel spatial reuse
in interference-oriented scheduling.10 We see that, despite
its nature of local and distributed control, PRKS enables a
concurrency and spatial reuse statistically equal or close to
what is enabled by the centralized algorithm iOrder while
ensuring the required PDR at the same time.
Despite the distributed nature of the minimum-variance reg-

ulation controller in PRKS, the individual controllers converge
to a state where the required PDR is satisfied. For a typical
link in the network, for instance, Figure 10 shows the temporal
behavior of link PDR when the minimum application PDR
requirement is 90%. We see that the link PDR converges to
its steady state after around 25 control steps, where the PRK
model parameter of the link is adapted once in each control
step and each control step takes ∼100ms time. In general,
link PDRs converge quickly, as shown by Figure 11 where
the settling time is defined as the number of control steps
taken for a link to reach its steady state PDR distribution. In
addition to convergence to a state where the required PDRs are
satisfied, the collective behavior of the distributed controllers
in PRKS also enables a spatial reuse close to what is feasible
with the state-of-the-art, centralized scheduler iOrder as we
have shown in Figure 9.
For the adaptation of PRKS to online dynamics, Figure 12

shows, for a typical link in the network, the time series of
link PDR when the application PDR requirement is set to
70%, 80%, 90%, 95%, 90%, 80%, and 70% over time. We
see that, as the application PDR requirement varies, the link
PDR adapts to meet the application requirement.

Comparison with existing protocols. Figure 13 shows the
ratio of links whose PDRs are no less than the application
required PDRs in PRKS and other existing protocols. We see
that, unlike PRKS that always ensures application required
PDRs for all the links in a predictable manner, existing
protocols do not ensure the required PDRs due to co-channel
interference that is not well controlled. We also see that
the PDR satisfaction ratios in the existing protocols tend to
decrease with increasing PDR requirements, thus the existing
protocols cannot control link reliability in a predictable man-
ner.
Among the existing protocols, RIDB enables higher PDR

satisfaction ratios than RTS-CTS and CSMA do because RIDB
considers the physical interference model and application
PDR requirements in defining pairwise interference relations
between nodes; nonetheless, due to its lack of consideration of

9For the figures of this section that present performance statistics (e.g.,
mean concurrency or PDR), we also show the 95% confidence intervals of
the statistics, but some of the confidence intervals may be too narrow to be
noticeable in the figures.

10In terms of maximizing spatial reuse, iOrder has been shown to outper-
form well-known existing scheduling protocols such as Longest-Queue-First
[42], GreedyPhysical [43], and LengthDiversity [44].

cumulative interference from multiple concurrent interferers,
RIDB does not ensure predictable interference control and
thus does not ensure predictable link reliability. When the
application PDR requirement is 95%, for instance, RIDB
can only enable a PDR satisfaction ratio 50.72%. RTS-CTS
ensures higher PDR satisfaction ratio than CSMA does due to
its use of RTS-CTS handshake, but the PDR satisfaction ratios
are quite low in both protocols (e.g., as low as 8.5% and 0%
in RTS-CTS and CSMA respectively) since neither protocols
are based on high-fidelity interference models.
Among the existing protocols that explicitly use the physical

interference model, CMAC and SCREAM consider cumu-
lative interference. Nonetheless, the PDR satisfaction ratio
is quite low in CMAC, and the PDR satisfaction ratio in
SCREAM can also be as low as 50%. CMAC cannot ensure
the required PDRs since CMAC cannot ensure predictable
interference control when the interference range is greater than
the communication range, which is usually the case in practice
(especially when the required PDR is high). Since CMAC
does not decouple control signaling from data transmissions
as in PRKS, interference control in CMAC is also negatively
affected by any unreliability in the per-transmission-based con-
trol signaling (e.g., observing neighboring nodes’ SINRs). In
SCREAM, the collision among a set of concurrent transmitters
is detected through network-wide coordination. The detection
is based on a sample of the status (i.e., success or failure)
of concurrent data transmissions and cannot ensure accurate
collision detection, thus SCREAM cannot accurately control
interference to ensure predictable PDR.
Incapable of ensuring predictable link reliability in schedul-

ing, existing protocols can try to improve link reliability
by packet retransmission. Nonetheless, packet retransmission
increases data delivery latency; this can be seen from Figure 14
which shows the median packet delivery latency when packets
are retransmitted to ensure a certain required PDR. Packet
retransmission in existing protocols also reduces network
throughput, as shown by Figure 15 which shows the mean
number of data packets successfully delivered in the network
per second. 11

Fig. 16. Mean network throughput:
reliability via traffic load reduction

Existing protocols can
also try to improve link re-
liability by reducing the ap-
plication traffic load such
that interference becomes
negligible. Nonetheless, this
approach significantly de-
creases network throughput;
this can be seen from Fig-
ure 16 which shows the
mean network spatial throughput (i.e., number of data packets
successfully delivered per second in the network) when data
packet arrival rates are limited from above to ensure a certain
required PDR.
Control message overhead. Table I shows the control
message overhead in different protocols, where the overhead
is defined as the ratio of the amount of control information
exchange to that of data exchange in different protocols, W

11The throughput of PRKS is based on memory-unconstrained ONAMA.
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Fig. 13. PDR requirement satisfaction ratios in
different protocols

Fig. 14. Median latency: reliability via packet
retransmission

Fig. 15. Mean network spatial throughput

Protocol PRKS CSMA RTS-CTS CMAC SCREAM
Overhead W+8

4WL
+ o(t) 0 8

L
9
L

o(t)
TABLE I

CONTROL MESSAGE OVERHEAD

denotes the number of packet transmission status samples
taken to generate a link reliability estimate in PRKS,12 and
L denotes the number of bytes of data in each data packet.
In Table I, the term o(t) denotes the type of control message
overhead that is incurred at rather low frequency (as compared
with the frequency of data packet exchange) and thus is
negligible in the long-term; this includes the overhead incurred
for signal map maintenance in PRKS and TDMA schedule
generation in SCREAM. The overhead analysis in Table I
assumes the following: it takes two bytes to encode a link
PRK model parameter, two bits to encode link transmission
status in ONAMA (which is used in PRKS), four bytes to
encode the RTS and CTS messages in RTS-CTS and CMAC,
and one byte to encode transmission power in CMAC.
CSMA does not introduce any control overhead since

nodes do not explicitly exchange any control information.
The overhead in SCREAM is lower than that in PRKS since
the TDMA schedule is updated at very low frequency in
SCREAM. The overhead in RTS-CTS and CMAC is higher
than that in PRKS because the RTS and CTS handshake is

12W = 20 in our measurement study.

needed for every data transmission in RTS-CTS and CMAC.
In PRKS, the limited control message exchange between close-
by nodes enables nodes to be aware of their mutual interfer-
ence relations; this enables predictable link reliability, which
is a basis for mission-critical wireless networked control.
For our experimentation in the NetEye testbed, Figure 17

10 15 20 250
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1

Control overhead (%)
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F

Fig. 17. Control overhead in PRKS

shows the control overhead
in PRKS (i.e., CDF of the
ratio of the amount of con-
trol information transmis-
sion to that of data trans-
mission along each link)
when the PDR requirement
is 90%. We see the overhead
is not significant and less
than 25% for all the links, even with our suboptimal imple-
mentation of PRKS due to the limited RAM size of the TelosB
motes. As we have shown in Figures 14 and 15, predictable
link reliability also enables significantly lower communication
delay and higher data throughput, thus compensating for the
overhead paid for the necessary control signaling. As we have
discussed in Section III-C, the control overhead in PRKS can
be further reduced (e.g., through approximate PRK models),
but detailed study of this is beyond the scope of this paper.
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V. RELATED WORK

Similar to PRKS, existing physical-model-based scheduling
algorithms also try to control concurrent transmissions so that
link reliabilities or receiver-side SINRs are above a certain
threshold. Due to the non-local, combinatorial nature of the
physical interference model, however, distributed physical-
model-based scheduling algorithms have various drawbacks
such as requiring network-wide coordination and employing
strong systems assumptions which make it difficult to deploy
these algorithms in real-world settings [6], [12].
Learning-based approaches have been taken to concurrently

schedule throughput-improving exposed terminals [45], but
those approaches did not ensure predictable link reliability
since, similar to CMAC as discussed in Section IV, they only
try to improve locally-observed throughput without ensuring
predictable control of receiver-side cumulative interference.
Learning-based approaches have also been taken to generate
maximal sets of non-interfering transmitters [46], but they
did not address the important question of how to identify
the exclusion regions around receivers so that a required
link reliability is guaranteed. The concepts of guard-zone or
exclusion-region around receivers have also been exercised
in distributed scheduling algorithms [47], [48], but these
algorithms assumed uniform traffic load or uniform wireless
signal power attenuation across the whole network, which are
unrealistic in general.
Adaptive physical carrier sensing has been proposed to

enhance network throughput [49], [50], but cumulative in-
terference is not considered. We have also observed in [6]
that throughput-optimal scheduling usually leads to low link
reliability, which is not desirable in wireless networked con-
trol. Park et al. [51] considered link reliability when adapting
carrier sensing range, but their solution did not guarantee link
reliability due to the price function involved. Fu et al. [52]
proposed to control carrier sensing range to ensure a certain
SINR at receivers, but the derivation of safe-carrier-sensing-
range was based on the unrealistic assumption of homoge-
neous signal power attenuation across the whole network.
Scheduling via local coordination between close-by nodes

has also been considered [43], [53], [10], [54]. Not focusing
on distributed scheduling for predictable link reliability in real-
world settings, however, these work assumed uniform wireless
signal power attenuation which does not hold in practice in
general [43], [53], [10], they did not consider the important
question of how to identify the specific local region for inter-
node coordination [54], [10], they focused on centralized
scheduling [54], [43], or they focused on maximizing network
throughput without considering predictable link reliability
[53].
Focusing on addressing the open problem of predictable co-

channel interference control in the presence of channel spatial
reuse, our study in this paper does not consider frequency
hopping for addressing external interference, duty-cycling for
energy efficiency, real-time scheduling, other link-reliability
control techniques such as rate adaptation and power control,
or other interference management techniques such as inter-
ference cancellation, non-destructive interference, and multi-
channel scheduling. The basic mechanisms of PRKS, however,
are synergistic and can be integrated with the aforementioned

techniques; due to the limitation of space, we relegate the
detailed discussion to [12].

VI. CONCLUDING REMARKS

To enable predictable reliability in data delivery for wireless
networked control, we have proposed the wireless transmission
scheduling protocol PRKS for predictable interference control
in the presence of non-local interference as well as net-
work and environmental uncertainties. Extensive experimental
analysis shows that PRKS enables predictable link reliability
while achieving a high degree of channel spatial reuse in
data transmissions. Besides being important by itself, the
predictable link reliability enabled by PRKS serves as a basis
for predictable real-time data delivery and for predictable, con-
trollable tradeoff between the reliability, delay, and throughput
in wireless control networks; this enables predictable, con-
trollable exploration of the network real-time capacity region,
which in turn enables networking and control co-design in
wireless networked control where the control system can pick
the operating point in the network real-time capacity region to
optimize control performance. The predictable link reliability
enabled by PRKS also represents a fundamental departure
from the existing link-layer scheduling/MAC protocols which
can only provide a best-effort communication service due
to the lack of predictable interference control, and this has
deep implications to the design of higher-layer protocols such
as routing protocols. These topics of research are interesting
future directions worth pursuing.
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