
Cartesian Cubical Computational Type Theory:
Constructive Reasoning with Paths and Equalities
Carlo Angiuli
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
cangiuli@cs.cmu.edu

https://orcid.org/0000-0002-9590-3303

Kuen-Bang Hou (Favonia)1

School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA
favonia@math.ias.edu

https://orcid.org/0000-0002-2310-3673

Robert Harper
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
rwh@cs.cmu.edu

https://orcid.org/0000-0002-9400-2941

Abstract
We present a dependent type theory organized around a Cartesian notion of cubes (with faces,
degeneracies, and diagonals), supporting both fibrant and non-fibrant types. The fibrant fragment
validates Voevodsky’s univalence axiom and includes a circle type, while the non-fibrant fragment
includes exact (strict) equality types satisfying equality reflection. Our type theory is defined
by a semantics in cubical partial equivalence relations, and is the first two-level type theory to
satisfy the canonicity property: all closed terms of boolean type evaluate to either true or false.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Homotopy Type Theory, Two-Level Type Theory, Computational Type
Theory, Cubical Sets

Related Version https://arxiv.org/abs/1712.01800

Funding This research was supported by the Air Force Office of Scientific Research through
MURI grant FA9550-15-1-0053 and the National Science Foundation through grant DMS-1638352.
Any opinions, findings and conclusions or recommendations expressed here are those of the au-
thors and do not necessarily reflect the views of any sponsoring institution, the U.S. government
or any other entity.

Acknowledgements We are greatly indebted to Steve Awodey, Marc Bezem, Evan Cavallo,
Daniel Gratzer, Simon Huber, Dan Licata, Ed Morehouse, Anders Mörtberg, Andrew Pitts,
Jonathan Sterling, and Todd Wilson for their contributions and advice.

1 Introduction

Martin-Löf has proposed two rather different approaches to equality in dependent type theory,
in the guise of his extensional [24] and intensional [25] type theories. Extensional type theory,

1 This author thanks the Isaac Newton Institute for Mathematical Sciences for its support and hospitality
during the program “Big Proof” when part of work on this paper was undertaken. The program was
supported by EPSRC grant number EP/K032208/1.

mailto:cangiuli@cs.cmu.edu
https://orcid.org/0000-0002-9590-3303
mailto:favonia@math.ias.edu
https://orcid.org/0000-0002-2310-3673
mailto:rwh@cs.cmu.edu
https://orcid.org/0000-0002-9400-2941

5:2 Cartesian Cubical Computational Type Theory

particularly its realization as Nuprl’s computational type theory [2], is justified by meaning
explanations in which closed terms are programs equipped with an operational semantics,
and variables are considered to range over closed terms of their given type.

One consequence is that equations hold whenever they are true for all closed terms; for
instance, n : nat,m : nat� n+m

.=m+n ∈ nat as a judgmental equality because N +M and
M +N compute the same natural number for any closed natural numbers N,M . Another
consequence is known as equality reflection: the equality type EqA(M,N) has at most one
element, and is inhabited if and only if M .=N ∈ A judgmentally.

In contrast, in intensional type theory, judgmental equality is precisely β- (and at certain
types, η-) equivalence, and context variables are treated as additional axioms whose form is
indeterminate. The identity type IdA(M,N) mediates equality reasoning; in an empty context
it is inhabited by a single element if and only if M ≡ N : A judgmentally, but in non-empty
contexts includes additional equalities such as n : nat,m : nat ` P : Idnat(n+m,m+n), which
does not hold judgmentally for variables n,m.

Traditional type theories, extensional or intensional, are constructive in the sense that
they admit an interpretation of proofs as programs, often distilled into the canonicity property
that closed elements of type bool evaluate and are judgmentally equal to either true or false.
In computational type theory, this is the very definition of M ∈ bool (see Theorem 15), while
in intensional type theory, canonicity can be verified by a metatheoretic argument.

Homotopy type theory [29] extends intensional type theory with a number of axioms,
including Voevodsky’s univalence axiom [31] and higher inductive types [23]. These axioms
are justified by mathematical models interpreting types as spaces (e.g., simplicial sets [20]
or fibrant objects in a model category [10]), elements of types as points, and identity types
as path spaces. In such models, homotopy type theory serves as a framework for synthetic
homotopy theory [29], in which higher inductive types provide concrete homotopy types (e.g.,
n-spheres), the rules of the identity type assert that all constructions respect paths, and
univalence asserts moreover that all constructions are invariant under homotopy equivalence.

Despite the success of homotopy type theory as a medium for synthetic results in homotopy
theory [11, 30, 14], it is believed that certain objects—famously, semi-simplicial types—cannot
be constructed without reference to some notion of exact equality stricter than paths [8, 33].
Because exact equality does not respect paths, any theory with both exact equality and
paths must therefore stratify types into fibrant types that respect paths, and non-fibrant
types that do not. Candidate such two-level type theories include the Homotopy Type System
(HTS) of Voevodsky [33] and the two-level type theory of Altenkirch et al. [3].

Critically, homotopy type theory and existing two-level type theories lack the aforemen-
tioned canonicity property, because the ordinary judgmental equalities of intensional type
theory do not apply to uses of the univalence axiom or paths in higher inductive types. Nor
are they known to satisfy the weaker homotopy canonicity property that for any closed
M : bool there exists a proof P : Idbool(M, true) or P : Idbool(M, false) [32].

1.1 Contributions
We define a two-level computational type theory satisfying the canonicity property, whose
fibrant types include a cumulative hierarchy of univalent universes of fibrant types, universes of
non-fibrant types, dependent function, dependent pair, and path types, and whose non-fibrant
types include also exact equality types with equality reflection.

Our type theory is the first two-level type theory with canonicity, and the second univalent
type theory with canonicity, after the cubical type theory of Cohen et al. [17]. Like Cohen
et al. [17], our type theory is inspired by a model of homotopy type theory in cubical sets

C. Angiuli, K. Hou (Favonia), and R. Harper 5:3

[12], and represents n-dimensional cubes as terms parametrized by n variables ranging over
a formal interval. However, the fibrant fragment of our type theory differs from Cohen et al.
[17] by endowing the interval with less (namely, Cartesian) structure, and defining fibrancy
with a substantially different uniform Kan condition. Thus we affirmatively resolve the open
question of whether Cartesian interval structure constructively models univalence [18, 22].

In the spirit of Martin-Löf’s meaning explanations [24], we define the judgments of type
theory as relations on programs in an untyped programming language. In Section 2, we define
a λ-calculus extended by nominal constants representing elements of a formal interval object
[26]. In Section 3, we define a cubical generalization of Allen’s partial equivalence relation
(PER) semantics of Nuprl [1], sufficient to describe non-fibrant types and their elements
at all dimensions. In Section 4, we define fibrant types as non-fibrant types equipped with
two Kan operations, called coercion and homogeneous composition. In Sections 5 and 6
we summarize the semantics of each type former, and provide valid rules of inference. We
conclude in Section 7 with comparisons to related work.

Full details and proofs for our construction are available in our associated preprint [7].
Our type theory is currently being implemented in the RedPRL proof assistant [28], in
which we have already formalized a proof of univalence (https://git.io/vFjUQ).

2 Programming language

We begin by defining an untyped cubical programming language, a call-by-name λ-calculus
extended by nominal constants [26], whose terms serve as the types and elements of our
cubical type theory. Names (or dimensions) x, y, . . . represent generic elements of an abstract
interval I with two constant elements (or endpoints) 0, 1. Given any two finite sets of names
Ψ,Ψ′, a dimension substitution ψ : Ψ′ → Ψ sends each name in Ψ to 0, 1, or a name in Ψ′.
We write 〈r/x〉 : Ψ→ (Ψ, x) for the dimension substitution sending x to r ∈ Ψ ∪ {0, 1} and
constant on Ψ. Given ψ : Ψ′ → Ψ and a term M whose free names are contained in Ψ, we
write Mψ for the term obtained by replacing each x ∈ Ψ in M with ψ(x).

Geometrically, a term M with free dimension names in Ψ (henceforth, a Ψ-dimensional
term) represents a |Ψ|-dimensional cube—a point (|Ψ| = 0), line (|Ψ| = 1), square (|Ψ| =
2), and so forth. Dimension substitutions are compositions of permutations, face maps
〈0/x〉, 〈1/x〉 : Ψ→ (Ψ, x), diagonal maps 〈y/x〉 : (Ψ, y)→ (Ψ, x, y), and (silent) degeneracy
maps (Ψ, y) → Ψ, and perform the corresponding geometric operation when applied to a
term M . Below, we illustrate the faces of a square M in dimensions {x, y}; note that the
bottom endpoint of the left face and the left endpoint of the bottom face are drawn as a
single point, because 〈0/x〉〈1/y〉 = 〈1/y〉〈0/x〉.

y
x

M〈0/x〉〈0/y〉

M〈0/x〉〈1/y〉

M〈1/x〉〈0/y〉

M〈1/x〉〈1/y〉

M〈0/x〉 M〈1/x〉

M〈0/y〉

M〈1/y〉

M

This notion of cubes is Cartesian because sets of names and dimension substitutions
form a free finite-product category generated by the two endpoint maps 〈0/x〉, 〈1/x〉 :
∅ → {x} [22, 9, 15]. In contrast, Cohen et al. [17] equip the interval with a De Morgan
algebra structure also containing connections 〈(x ∧ y)/y〉, 〈(x ∨ y)/y〉 : (Ψ, x, y)→ (Ψ, y) and

https://git.io/vFjUQ

5:4 Cartesian Cubical Computational Type Theory

reversals 〈(1− y)/y〉 : (Ψ, y) → (Ψ, y). Cartesian cubes are appealing for their ubiquity
and simplicity: dimensions behave like structural variables (with exchange, weakening, and
contraction) and have a trivial equational theory (as opposed to De Morgan laws).

Following Martin-Löf’s meaning explanations [24], we only give operational meaning to
closed terms, and consider term variables to range over closed terms of their given types.
However, we cannot treat dimension names as ranging only over {0, 1}—such a semantics
would enforce uniqueness of identity proofs, by equating all lines whose boundaries coincide.

We therefore define a deterministic small-step operational semantics on terms with no
free term variables, but any number of free dimension names. We write V val for values,
M 7−→ M ′ when M takes one step of computation to M ′, and M ⇓ V (M evaluates to
V), when M 7−→∗ V (in zero or more steps) and V val. Notably, the operational semantics
are not stable under dimension substitution: because face and diagonal maps can expose
new simplifications, we have neither (1) if V val then V ψ val, nor (2) if M 7−→∗ M ′ then
Mψ 7−→∗ M ′ψ. Consider the circle (Section 5.2), inductively generated by a point base and
a line loopx. We arrange that the faces of loopx are base by including an operational step
(loopx)〈0/x〉 = loop0 7−→ base. On the other hand, loopx val because it is a constructor,
contradicting (1). Maps out of the circle are determined by a point P (the image of base)
and an abstracted line x.L (the image of loopx). Thus S1-elimc.A(loopx;P, x.L) 7−→ L but

(S1-elimc.A(loopx;P, x.L))〈0/x〉 = S1-elimc.A〈0/x〉(loop0;P 〈0/x〉, x.L)
7−→ S1-elimc.A〈0/x〉(base;P 〈0/x〉, x.L)
7−→ P 〈0/x〉

where L and P 〈0/x〉 are a priori unrelated, contradicting (2). Fortunately, most rules of the
operational semantics are in fact cubically stable, or preserved by dimension substitutions: for
instance, (loop0)ψ 7−→ baseψ for all ψ : Ψ′ → Ψ. We write M 7−→� M ′ when Mψ 7−→M ′ψ

for all ψ : Ψ′ → Ψ, and V val� when V ψ val for all ψ : Ψ′ → Ψ.
We include some operational semantics rules in Fig. 1, but omit the many rules pertaining

to the Kan operations (defined in Section 4), as well as rules that evaluate the principal
argument of an elimination form (for example, app(M,N) 7−→ app(M ′, N) when M 7−→M ′).
We adopt the convention that a, b, c, . . . are term variables, x, y, z, . . . are dimension names,
and r, r′, ri are dimension expressions (names x or constants 0, 1).

3 Cubical PER semantics

Type theory is built on the judgments of typehood (and equality of types) and membership in
a type (and equality of members in a type). Intensional type theories—including homotopy
type theory and the cubical type theory of Cohen et al. [17]—typically define these judgments
inductively by a collection of syntactic inference rules. We instead define these judgments
semantically as partial equivalence relations (PERs, or symmetric and transitive relations)
over terms of the language described in Section 2. Such an approach can be seen as a
mathematically precise reading of Martin-Löf’s meaning explanations of type theory [24], or
as a relational semantics of type theory in the style of Tait [27], and is the approach adopted
by Nuprl [2]. The role of inference rules is therefore not definitional, but rather to summarize
desirable properties validated by the semantics.

We adopt this semantical approach for multiple reasons. By defining types as relations
over programs, we ensure the constructive character of the theory; for instance, it will follow
from the definitions that elements of boolean type are programs that evaluate to true or false
(Theorem 15). Moreover, because the meaning of open terms is given by their closed (term)

C. Angiuli, K. Hou (Favonia), and R. Harper 5:5

(a:A)→ B val�
λa.M val�

app(λa.M,N) 7−→� M [N/a]
(a:A)×B val�
〈M,N〉 val�

fst(〈M,N〉) 7−→� M

snd(〈M,N〉) 7−→� N

Pathx.A(M,N) val�
〈x〉M val�

(〈x〉M)@r 7−→� M〈r/x〉
EqA(M,N) val�

? val�
bool val�
true val�
false val�

ifb.A(true;T, F) 7−→� T

ifb.A(false;T, F) 7−→� F

S1 val�
base val�

loopx val
loopε 7−→� base (ε ∈ {0, 1})

S1-elimc.A(base;P, x.L) 7−→� P

S1-elimc.A(loopx;P, y.L) 7−→ L〈x/y〉
Vx(A,B,E) val

Vε(A0, A1, E) 7−→� Aε (ε ∈ {0, 1})
Vinx(M,N) val

Vinε(M0,M1) 7−→� Mε (ε ∈ {0, 1})
Vprojx(Vinx(M,N), F) 7−→ N

Vproj0(M,F) 7−→� app(F,M)
Vproj1(M,F) 7−→� M

Uκj val� (κ ∈ {pre,Kan})

Figure 1 Operational semantics, selected rules.

substitution instances, it will naturally follow that judgmental equality is extensional and
that the exact equality type satisfies equality reflection.

In Allen’s PER semantics of Nuprl [1], a type A is interpreted as a symmetric and
transitive relation JAK on values; the judgment M .= N ∈ A holds whenever M ⇓ M0,
N ⇓ N0, and JAK(M0, N0) (which we henceforth write JAK⇓(M,N)); and M ∈ A whenever
M

.=M ∈ A. Thus, ignoring equality, A is defined by its set of values {V val | JAK(V, V)},
and the elements of A are the programs whose values are elements of that set. (We write ∈
rather than : to emphasize the semantic character of these judgments.)

We generalize Nuprl’s semantics by instead interpreting types as cubical sets: every type
has a PER of Ψ-dimensional values for every Ψ, and each ψ : Ψ′ → Ψ sends its Ψ-dimensional
values to its Ψ′-dimensional values. Complications arise when defining the latter functorial
action. First, dimension substitutions can engender computation even on values, so the action
of ψ must send V to the value of the program V ψ. Second, substitution-then-evaluation
is not necessarily functorial: if V ψ ⇓ V ′, there is in general no relationship between the
values of V ψψ′ and V ′ψ′. Third, types are themselves programs because of dependency,
and therefore suffer from the same coherence issues. We solve these issues by interpreting
(Ψ-dimensional) types as value-coherent Ψ-PERs on values:

I Definition 1. A Ψ-relation α (resp., Ψ-relation on values) is a family of binary relations
αψ for every Ψ′ and ψ : Ψ′ → Ψ, over Ψ′-dimensional terms (resp., values). If αψ varies only
in the choice of Ψ′ and not ψ, we say α is context-indexed and write αΨ′ for αψ.

I Definition 2. For any Ψ-relation on values α, define the Ψ-relation Tm(α)(M,N) to hold
when for all ψ1 : Ψ1 → Ψ and ψ2 : Ψ2 → Ψ1, α⇓ψ1ψ2

relates pairwise M1ψ2, Mψ1ψ2, N1ψ2,
and Nψ1ψ2, where Mψ1 ⇓M1 and Nψ1 ⇓ N1.

5:6 Cartesian Cubical Computational Type Theory

A Ψ-relation α can be precomposed with a dimension substitution ψ : Ψ′ → Ψ, yielding
a Ψ′-relation (αψ)ψ′ := αψψ′ .

IDefinition 3. A Ψ-relation on values α is value-coherent, or Coh(α), when for all ψ : Ψ′ → Ψ,
if αψ(V, V ′) then Tm(αψ)(V, V ′).

Definition 1 captures the idea that types vary with dimension substitutions (for example,
S1-elimc.UKan

j
(loopx;A, x.B) under 〈0/x〉), Definition 2 lifts Ψ-relations on values to arbitrary

terms by substitution-then-evaluation, and Definition 3 defines functoriality of that lifting.

I Remark. Writing C for the category of finite sets of names and dimension substitutions, a
value-coherent context-indexed PER determines a functor Cop → Set, and a value-coherent
Ψ-PER determines a functor (C/Ψ)op → Set.

3.1 Judgments
We define the judgments of our type theory relative to a value-coherent context-indexed
PER of types, each of which gives rise to another PER. In the style of Allen [1] and recently,
Anand and Rahli [4], we present this data in a single relation.

I Definition 4. A cubical type system is a relation τ(Ψ, A0, B0, ϕ) over Ψ-dimensional values
A0, B0, and binary relations ϕ over Ψ-dimensional values, satisfying:

Functionality: if τ(Ψ, A0, B0, ϕ) and τ(Ψ, A0, B0, ϕ
′) then ϕ = ϕ′.

PER-valuation: if τ(Ψ, A0, B0, ϕ) then ϕ is a PER.
Symmetry: if τ(Ψ, A0, B0, ϕ) then τ(Ψ, B0, A0, ϕ).
Transitivity: if τ(Ψ, A0, B0, ϕ) and τ(Ψ, B0, C0, ϕ) then τ(Ψ, A0, C0, ϕ).
Value-coherence: Coh({(Ψ, A0, B0) | τ(Ψ, A0, B0, ϕ)}).

The first three components of τ define a Ψ-PER for every Ψ, which we write τΨ. If
Tm(τΨ)(A,B), then the fourth component of τ assigns a Ψ-PER to A,B sending each
ψ : Ψ′ → Ψ to the relation ϕψ where τ⇓(Ψ′, Aψ,Bψ, ϕψ). We write this Ψ-PER JAK; it is
unique by functionality, and independent from the choice of B by symmetry and transitivity.

For the remainder of this section, fix a cubical type system τ . We start by defining the
closed judgments relative to τ : when are A and B equal Ψ-dimensional types, and when are
M and N equal Ψ-dimensional elements of A?

I Definition 5. A .= B typepre [Ψ] holds when Tm(τΨ)(A,B) and Coh(JAK). We write
A typepre [Ψ] for A .=A typepre [Ψ].

I Definition 6. M .= N ∈ A [Ψ], presupposing2 A typepre [Ψ], when Tm(JAK)(M,N). We
write M ∈ A [Ψ] for M .=M ∈ A [Ψ].

We extend the judgments to open terms by functionality: an open type (resp., elements)
is a map sending equal elements of the context to equal closed types (resp., elements). The
open judgments must be defined simultaneously, by induction on the length of the context.

I Definition 7. (a1 :A1, . . . , an :An) ctx [Ψ] when A1 typepre [Ψ], a1 :A1 � A2 typepre [Ψ],
. . . , and a1 :A1, . . . , an−1 :An−1 � An typepre [Ψ].

2 A presupposition is a fact that must be established before a judgment can be sensibly considered. Here,
it does not make sense to demand Tm(JAK)(M, N) unless JAK is known to exist by A typepre [Ψ].

C. Angiuli, K. Hou (Favonia), and R. Harper 5:7

I Definition 8. a1 : A1, . . . , an : An � B
.= B′ typepre [Ψ], presupposing (a1 : A1, . . . , an :

An) ctx [Ψ], when for any ψ : Ψ′ → Ψ, N1
.= N ′1 ∈ A1ψ [Ψ′], N2

.= N ′2 ∈ A2ψ[N1/a1] [Ψ′],
. . . , and Nn

.=N ′n ∈ Anψ[N1, . . . , Nn−1/a1, . . . , an] [Ψ′], when

Bψ[N1, . . . , Nn/a1, . . . , an] .=B′ψ[N ′1, . . . , N ′n/a1, . . . , an] typepre [Ψ′].

Under the same hypotheses, a1 :A1, . . . , an :An �M
.=M ′ ∈ B [Ψ] when

Mψ[N1, . . . , Nn/a1, . . . , an] .=M ′ψ[N ′1, . . . , N ′n/a1, . . . , an] ∈ Bψ[N1, . . . , Nn/a1, . . . , an] [Ψ′].

Given the distinct roles of term variables and dimension names in Definition 8, it is
natural for our judgments to separate the contexts (a1 :A1, . . . , an :An) and Ψ. In RedPRL,
we utilize a single mixed context of terms and dimensions, as do Cohen et al. [17].

I Remark. Allen’s PER semantics are an instance of our semantics, in the case that types
are constant presheaves and terms have no free dimension names. If M , N , A, and B have
no free dimensions, then A .=B typepre [Ψ] if and only if τ⇓(Ψ′, A,B, JAKΨ′) for all Ψ′, and
M

.=N ∈ A [Ψ] if and only if (JAKΨ′)⇓(M,N) for all Ψ′.

3.2 Properties of Judgments

The main result of this paper is the construction of a cubical type system closed under a
variety of type formers. However, many global properties of judgments hold in any cubical
type system. For instance, equality judgments are all symmetric, transitive, and closed under
dimension substitution (if J [Ψ] and ψ : Ψ′ → Ψ, then Jψ [Ψ′]). Open judgments satisfy the
hypothesis (if (Γ, a :A,Γ′) ctx [Ψ] then Γ, a :A,Γ′ � a ∈ A [Ψ]) and weakening rules. Equal
types have the same elements (if A .=B typepre [Ψ] and M .=N ∈ A [Ψ] then M .=N ∈ B [Ψ]).

To prove M ∈ A [Ψ] in a particular cubical type system, we must compare the definition
of JAK with the evaluation behavior of all dimension substitution instances of M . When all
instances of M begin to evaluate in lockstep, it suffices to consider only M itself (Lemma 9);
otherwise, it suffices to show that the instances of M become coherent up to equality at A,
after some number of steps (Lemma 10).

I Lemma 9 (Head expansion). If M ′ ∈ A [Ψ] and M 7−→∗� M ′, then M .=M ′ ∈ A [Ψ].

I Lemma 10. Suppose that M is a Ψ-dimensional term, and we have a family of terms
{Mψ} for each ψ : Ψ′ → Ψ such that Mψ 7−→∗ Mψ. If Mψ

.= (MidΨ)ψ ∈ Aψ [Ψ′] for all ψ,
then M .=MidΨ ∈ A [Ψ].

Once we have established that substitution-then-evaluation of M is functorial, it follows
that the instances of M are equal to the instances of its value.

I Lemma 11. If M ∈ A [Ψ], then M ⇓ V and M .= V ∈ A [Ψ].

On the other hand, certain properties typical of intensional type theories are generally
not expected to hold in our semantics. To check M ∈ A [Ψ], one must, at minimum, show
that M terminates; this is clearly undecidable, because M can be an arbitrary untyped
term. Moreover, terms do not have unique types, because the meanings of types need not be
disjoint. In fact, modern Nuprl has a “Base” type containing every term [4].

5:8 Cartesian Cubical Computational Type Theory

4 Kan types

The judgmental apparatus described in Section 3 accounts for non-fibrant or pretypes—whose
paths are not necessarily composable or invertible. A pretype is Kan fibrant, or a Kan
type, when equipped with two Kan operations: coercion (coe) and homogeneous composition
(hcom). Coercion for a (Ψ, x)-dimensional type states that elements of A〈r/x〉 can be coerced
to A〈r′/x〉 for any r, r′, and this operation is the identity when r = r′. The coercion of
M is written coer r′

x.A (M). For example, if M ∈ A〈0/x〉 [∅], then coe0 1
x.A (M) ∈ A〈1/x〉 [∅].

Moreover, coe0 x
x.A (M) ∈ A [x] is a line in A whose 〈0/x〉 face is M (because 0 = x〈0/x〉),

and whose 〈1/x〉 face is coe0 1
x.A (M).

x

y

M coe0 1
x.A (M)

coe0 x
x.A (M)

· ·

· ·

M

N0 N1

hcom0 1
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

hcom0 y
A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1)

Homogeneous composition is significantly more complicated, but essentially states that
any open box in A (an n-cube without an interior or one of its faces) has a composite (the
missing face). For example, given two lines in y, N0 ∈ A〈0/x〉 [y] and N1 ∈ A〈1/x〉 [y], and
a line in x, M ∈ A [x], that agrees with the y-lines when y = 0 (M〈0/x〉 .=Nε ∈ A〈ε/x〉 [∅]
for ε ∈ {0, 1}), we can obtain an x-line that agrees with the y-lines when y = 1, written
hcom0 1

A (M ;x = 0 ↪→ y.N0, x = 1 ↪→ y.N1). Moreover, we can obtain the interior of that
square, its filler, by composing to y rather than 1. The difficulty of homogeneous composition
is that we must define arbitrary open boxes, at any dimension, in a manner that commutes
with substitution. We introduce dimension context restrictions Ξ, or sets of pairs of dimension
expressions (suggestively written as equations), to describe the spatial relationship between
the faces of an open box.

I Definition 12. A context restriction
−−−−⇀
ri = r′i is valid in Ψ when all ri, r′i are dimension

expressions in Ψ, and either ri = r′i for some i, or ri = rj , r′i = 0, and r′j = 1 for some i, j.

I Definition 13. A restricted judgment J [Ψ |
−−−−⇀
ri = r′i] holds when Jψ [Ψ′] holds for every

ψ : Ψ′ → Ψ for which riψ = r′iψ for all i.

Restricted judgments behave as one might expect: J [Ψ | ∅] if and only if J [Ψ],
J [Ψ, x | x = 0] if and only if J 〈0/x〉 [Ψ], and J [Ψ | 0 = 1] always. Crucially, they are
closed under dimension substitution: if J [Ψ | Ξ] and ψ : Ψ′ → Ψ, then Jψ [Ψ′ | Ξψ].

I Definition 14. B typeKan [Ψ], presupposing B typepre [Ψ], when for all ψ : Ψ′ → Ψ, the
rules in Fig. 2 hold for A := Bψ. (B .=B′ typeKan [Ψ], presupposing B .=B′ typepre [Ψ], when
B and B′ are equipped with equal Kan operations.)

Operationally, both hcom and coe evaluate their type argument and behave according
to the outermost type former. For each type former, we will first show that the formation,
introduction, elimination, computation, and eta rules hold; then, using those rules, we show
that if its component types are Kan, then it is Kan (for example, if A typeKan [Ψ] and
a :A� B typeKan [Ψ], then (a:A)→ B typeKan [Ψ]). The only exceptions are exact equality
types EqA(M,N) (Section 5.5), which are not generally Kan even when A is Kan.

C. Angiuli, K. Hou (Favonia), and R. Harper 5:9

−−−−⇀
ri = r′i valid [Ψ]
A typeKan [Ψ]
M ∈ A [Ψ]

(∀i, j) Ni
.=Nj ∈ A [Ψ, y | ri = r′i, rj = r′j]

(∀i) Ni〈r/y〉
.=M ∈ A [Ψ | ri = r′i]

hcomr r′

A (M ;
−−−−−−−−−−⇀
ri = r′i ↪→ y.Ni) ∈ A [Ψ]

.=
{
M when r = r′

Ni〈r′/y〉 when ri = r′i

A typeKan [Ψ, x] M ∈ A〈r/x〉 [Ψ]
coer r

′

x.A (M) ∈ A〈r′/x〉 [Ψ]
coer rx.A (M) .=M ∈ A〈r/x〉 [Ψ]

Figure 2 Kan operations.

These Kan operations are variants of the uniform Kan conditions first proposed by
Bezem et al. [12]. In unpublished work in 2014, Licata and Brunerie [22] and Coquand
[18] considered uniform Kan operations in Cartesian cubical sets, but did not succeed in
defining univalent type theories based on those operations. Our Kan operations introduce
two important innovations. First, we allow open boxes with sides attached along diagonals
x = z, in addition to faces; this is essential to construct univalent universes (Sections 5.6
and 6). Second, the validity condition requires that every box must contain at least one
opposing pair of sides x = 0 and x = 1; this sharpens our canonicity results for higher
inductive types (Section 5.2). We defer further comparison of Kan operations to Section 7.

5 Type formers

We proceed to construct a cubical type system with booleans and the circle (as a representative
higher inductive type), and closed under dependent function and pair types, path types,
exact equality types, and univalent universes. (Our preprint [7] also includes an empty type
and natural numbers.) Each of these type formers is given meaning as a value-coherent
Ψ-PER on values, and shown to validate the appropriate rules of inference. (We focus on
closed-term rules, from which the open rules follow.) In this section we analyze each type
former separately, excepting pretype and Kan universes, which we defer to Section 6.

5.1 Booleans
There are two boolean values at every dimension: JboolKΨ = {(true, true), (false, false)}.
This context-indexed PER is clearly value-coherent, as the constructors are unaffected by
dimension substitution. The canonicity property follows directly from this definition:

I Theorem 15 (Canonicity). If M ∈ bool [Ψ] then M ⇓ V and M
.= V ∈ bool [Ψ], for

V = true or V = false.

Proof. Then Tm(JboolK)(M,M), so M ⇓ V and JboolK(V, V). By Lemma 11, M .= V ∈
bool [Ψ], and by the definition of JboolK, V = true or V = false. J

Consistency is similar: true .=false ∈ bool [Ψ] implies JboolK(true, false), which is impossible.
The rules in Fig. 3 all hold: true and false are elements, the elimination rule holds

essentially by Theorem 15, and the computation rules hold by Lemma 9. The Kan operations
of bool are identity functions, because every line in bool is degenerate.

5:10 Cartesian Cubical Computational Type Theory

bool typeKan [Ψ] true ∈ bool [Ψ] false ∈ bool [Ψ]

b : bool� A typepre [Ψ] M ∈ bool [Ψ] T ∈ A[true/b] [Ψ] F ∈ A[false/b] [Ψ]
if (M ;T, F) ∈ A[M/b] [Ψ]

T ∈ A [Ψ]
if (true;T, F) .= T ∈ A [Ψ]

F ∈ A [Ψ]
if (false;T, F) .= F ∈ A [Ψ]

S1 typeKan [Ψ] base ∈ S1 [Ψ] loopr ∈ S1 [Ψ] loopε
.= base ∈ S1 [Ψ]

c : S1 � A typeKan [Ψ] M ∈ S1 [Ψ]
P ∈ A[base/c] [Ψ] L ∈ A[loopx/c] [Ψ, x] (∀ε) L〈ε/x〉 .= P ∈ A[base/c] [Ψ]

S1-elimc.A(M ;P, x.L) ∈ A[M/c] [Ψ]

P ∈ B [Ψ]
S1-elimc.A(base;P, x.L) .= P ∈ B [Ψ]

L ∈ B [Ψ, x] (∀ε) L〈ε/x〉 .= P ∈ B〈ε/x〉 [Ψ]
S1-elimc.A(loopr;P, x.L) .= L〈r/x〉 ∈ B〈r/x〉 [Ψ]

Figure 3 Boolean and circle type.

5.2 Circle
It is tempting to define the circle as the least context-indexed PER generated by a base point
and a loop: JS1KΨ(base, base) and JS1K(Ψ,x)(loopx, loopx). Unlike bool, S1 has non-degenerate
lines, so we must explicitly add composites of open boxes to S1 if we want it to be Kan. We
therefore equip S1 with the following free Kan structure (writing ξi to abbreviate ri = r′i):

coer r
′

x.S1 (M) 7−→� M

hcomr r′

S1 (M ;
−−−−−−−⇀
ξi ↪→ y.Ni) 7−→� M if r = r′

hcomr r′

S1 (M ;
−−−−−−−⇀
ξi ↪→ y.Ni) 7−→ Nj〈r′/y〉 if r 6= r′, rj = r′j , ri 6= r′i for i < j

hcomr r′

S1 (M ;
−−−−−−−⇀
ξi ↪→ y.Ni) val if r 6= r′, ri 6= r′i

These operational semantics satisfy the equations in Fig. 2: when r = r′ in hcom, line
(2) applies; when ri = r′i, line (3) applies; and for every hcom, one of lines (2–4) applies.
Disequalities are needed in lines (3–4) to maintain determinacy. To account for value hcoms,
we add a clause that JS1KΨ(hcomr r′

S1 (M ;
−−−−−−−⇀
ξi ↪→ y.Ni), hcomr r′

S1 (M ′;
−−−−−−−⇀
ξi ↪→ y.N ′i)) whenever

these are values and satisfy the premises of the hcom rule in Fig. 2. Value-coherence of JS1K
follows from the operational semantics of hcomS1 and the premises of the hcom typing rule.
By limiting the Kan operations to valid context restrictions, we ensure that JS1K∅ contains
no hcoms—there are no valid restrictions at dimension ∅ in which ri 6= r′i for all i.

The rules for the circle can be found in Fig. 3, including the eliminator mapping from
S1 into any Kan type with a point P and line x.L satisfying L〈0/x〉 .= L〈1/x〉 .= P . The
eliminator sends base to P , loopy to L〈y/x〉, and hcomS1 to a Kan composition in the target
type. (See our preprint [7] for the latter operational semantics step, which requires a derived
notion of heterogeneous composition in which the type varies across the open box.) It is
therefore essential that the target type is Kan.

C. Angiuli, K. Hou (Favonia), and R. Harper 5:11

5.3 Dependent function and pair types
When A typepre [Ψ] and a :A� B typepre [Ψ],

J(a:A)→ BKψ = {(λa.N, λa.N ′) | a :Aψ � N
.=N ′ ∈ Bψ [Ψ′]}

J(a:A)×BKψ = {(〈M,N〉, 〈M ′, N ′〉) |M .=M ′ ∈ Aψ [Ψ′] ∧N .=N ′ ∈ Bψ[M/a] [Ψ′]}

Rules for dependent function and dependent pair types are listed in Fig. 4, including
judgmental η principles. The Kan operations for dependent function types are:

hcomr r′

(a:A)→B(M ;
−−−−−−−⇀
ξi ↪→ y.Ni) 7−→� λa.hcomr r′

B (app(M,a);
−−−−−−−−−−−−⇀
ξi ↪→ y.app(Ni, a))

coer r
′

x.(a:A)→B(M) 7−→� λa.coer r
′

x.B[coer′ x
x.A

(a)/a](app(M, coer
′ r
x.A (a)))

If A typeKan [Ψ] and a :A� B typeKan [Ψ], then by the above steps and the introduction,
elimination, and eta rules, (a:A)→ B typeKan [Ψ] (and similarly [7], (a:A)×B typeKan [Ψ]).

5.4 Path types
Whenever A typepre [Ψ, x] and Pε

.= P ′ε ∈ A〈ε/x〉 [Ψ] for ε ∈ {0, 1}, JPathx.A(P0, P1)Kψ =
{(〈x〉M, 〈x〉M ′) | M .= M ′ ∈ Aψ [Ψ′, x] ∧ ∀ε.(M〈ε/x〉 .= Pεψ ∈ Aψ〈ε/x〉 [Ψ′])}. That is,
paths are abstracted lines with specified endpoints, and dimension abstraction (〈x〉M) and
application (M@r) pack and unpack them. Rules for path types are listed in Fig. 4; once
again, Kan operations (see [7]) ensure that Pathx.A(P0, P1) typeKan [Ψ] when A typeKan [Ψ, x].

Notably, while homotopy type theory relies on the identity type to generate path structure,
in this setting the path type merely internalizes a preexisting judgmental notion of paths.
The homotopy-type-theoretic identity elimination principle is definable for Path_.A(M,N)
when A is Kan, but as in Cohen et al. [17], its computation rule holds only up to a path.

5.5 Exact equality types
Whenever A typepre [Ψ],M ∈ A [Ψ], and N ∈ A [Ψ], we have JEqA(M,N)Kψ = {(?, ?) |Mψ

.=
Nψ ∈ Aψ [Ψ′]}. That is, EqA(M,N) is (uniquely) inhabited if and only if M .=N ∈ A [Ψ],
and therefore equality reflection holds. Rules for equality types are listed in Fig. 4.

Unlike the previous cases, EqA(M,N) is not necessarily Kan when A is Kan, because coer-
cion in EqA(M,N) implies uniqueness of identity proofs in A. We allow EqA(M,N) typeKan [Ψ]
when A is discrete Kan [7], roughly, contains only degenerate paths (for example, A = bool).

5.6 Univalence
Voevodsky’s univalence axiom [31] concerns a notion of type equivalence Equiv(A,B):

isContr(C) := C × ((c:C)→ (c′:C)→ Path_.C(c, c′))
Equiv(A,B) := (f :A→ B)× ((b:B)→ isContr((a:A)× Path_.B(app(f, a), b)))

Essentially, Equiv(A,B) if there is a map A→ B such that the (homotopy) preimage in A of
any point in B is contractible (has exactly one point up to homotopy). In homotopy type
theory, univalence states that idtoequiv : IdU (A,B)→ Equiv(A,B) (definable in intensional
type theory) is itself an equivalence. By a theorem of Licata [21], univalence in the present
setting is equivalent to the existence of a map ua : Equiv(A,B) → Path_.UKan

j
(A,B) and a

homotopy uaβ(E) between the functions underlying the equivalences E and idtoequiv(ua(E)).

5:12 Cartesian Cubical Computational Type Theory

A typeκ [Ψ] a :A� B typeκ [Ψ]
(a:A)→ B typeκ [Ψ]

a :A�M ∈ B [Ψ]
λa.M ∈ (a:A)→ B [Ψ]

M ∈ (a:A)→ B [Ψ] N ∈ A [Ψ]
app(M,N) ∈ B[N/a] [Ψ]

a :A�M ∈ B [Ψ] N ∈ A [Ψ]
app(λa.M,N) .=M [N/a] ∈ B[N/a] [Ψ]

M ∈ (a:A)→ B [Ψ]
M

.= λa.app(M,a) ∈ (a:A)→ B [Ψ]

A typeκ [Ψ] a :A� B typeκ [Ψ]
(a:A)×B typeκ [Ψ]

M ∈ A [Ψ] N ∈ B[M/a] [Ψ]
〈M,N〉 ∈ (a:A)×B [Ψ]

P ∈ (a:A)×B [Ψ]
fst(P) ∈ A [Ψ]

P ∈ (a:A)×B [Ψ]
snd(P) ∈ B[fst(P)/a] [Ψ]

M ∈ A [Ψ]
fst(〈M,N〉) .=M ∈ A [Ψ]

N ∈ B [Ψ]
snd(〈M,N〉) .=N ∈ B [Ψ]

P ∈ (a:A)×B [Ψ]
P
.= 〈fst(P), snd(P)〉 ∈ (a:A)×B [Ψ]

A typeκ [Ψ, x]
(∀ε) Pε ∈ A〈ε/x〉 [Ψ]

Pathx.A(P0, P1) typeκ [Ψ]

M ∈ A [Ψ, x]
(∀ε) M〈ε/x〉 .= Pε ∈ A〈ε/x〉 [Ψ]
〈x〉M ∈ Pathx.A(P0, P1) [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]
M@r ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]
M@ε .= Pε ∈ A〈ε/x〉 [Ψ]

M ∈ A [Ψ, x]
(〈x〉M)@r .=M〈r/x〉 ∈ A〈r/x〉 [Ψ]

M ∈ Pathx.A(P0, P1) [Ψ]
M

.= 〈x〉(M@x) ∈ Pathx.A(P0, P1) [Ψ]

A typepre [Ψ] M ∈ A [Ψ] N ∈ A [Ψ]
EqA(M,N) typepre [Ψ]

M
.=N ∈ A [Ψ]

? ∈ EqA(M,N) [Ψ]

E ∈ EqA(M,N) [Ψ]
M

.=N ∈ A [Ψ]
E ∈ EqA(M,N) [Ψ]

E
.= ? ∈ EqA(M,N) [Ψ]

Figure 4 Dependent functions, dependent pairs, paths, and exact equalities.

C. Angiuli, K. Hou (Favonia), and R. Harper 5:13

M

app(F,M) .=N〈0/x〉 N〈1/x〉

F

N

Vinx(M,N)
∈

A

B〈0/x〉 B〈1/x〉

F

B

Vx(A,B, 〈F,_〉)

We achieve both conditions by defining a new type former “V”, such that whenever
A typepre [Ψ, x | x = 0], B typepre [Ψ, x], and E ∈ Equiv(A,B) [Ψ, x | x = 0], Vx(A,B,E)
is a type with faces A〈0/x〉 and B〈1/x〉, whose elements are pairs of N ∈ B [Ψ, x] and
M ∈ A〈0/x〉 [Ψ] such that E sends M to exactly N〈0/x〉. (Bezem et al. [13] employ the
same approach in their “G” types.) We then define:

idtoequiv := λp.coe0 1
x.Equiv(A,p@x)(〈λa.a, idisequiv〉)

ua := λe.〈x〉Vx(A,B, e)
uaβ := λe.λa.〈x〉coex 1

_.B (app(fst(e), a))

where idisequiv is a proof that the identity function is an equivalence, and uaβ relies on coercion
across an equivalence: coe0 r′

x.Vx(A,B,E)(M) 7−→� Vinr′(M, coe0 r′

x.B (app(fst(E〈0/x〉),M))).
When implementing coey r

′

x.Vx(A,B,E)(M), we make essential use of an open box with a
diagonal y = r′ side, to ensure coercion y y is the identity. (See our preprint [7] for this
and the other Kan operations.) We have formalized the full proof of univalence for our
system in RedPRL (see https://git.io/vFjUQ).

6 Universes

Finally, we define two cumulative hierarchies of universes, Upre
j and UKan

j , classifying pretypes
and Kan types respectively, each closed under the appropriate type formers, and satisfying:

Uκj typeKan [Ψ]
A ∈ Uκj [Ψ]
A typeκ [Ψ]

A ∈ Uκj [Ψ]
A ∈ Uκj+1 [Ψ]

A ∈ UKan
j [Ψ]

A ∈ Upre
j [Ψ]

In order for our type theory to be a suitable setting for synthetic homotopy theory, it is
essential that UKan

j is Kan; this is needed, for example, to define maps S1 → UKan
j used in

the calculation of the fundamental group of the circle [29]. As with S1, universes are not
automatically Kan, so we equip both with free Kan structure analogous to hcomS1 .

Because elements of Upre
j are pretypes, we must ensure hcomr r′

Upre
j

(A;
−−−−−−⇀
ξi ↪→ y.Bi) typepre [Ψ]

for pretypes A,−⇀Bi satisfying the appropriate equations. We define these types to be empty.
Similarly, we require hcomr r′

UKan
j

(A;
−−−−−−⇀
ξi ↪→ y.Bi) typeKan [Ψ] for Kan types A,−⇀Bi satisfying

the appropriate equations. In order to equip hcomUKan
j

with Kan operations, we define its
elements to be open boxes consisting of an element M ∈ A [Ψ], and a family of elements
Ni ∈ Bi〈r′/y〉 [Ψ | ξi] such that coer′ r

y.Bi
(Ni)

.=M ∈ A [Ψ | ξi]. The diagram below illustrates
an element of H := hcom0 1

UKan
j

(A;x = 0 ↪→ y.B0, x = 1 ↪→ y.B1).

coe1 0
y.B0

(N0) coe1 0
y.B1

(N1)

N0 N1

M

box0 1(M ;N0, N1) ∈

· ·

B0〈1/y〉 B1〈1/y〉

A

B0 B1H

https://git.io/vFjUQ

5:14 Cartesian Cubical Computational Type Theory

When r = r′, H .=A and the box .=M . When ξi holds, H
.=Bi〈r′/y〉 and the box .=Ni. These

agree when both r = r′ and ξi hold: A
.=Bi〈r/y〉 = Bi〈r′/y〉 and M

.= coer′ r
y.Bi

(Ni)
.=Ni.

For the complete definition of hcomUKan
j

and its Kan operations, see our preprint [7]. Coer-
cion requires heterogeneous compositions that may not be valid in the sense of Definition 12,
but which are nevertheless definable in our setting. (Such compositions are closely related to
the ∀i.ϕ operation of Cohen et al. [17].) Finally, to ensure these Kan operations agree with
those of A when r = r′, we once again make essential use of open boxes with diagonal sides.

Intuitively, each universe JUκj K is defined as the least context-indexed PER closed under all
type formers yielding κ-types, that are present in a type theory with j universes. Of course,
typehood and membership are mutually defined (EqA(M,N) typepre [Ψ] whenM,N ∈ A [Ψ]),
so the values of each universe depend on both the names and semantics of types.

Following Allen [1], we make this construction precise by introducing candidate cubical type
systems, relations τ(Ψ, A0, B0, ϕ) as in Definition 4 without any conditions of functionality,
symmetry, and so forth. Candidate cubical type systems form a complete lattice when
ordered by inclusion, so we define each universe as the least fixed point of a monotone
operator (guaranteed to exist by the Knaster–Tarski fixed point theorem).

For each κ, we define an operator Fκ(τu, τpre, τKan) whose arguments are candidate
cubical type systems defining (1) all smaller universes, (2) pretype formers, and (3) Kan type
formers, following the meanings given in Section 5. These operators are monotone because
Tm(−) is monotone, and hence the judgments defined in Section 3 are monotone in τ .

Then construct the simultaneous least fixed points τκi = Fκ(τui , τ
pre
i , τKan

i) for each i ≥ 0,
where τui defines each JUκj K (for j < i) as τui (Ψ,Uκj ,Uκj , {(A0, B0) | τκj (Ψ, A0, B0,_)}), that
is, the typehood relation of τκj . We establish by induction that each τκi is in fact a cubical
type system in the sense of Definition 4, and each is closed under the appropriate type
formers. We take the “outermost” cubical type system τpre

ω (containing universes for all j)
as our model, validating every rule presented in this paper. This construction requires no
classical reasoning, and in fact Anand and Rahli [4] carry out Allen’s original Nuprl semantics
inside the Coq proof assistant using inductive types rather than fixed points.

7 Conclusion and Related Work

We have constructed a two-level type theory with fibrant, univalent universes closed under
dependent function, dependent pair, and path types. The non-fibrant (pretype) level includes
these type formers as well as exact (strict) equality types with equality reflection. Following the
tradition of the Nuprl computational type theory [2] and Martin-Löf’s meaning explanations,
our types are relations over untyped programs equipped with an operational semantics, and
thereby satisfy canonicity (Theorem 15) by construction. Full details and proofs are available
in our associated preprint [7]. An early version of our cubical PER semantics appeared in
Angiuli et al. [6], but for a type theory including neither univalence, nor universes, nor exact
equality, and equipped with a variant of our Kan operations restricted to open boxes with
sides −−−−−−−−−⇀ri = 0, ri = 1 (and in particular, without x = z sides critical for univalent universes).

We are currently implementing the RedPRL [28] proof assistant based on this type
theory. RedPRL implements a proof refinement sequent calculus in the style of Nuprl,
rather than the natural deduction rules presented in this paper; we view it as the extension
of core Nuprl to a higher-dimensional notion of program.

Cavallo and Harper [16] define a schema of higher inductive types constructible in the
semantic framework we describe. Their fiber family type validates the rules of the homotopy-
type-theoretic identity type (strictly, unlike path types). Our type theory, extended with

C. Angiuli, K. Hou (Favonia), and R. Harper 5:15

fiber families, constitutes a fully computational model of univalent intensional type theory.

7.1 Two-level type theories

Voevodsky’s HTS [33] extends homotopy type theory with exact equality types satisfying
equality reflection. Our semantics validate the rules of HTS, excepting resizing rules. More
recently, Altenkirch et al. [3] have proposed a two-level type theory with two intensional
identity types: one to internalize paths, and the other satisfying uniqueness of identity proofs
and function extensionality, but not equality reflection. Both theories consider all strict
equality types non-fibrant, and neither theory satisfies canonicity, because univalence (and
in the latter, uniqueness of identity proofs and function extensionality) are added as axioms
that do not compute.

Our contributions to two-level type theory are twofold: (1) we define the first two-level
type theory satisfying canonicity, and (2) by introducing the notion of discrete Kan types
(see our preprint [7]), we obtain a type theory in which some exact equality types are fibrant.

7.2 Cubical type theories

Our use of cubical structure and uniform Kan conditions traces back to the Bezem et al. [12]
cubical set model of type theory, which has only face and degeneracy maps. The cubical
type theory of Cohen et al. [17] uses a De Morgan algebra of cubes containing not only face,
diagonal, and degeneracy maps, but also connection and reversal maps.

From a proof-theoretic perspective, our semantics can be seen as cubical logical relations
suitable for proving canonicity (and consistency) for a set of inference rules. In fact, Huber’s
canonicity argument [19] for Cohen et al. [17] resembles our PER semantics in various ways,
most notably his “expansion lemma,” which is closely related to Lemma 10.

The fibrant fragment of our system constitutes the second univalent type theory with
canonicity—after the cubical type theory of Cohen et al. [17]—and the first to employ
Cartesian cubical structure. Licata and Brunerie [22] and Coquand [18] previously considered
Cartesian cubes, but did not succeed in defining univalent universes. However, neither
considered Kan operations with diagonal sides x = z, which figure prominently in our
constructions of both univalence and fibrant universes. Diagonal sides also permit us to
define connections in Kan types, although we remain unable to define an involutive reversal
operation, as in Cohen et al. [17].

In ongoing work with Brunerie, Coquand, and Licata [5], we are investigating proof-
theoretic and category-theoretic aspects of “diagonal” Kan composition. That project includes
an Agda formalization of the Kan operations of various type formers, including a variant of
the “Glue” types employed by Cohen et al. [17] to obtain both univalence and fibrancy of
the universe. Here we decompose Glue types into V and hcomUKan

j
, simplifying uaβ .

Unlike prior Kan conditions, we restrict to open boxes containing a pair of sides x =
0, x = 1 (Definition 12), in order to trivialize all Kan compositions at dimension zero. Thus
we obtain a stronger canonicity result for the circle than Cohen et al. [17]: if M ∈ S1 [∅] then
M ⇓ base. We believe this property to be valuable for programming applications of cubical
type theory, by allowing higher inductive types to function as observables at dimension zero.
The tradeoff is that we must develop additional machinery to define coercion in hcomUKan

j
,

essentially because the ∀i.ϕ operation of Cohen et al. [17] does not preserve box validity.

5:16 Cartesian Cubical Computational Type Theory

References
1 Stuart F. Allen. A Non-type-theoretic Definition of Martin-Löf’s Types. In D. Gries, editor,

Proceedings of the 2nd IEEE Symposium on Logic in Computer Science, pages 215–224,
Ithaca, NY, June 1987. IEEE Computer Society Press.

2 Stuart F Allen, Mark Bickford, Robert L Constable, Richard Eaton, Christoph Kreitz, Lori
Lorigo, and Evan Moran. Innovations in computational type theory using Nuprl. Journal
of Applied Logic, 4(4):428–469, 2006.

3 Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending homotopy type theory
with strict equality. In 25th EACSL Annual Conference on Computer Science Logic (CSL
2016), pages 21:1–21:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.CSL.2016.21.

4 Abhishek Anand and Vincent Rahli. Towards a formally verified proof assistant. In Inter-
active Theorem Proving, pages 27–44, Cham, 2014. Springer International Publishing.

5 Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert
Harper, and Daniel R. Licata. Cartesian cubical type theory. Preprint, December 2017.
URL: https://github.com/dlicata335/cart-cube.

6 Carlo Angiuli, Robert Harper, and Todd Wilson. Computational higher-dimensional type
theory. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, pages 680–693, New York, NY, USA, 2017. ACM.
doi:10.1145/3009837.3009861.

7 Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Computational higher type
theory III: Univalent universes and exact equality. December 2017. arXiv:1712.01800.

8 Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. Two-level type theory and applica-
tions. May 2017. arXiv:1705.03307.

9 Steve Awodey. A cubical model of homotopy type theory. June 2016. URL: https:
//www.andrew.cmu.edu/user/awodey/preprints/stockholm.pdf.

10 Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types. Math-
ematical Proceedings of the Cambridge Philosophical Society, 146(1):45–55, January 2009.
doi:10.1017/S0305004108001783.

11 Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau,
and Bas Spitters. The HoTT library: A formalization of homotopy type theory in Coq. In
Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP
2017, pages 164–172, New York, NY, USA, 2017. ACM. doi:10.1145/3018610.3018615.

12 Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical
sets. In 19th International Conference on Types for Proofs and Programs (TYPES 2013),
volume 26, pages 107–128, Toulouse, France, 2014. Dagstuhl Publishing.

13 Marc Bezem, Thierry Coquand, and Simon Huber. The univalence axiom in cubical sets.
October 2017. arXiv:1710.10941.

14 Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo, Eric Finster, Jesper Cockx,
Christian Sattler, Chris Jeris, Michael Shulman, et al. Homotopy type theory in Agda,
2018. URL: https://github.com/HoTT/HoTT-Agda.

15 Ulrik Buchholtz and Edward Morehouse. Varieties of cubical sets. In Relational and
Algebraic Methods in Computer Science: 16th International Conference, RAMiCS 2017,
Lyon, France, May 15-18, 2017, Proceedings, pages 77–92. Springer International Publish-
ing, Cham, 2017. doi:10.1007/978-3-319-57418-9_5.

16 Evan Cavallo and Robert Harper. Computational higher type theory IV: Inductive types.
January 2018. arXiv:1801.01568.

17 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
A Constructive Interpretation of the Univalence Axiom. In 21st International Conference
on Types for Proofs and Programs (TYPES 2015), volume 69, pages 5:1–5:34, Dagstuhl,

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.21
https://github.com/dlicata335/cart-cube
http://dx.doi.org/10.1145/3009837.3009861
http://arxiv.org/abs/1712.01800
http://arxiv.org/abs/1705.03307
https://www.andrew.cmu.edu/user/awodey/preprints/stockholm.pdf
https://www.andrew.cmu.edu/user/awodey/preprints/stockholm.pdf
http://dx.doi.org/10.1017/S0305004108001783
http://dx.doi.org/10.1145/3018610.3018615
http://arxiv.org/abs/1710.10941
https://github.com/HoTT/HoTT-Agda
http://dx.doi.org/10.1007/978-3-319-57418-9_5
http://arxiv.org/abs/1801.01568

C. Angiuli, K. Hou (Favonia), and R. Harper 5:17

Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
TYPES.2015.5.

18 Thierry Coquand. Variations on cubical sets. 2014. URL: http://www.cse.chalmers.se/
~coquand/diag.pdf.

19 Simon Huber. Cubical Interpretations of Type Theory. PhD thesis, University of Gothen-
burg, November 2016.

20 Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent founda-
tions (after Voevodsky). June 2016. arXiv:1211.2851.

21 Daniel R. Licata. Weak univalence with “beta” implies full univalence. Email to the
Homotopy Type Theory mailing list, September 2016. URL: https://groups.google.
com/forum/#!topic/homotopytypetheory/j2KBIvDw53s.

22 Daniel R. Licata and Guillaume Brunerie. A cubical type theory, November 2014. Talk at
Oxford Homotopy Type Theory Workshop. URL: http://dlicata.web.wesleyan.edu/
pubs/lb14cubical/lb14cubes-oxford.pdf.

23 Peter LeFanu Lumsdaine and Mike Shulman. Semantics of higher inductive types. May
2017. arXiv:1705.07088.

24 P. Martin-Löf. Constructive mathematics and computer programming. Philosophical
Transactions of the Royal Society of London Series A, 312:501–518, October 1984. doi:
10.1098/rsta.1984.0073.

25 Per Martin-Löf. Intuitionistic type theory. Bibliopolis, Naples, Italy, 1984.
26 A. M. Pitts. Nominal presentation of cubical sets models of type theory. In 20th In-

ternational Conference on Types for Proofs and Programs (TYPES 2014), pages 202–
220, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.TYPES.2014.202.

27 W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic
Logic, 32(2):198–212, 1967. doi:10.2307/2271658.

28 The RedPRL Development Team. RedPRL – the People’s Refinement Logic, 2018. URL:
http://www.redprl.org/.

29 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

30 Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz. Homotopy type theory in
Lean. In Interactive Theorem Proving, pages 479–495, Cham, 2017. Springer. doi:10.
1007/978-3-319-66107-0_30.

31 Vladimir Voevodsky. The equivalence axiom and univalent models of type theory, 2010.
Notes from a talk at Carnegie Mellon University. URL: http://www.math.ias.edu/
vladimir/files/CMU_talk.pdf.

32 Vladimir Voevodsky. Univalent foundations project. Modified version of an NSF grant ap-
plication, October 2010. URL: http://www.math.ias.edu/vladimir/files/univalent_
foundations_project.pdf.

33 Vladimir Voevodsky. A type system with two kinds of identity types. Slides available at
https://uf-ias-2012.wikispaces.com/file/view/HTS_slides.pdf/410105196/HTS_
slides.pdf, February 2013. URL: https://www.math.ias.edu/vladimir/sites/math.
ias.edu.vladimir/files/HTS.pdf.

http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.5
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.5
http://www.cse.chalmers.se/~coquand/diag.pdf
http://www.cse.chalmers.se/~coquand/diag.pdf
http://arxiv.org/abs/1211.2851
https://groups.google.com/forum/#!topic/homotopytypetheory/j2KBIvDw53s
https://groups.google.com/forum/#!topic/homotopytypetheory/j2KBIvDw53s
http://dlicata.web.wesleyan.edu/pubs/lb14cubical/lb14cubes-oxford.pdf
http://dlicata.web.wesleyan.edu/pubs/lb14cubical/lb14cubes-oxford.pdf
http://arxiv.org/abs/1705.07088
http://dx.doi.org/10.1098/rsta.1984.0073
http://dx.doi.org/10.1098/rsta.1984.0073
http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.202
http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.202
http://dx.doi.org/10.2307/2271658
http://www.redprl.org/
http://homotopytypetheory.org/book
http://dx.doi.org/10.1007/978-3-319-66107-0_30
http://dx.doi.org/10.1007/978-3-319-66107-0_30
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
http://www.math.ias.edu/vladimir/files/univalent_foundations_project.pdf
http://www.math.ias.edu/vladimir/files/univalent_foundations_project.pdf
https://uf-ias-2012.wikispaces.com/file/view/HTS_slides.pdf/410105196/HTS_slides.pdf
https://uf-ias-2012.wikispaces.com/file/view/HTS_slides.pdf/410105196/HTS_slides.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf

	Introduction
	Contributions

	Programming language
	Cubical PER semantics
	Judgments
	Properties of Judgments

	Kan types
	Type formers
	Booleans
	Circle
	Dependent function and pair types
	Path types
	Exact equality types
	Univalence

	Universes
	Conclusion and Related Work
	Two-level type theories
	Cubical type theories

