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Abstract

A very deep convolutional neural network (CNN) has re-
cently achieved great success for image super-resolution
(SR) and offered hierarchical features as well. However,
most deep CNN based SR models do not make full use of
the hierarchical features from the original low-resolution
(LR) images, thereby achieving relatively-low performance.
In this paper, we propose a novel residual dense network
(RDN) to address this problem in image SR. We fully exploit
the hierarchical features from all the convolutional layers.
Specifically, we propose residual dense block (RDB) to ex-
tract abundant local features via dense connected convolu-
tional layers. RDB further allows direct connections from
the state of preceding RDB to all the layers of current RDB,
leading to a contiguous memory (CM) mechanism. Local
feature fusion in RDB is then used to adaptively learn more
effective features from preceding and current local features
and stabilizes the training of wider network. After fully ob-
taining dense local features, we use global feature fusion
to jointly and adaptively learn global hierarchical features
in a holistic way. Experiments on benchmark datasets with
different degradation models show that our RDN achieves
favorable performance against state-of-the-art methods.

1. Introduction

Single image Super-Resolution (SISR) aims to generate
a visually pleasing high-resolution (HR) image from its de-
graded low-resolution (LR) measurement. SISR is used in
various computer vision tasks, such as security and surveil-
lance imaging [42], medical imaging [23], and image gen-
eration [9]. While image SR is an ill-posed inverse pro-
cedure, since there exists a multitude of solutions for any
LR input. To tackle this inverse problem, plenty of image
SR algorithms have been proposed, including interpolation-
based [40], reconstruction-based [37], and learning-based
methods [28, 29, 20, 2, 21, 8, 10, 31, 39].

Among them, Dong et al. [2] firstly introduced a three-
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Figure 1. Comparison of prior network structures (a,b) and our
residual dense block (c). (a) Residual block in MDSR [17]. (b)
Dense block in SRDenseNet [31]. (¢) Our residual dense block.

layer convolutional neural network (CNN) into image SR
and achieved significant improvement over conventional
methods. Kim et al. increased the network depth in
VDSR [10] and DRCN [11] by using gradient clipping, skip
connection, or recursive-supervision to ease the difficulty
of training deep network. By using effective building mod-
ules, the networks for image SR are further made deeper
and wider with better performance. Lim et al. used residual
blocks (Fig. 1(a)) to build a very wide network EDSR [17]
with residual scaling [24] and a very deep one MDSR [17].
Tai et al. proposed memory block to build MemNet [26]. As
the network depth grows, the features in each convolutional
layer would be hierarchical with different receptive fields.
However, these methods neglect to fully use information of
each convolutional layer. Although the gate unit in mem-
ory block was proposed to control short-term memory [26],
the local convolutional layers don’t have direct access to the
subsequent layers. So it’s hard to say memory block makes
full use of the information from all the layers within it.

Furthermore, objects in images have different scales, an-
gles of view, and aspect ratios. Hierarchical features from
a very deep network would give more clues for reconstruc-
tion. While, most deep learning (DL) based methods (e.g.,
VDSR [10], LapSRN [13], and EDSR [17]) neglect to use
hierarchical features for reconstruction. Although memory
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block [26] also takes information from preceding memory
blocks as input, the multi-level features are not extracted
from the original LR image. MemNet interpolates the orig-
inal LR image to the desired size to form the input. This pre-
processing step not only increases computation complexity
quadratically, but also loses some details of the original LR
image. Tong et al. introduced dense block (Fig. 1(b)) for
image SR with relatively low growth rate (e.g.,16). Accord-
ing to our experiments (see Section 5.2), higher growth rate
can further improve the performance of the network. While,
it would be hard to train a wider network with dense blocks
in Fig. 1(b).

To address these drawbacks, we propose residual dense
network (RDN) (Fig. 2) to fully make use of all the hier-
archical features from the original LR image with our pro-
posed residual dense block (Fig. 1(c)). It’s hard and imprac-
tical for a very deep network to directly extract the output of
each convolutional layer in the LR space. We propose resid-
ual dense block (RDB) as the building module for RDN.
RDB consists dense connected layers and local feature fu-
sion (LFF) with local residual learning (LRL). Our RDB
also support contiguous memory among RDBs. The output
of one RDB has direct access to each layer of the next RDB,
resulting in a contiguous state pass. Each convolutional
layer in RDB has access to all the subsequent layers and
passes on information that needs to be preserved [7]. Con-
catenating the states of preceding RDB and all the preced-
ing layers within the current RDB, LFF extracts local dense
feature by adaptively preserving the information. Moreover,
LFF allows very high growth rate by stabilizing the training
of wider network. After extracting multi-level local dense
features, we further conduct global feature fusion (GFF) to
adaptively preserve the hierarchical features in a global way.
As depicted in Figs. 2 and 3, each layer has direct access to
the original LR input, leading to an implicit deep supervi-
sion [15].

In summary, our main contributions are three-fold:

e We propose a unified frame work residual dense net-
work (RDN) for high-quality image SR with different
degradation models. The network makes full use of all
the hierarchical features from the original LR image.

e We propose residual dense block (RDB), which can
not only read state from the preceding RDB via a con-
tiguous memory (CM) mechanism, but also fully uti-
lize all the layers within it via local dense connec-
tions. The accumulated features are then adaptively
preserved by local feature fusion (LFF).

e We propose global feature fusion to adaptively fuse
hierarchical features from all RDBs in the LR space.
With global residual learning, we combine the shallow
features and deep features together, resulting in global
dense features from the original LR image.

2. Related Work

Recently, deep learning (DL)-based methods have
achieved dramatic advantages against conventional meth-
ods in computer vision [36, 35, 34, 16]. Due to the lim-
ited space, we only discuss some works on image SR. Dong
et al. proposed SRCNN [2], establishing an end-to-end
mapping between the interpolated LR images and their HR
counterparts for the first time. This baseline was then fur-
ther improved mainly by increasing network depth or shar-
ing network weights. VDSR [10] and IRCNN [38] in-
creased the network depth by stacking more convolutional
layers with residual learning. DRCN [11] firstly intro-
duced recursive learning in a very deep network for pa-
rameter sharing. Tai et al. introduced recursive blocks in
DRRN [25] and memory block in Memnet [26] for deeper
networks. All of these methods need to interpolate the orig-
inal LR images to the desired size before applying them
into the networks. This pre-processing step not only in-
creases computation complexity quadratically [4], but also
over-smooths and blurs the original LR image, from which
some details are lost. As a result, these methods extract fea-
tures from the interpolated LR images, failing to establish
an end-to-end mapping from the original LR to HR images.

To solve the problem above, Dong et al. [4] directly took
the original LR image as input and introduced a transposed
convolution layer (also known as deconvolution layer) for
upsampling to the fine resolution. Shi et al. proposed ES-
PCN [22], where an efficient sub-pixel convolution layer
was introduced to upscale the final LR feature maps into
the HR output. The efficient sub-pixel convolution layer
was then adopted in SRResNet [14] and EDSR [17], which
took advantage of residual leanrning [6]. All of these meth-
ods extracted features in the LR space and upscaled the fi-
nal LR features with transposed or sub-pixel convolution
layer. By doing so, these networks can either be capable of
real-time SR (e.g., FSRCNN and ESPCN), or be built to be
very deep/wide (e.g., SRResNet and EDSR). However, all
of these methods stack building modules (e.g., Conv layer
in FSRCNN, residual block in SRResNet and EDSR) in a
chain way. They neglect to adequately utilize information
from each Conv layer and only adopt CNN features from
the last Conv layer in LR space for upscaling.

Recently, Huang et al. proposed DenseNet, which al-
lows direct connections between any two layers within the
same dense block [7]. With the local dense connections,
each layer reads information from all the preceding layers
within the same dense block. The dense connection was in-
troduced among memory blocks [26] and dense blocks [31].
More differences between DenseNet/SRDenseNet/MemNet
and our RDN would be discussed in Section 4.

The aforementioned DL-based image SR methods have
achieved significant improvement over conventional SR
methods, but all of them lose some useful hierarchical fea-
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Figure 2. The architecture of our proposed residual dense network (RDN).

tures from the original LR image. Hierarchical features pro-
duced by a very deep network are useful for image restora-
tion tasks (e.g., image SR). To fix this case, we propose
residual dense network (RDN) to extract and adaptively
fuse features from all the layers in the LR space efficiently.
We will detail our RDN in next section.

3. Residual Dense Network for Image SR
3.1. Network Structure

As shown in Fig. 2, our RDN mainly consists four parts:
shallow feature extraction net (SFENet), redidual dense
blocks (RDBs), dense feature fusion (DFF), and finally the
up-sampling net (UPNet). Let’s denote I, r and Igp as the
input and output of RDN. Specifically, we use two Conv
layers to extract shallow features. The first Conv layer ex-
tracts features F_; from the LR input.

F_1=Hsrpi (ILr), (1)
where Hgppi (+) denotes convolution operation. F_j is
then used for further shallow feature extraction and global
residual learning. So we can further have

Fo = Hgsppa (F-1), 2)
where Hgp o (+) denotes convolution operation of the sec-
ond shallow feature extraction layer and is used as input to

residual dense blocks. Supposing we have D residual dense
blocks, the output F; of the d-th RDB can be obtained by

Fy=Hgrppa(Fi-1)

= Hrpp.a(HrpB.a-1 (- (Hrpp1 (F0)) ),

3)

where Hrpp,q denotes the operations of the d-th RDB.
Hprpp,q can be a composite function of operations, such
as convolution and rectified linear units (ReLU) [5]. As Fy
is produced by the d-th RDB fully utilizing each convolu-
tional layers within the block, we can view Fj as local fea-
ture. More details about RDB will be given in Section 3.2.

After extracting hierarchical features with a set of RDBs,
we further conduct dense feature fusion (DFF), which in-
cludes global feature fusion (GFF) and global residual
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learning (GRL). DFF makes full use of features from all
the preceding layers and can be represented as

Fpp=Hppp (F_1,Fo,Fy,---, Fp), 4

where Fpp is the output feature-maps of DFF by utilizing
a composite function Hprpr. More details about DFF will
be shown in Section 3.3.

After extracting local and global features in the LR
space, we stack a up-sampling net (UPNet) in the HR space.
Inspired by [17], we utilize ESPCN [22] in UPNet followed
by one Conv layer. The output of RDN can be obtained by
)

Isp = Hrpn (ILr),

where H i pn denotes the function of our RDN.
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Figure 3. Residual dense block (RDB) architecture.
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3.2. Residual Dense Block

Now we present details about our proposed residual
dense block (RDB) in Fig. 3. Our RDB contains dense con-
nected layers, local feature fusion (LFF), and local resid-
ual learning, leading to a contiguous memory (CM) mecha-
nism.

Contiguous memory mechanism is realized by passing
the state of preceding RDB to each layer of current RDB.
Let Fy_, and F; be the input and output of the d-th RDB
respectively and both of them have G feature-maps. The
output of c-th Conv layer of d-th RDB can be formulated as

Fic=0Wyc[Fiz1,Faq,---

JFace-1]), (6)

where o denotes the ReLU [5] activation function. Wy .
is the weights of the c-th Conv layer, where the bias
term is omitted for simplicity. We assume Fj . con-
sists of G (also known as growth rate [7]) feature-maps.
[Fa—1,Fq1, -, Fqc—1] refers to the concatenation of the
feature-maps produced by the (d — 1)-th RDB, convolu-
tional layers 1,---, (¢ — 1) in the d-th RDB, resulting in
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Go+(c — 1) xXG feature-maps. The outputs of the preced-
ing RDB and each layer have direct connections to all sub-
sequent layers, which not only preserves the feed-forward
nature, but also extracts local dense feature.

Local feature fusion is then applied to adaptively fuse
the states from preceding RDB and the whole Conv layers
in current RDB. As analyzed above, the feature-maps of the
(d — 1)-th RDB are introduced directly to the d-th RDB in a
concatenation way, it is essential to reduce the feature num-
ber. On the other hand, inspired by MemNet [26], we intro-
duce a 1 x 1 convolutional layer to adaptively control the
output information. We name this operation as local feature
fusion (LFF) formulated as

Forr =Hipp ((Fae1,Fan, - Fae, - Facl), (1)
where H¢ ... denotes the function of the 1 x 1 Conv layer
in the d-th RDB. We also find that as the growth rate G be-
comes larger, very deep dense network without LFF would
be hard to train.

Local residual learning is introduced in RDB to further
improve the information flow, as there are several convolu-
tional layers in one RDB. The final output of the d-th RDB
can be obtained by

Fy=Fy 1+ FyLF. ()

It should be noted that LRL can also further improve
the network representation ability, resulting better perfor-
mance. We introduce more results about LRL in Section 5.
Because of the dense connectivity and local residual learn-
ing, we refer to this block architecture as residual dense
block (RDB). More differences between RDB and original
dense block [7] would be summarized in Section 4.

3.3. Dense Feature Fusion

After extracting local dense features with a set of RDBs,
we further propose dense feature fusion (DFF) to exploit
hierarchical features in a global way. Our DFF consists of
global feature fusion (GFF) and global residual learning.

Global feature fusion is proposed to extract the global
feature Fi;r by fusing features from all the RDBs

For = Hgrr ([F1,--- , Fp)), )

where [F,- -+, Fp] refers to the concatenation of feature-
maps produced by residual dense blocks 1,--- ,D. Hgpr
is a composite function of 1 x 1 and 3 x 3 convolution.
The 1 x 1 convolutional layer is used to adaptively fuse a
range of features with different levels. The following 3 x 3
convolutional layer is introduced to further extract features
for global residual learning, which has been demonstrated
to be effective in [14].

Global residual learning is then utilized to obtain the
feature-maps before conducting up-scaling by

Fpr=F_i1+ Fgr, (10)

where F_; denotes the shallow feature-maps. All the other
layers before global feature fusion are fully utilized with
our proposed residual dense blocks (RDBs). RDBs produce
multi-level local dense features, which are further adap-
tively fused to form Fp. After global residual learning,
we obtain dense feature Fpp.

It should be noted that Tai et al. [26] utilized long-term
dense connections in MemNet to recover more high fre-
quency information. However, in the memory block [26],
the preceding layers don’t have direct access to all the sub-
sequent layers. The local feature information are not fully
used, limiting the ability of long-term connections. In addi-
tion, MemNet extracts features in the HR space, increasing
computational complexity. While, inspired by [4, 22, 13,
17], we extract local and global features in the LR space.
More differences between our residual dense network and
MemNet would be shown in Section 4. We would also
demonstrate the effectiveness of global feature fusion in
Section 5.

3.4. Implementation Details

In our proposed RDN, we set 3 x 3 as the size of all
convolutional layers except that in local and global feature
fusion, whose kernel size is 1 x 1. For convolutional layer
with kernel size 3 x 3, we pad zeros to each side of the
input to keep size fixed. Shallow feature extraction layers,
local and global feature fusion layers have Gy=64 filters.
Other layers in each RDB has G filters and are followed by
ReLU [5]. Following [17], we use ESPCNN [22] to upscale
the coarse resolution features to fine ones for the UPNet.
The final Conv layer has 3 output channels, as we output
color HR images. However, the network can also process
gray images.

4. Discussions

Difference to DenseNet. Inspired from DenseNet [7],
we adopt the local dense connections into our proposed
residual dense block (RDB). In general, DenseNet is widely
used in high-level computer vision tasks (e.g., object recog-
nition). While RDN is designed for image SR. Moreover,
we remove batch nomalization (BN) layers, which consume
the same amount of GPU memory as convolutional layers,
increase computational complexity, and hinder performance
of the network. We also remove the pooling layers, which
could discard some pixel-level information. Furthermore,
transition layers are placed into two adjacent dense blocks
in DenseNet. While in RDN, we combine dense connected
layers with local feature fusion (LFF) by using local resid-
ual learning, which would be demonstrated to be effective
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in Section 5. As a result, the output of the (d — 1)-th RDB
has direct connections to each layer in the d-th RDB and
also contributes to the input of (d + 1)-th RDB. Last not the
least, we adopt global feature fusion to fully use hierarchi-
cal features, which are neglected in DenseNet.

Difference to SRDenseNet. There are three main dif-
ferences between SRDenseNet [31] and our RDN. The first
one is the design of basic building block. SRDenseNet in-
troduces the basic dense block from DenseNet [7]. Our
residual dense block (RDB) improves it in three ways: (1).
We introduce contiguous memory (CM) mechanism, which
allows the state of preceding RDB have direct access to
each layer of the current RDB. (2). Our RDB allow larger
growth rate by using local feature fusion (LFF), which sta-
bilizes the training of wide network. (3). Local residual
learning (LRL) is utilized in RDB to further encourage the
flow of information and gradient. The second one is there is
no dense connections among RDB. Instead we use global
feature fusion (GFF) and global residual learning to ex-
tract global features, because our RDBs with contiguous
memory have fully extracted features locally. As shown
in Sections 5.2 and 5.3, all of these components increase
the performance significantly. The third one is SRDenseNet
uses Lo loss function. Whereas we utilize L loss function,
which has been demonstrated to be more powerful for per-
formance and convergence [17]. As a result, our proposed
RDN achieves better performance than that of SRDenseNet.

Difference to MemNet. In addition to the different
choice of loss function (Lo in MemNet [26]), we mainly
summarize another three differences bwtween MemNet and
our RDN. First, MemNet needs to upsample the original LR
image to the desired size using Bicubic interpolation. This
procedure results in feature extraction and reconstruction in
HR space. While, RDN extracts hierarchical features from
the original LR image, reducing computational complexity
significantly and improving the performance. Second, the
memory block in MemNet contains recursive and gate units.
Most layers within one recursive unit don’t receive the in-
formation from their preceding layers or memory block.
While, in our proposed RDN, the output of RDB has direct
access to each layer of the next RDB. Also the information
of each convolutional layer flow into all the subsequent lay-
ers within one RDB. Furthermore, local residual learning in
RDB improves the flow of information and gradients and
performance, which is demonstrated in Section 5. Third, as
analyzed above, current memory block doesn’t fully make
use of the information of the output of the preceding block
and its layers. Even though MemNet adopts densely con-
nections among memory blocks in the HR space, MemNet
fails to fully extract hierarchical features from the original
LR inputs. While, after extracting local dense features with
RDBs, our RDN further fuses the hierarchical features from
the whole preceding layers in a global way in the LR space.

5. Experimental Results
The source code of the proposed method can be down-
loaded at https://github.com/yulunzhang/RDN.

5.1. Settings

Datasets and Metrics. Recently, Timofte et al. have
released a high-quality (2K resolution) dataset DIV2K for
image restoration applications [27]. DIV2K consists of 800
training images, 100 validation images, and 100 test images.
We train all of our models with 800 training images and use
5 validation images in the training process. For testing, we
use five standard benchmark datasets: Set5 [1], Setl4 [33],
B100 [18], Urban100 [8], and Mangal09 [19]. The SR re-
sults are evaluated with PSNR and SSIM [32] on Y channel
(i.e., luminance) of transformed YCbCr space.

Degradation Models. In order to fully demonstrate the
effectiveness of our proposed RDN, we use three degrada-
tion models to simulate LR images. The first one is bicu-
bic downsampling by adopting the Matlab function imresize
with the option bicubic (denote as BI for short). We use BI
model to simulate LR images with scaling factor x2, x3,
and x4. Similar to [38], the second one is to blur HR image
by Gaussian kernel of size 7 x 7 with standard deviation 1.6.
The blurred image is then downsampled with scaling factor
x 3 (denote as BD for short). We further produce LR image
in a more challenging way. We first bicubic downsample
HR image with scaling factor x3 and then add Gaussian
noise with noise level 30 (denote as DN for short).

Training Setting. Following settings of [17], in each
training batch, we randomly extract 16 LR RGB patches
with the size of 32 x 32 as inputs. We randomly augment
the patches by flipping horizontally or vertically and rotat-
ing 90°. 1,000 iterations of back-propagation constitute an
epoch. We implement our RDN with the Torch7 framework
and update it with Adam optimizer [12]. The learning rate
is initialized to 10~ for all layers and decreases half for ev-
ery 200 epochs. Training a RDN roughly takes 1 day with
a Titan Xp GPU for 200 epochs.
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Figure 4. Convergence analysis of RDN with different values of
D, C, and G.

5.2. Study of D, C, and G.

In this subsection, we investigate the basic network pa-
rameters: the number of RDB (denote as D for short), the
number of Conv layers per RDB (denote as C for short), and
the growth rate (denote as G for short). We use the perfor-
mance of SRCNN [3] as a reference. As shown in Figs. 4(a)
and 4(b), larger D or C would lead to higher performance.
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[ [ Different combinations of CM, LRL, and GFF ]

cm | X v X T X v v X v
R | X | X v X v X v v
Gff | X | X | X v X v v v

[ PSNR [34.87 [37.89 [37.92 [37.78 [37.99 [37.98 [37.97 [38.06 |
Table 1. Ablation investigation of contiguous memory (CM), lo-
cal residual learning (LRL), and global feature fusion (GFF). We
observe the best performance (PSNR) on Set5 with scaling factor
%2 in 200 epochs.

This is mainly because the network becomes deeper with
larger D or C. As our proposed LFF allows larger G, we
also observe larger G (see Fig. 4(c)) contributes to better
performance. On the other hand, RND with smaller D, C,
or G would suffer some performance drop in the training,
but RDN would still outperform SRCNN [3]. More im-
portant, our RDN allows deeper and wider network, from
which more hierarchical features are extracted for higher
performance.

5.3. Ablation Investigation

Table | shows the ablation investigation on the effects of
contiguous memory (CM), local residual learning (LRL),
and global feature fusion (GFF). The eight networks have
the same RDB number (D = 20), Conv number (C = 6) per
RDB, and growth rate (G = 32). We find that local fea-
ture fusion (LFF) is needed to train these networks prop-
erly, so LFF isn’t removed by default. The baseline (denote
as RDN_CMOLRLOGFFO0) is obtained without CM, LRL,
or GFF and performs very poorly (PSNR = 34.87 dB). This
is caused by the difficulty of training [3] and also demon-
strates that stacking many basic dense blocks [7] in a very
deep network would not result in better performance.

We then add one of CM, LRL, or GFF to the baseline, re-
sulting in RDN_CM1LRLOGFF0, RDN_CMOLRL1GFFO0,
and RDN_CMOLRLOGFF1 respectively (from 2" to 4"
combination in Table 1). We can validate that each com-
ponent can efficiently improve the performance of the base-
line. This is mainly because each component contributes to
the flow of information and gradient.

We further add two components to the baseline, result-
ing in RDN_CM1LRL1GFF0, RDN_CM1LRLOGFF1, and
RDN_CMOLRLIGFF]I respectively (from 5 to 7" com-
bination in Table 1). It can be seen that two components
would perform better than only one component. Similar
phenomenon can be seen when we use these three com-
ponents simultaneously (denote as RDN_CM1LRL1GFF1).
RDN using three components performs the best.

We also visualize the convergence process of these eight
combinations in Fig. 5. The convergence curves are con-
sistent with the analyses above and show that CM, LRL,
and GFF can further stabilize the training process without
obvious performance drop. These quantitative and visual
analyses demonstrate the effectiveness and benefits of our
proposed CM, LRL, and GFF.

Ablation Investigation of CM, LRL, and GFF

——RDN_CM1LRL1GFF1|
——RDN_CMOLRL1GFF1
——RDN_CM1LRLOGFF1|q
RDN_CM1LRL1GFFO0
——RDN_CMOLRLOGFF1}{
RDN_CMOLRL1GFFO
355 RDN_CM1LRLOGFFO|
—RDN_CMOLRLOGFFO0

W WA
34.5 y -

0 50 100 150 200
Epoch

Figure 5. Convergence analysis on CM, LRL, and GFF. The curves
for each combination are based on the PSNR on Set5 with scaling
factor x2 in 200 epochs.

5.4. Results with BI Degradation Model

Simulating LR image with BI degradation model is
widely used in image SR settings. For BI degradation
model, we compare our RDN with 6 state-of-the-art im-
age SR methods: SRCNN [3], LapSRN [13], DRRN [25],
SRDenseNet [31], MemNet [26], and MDSR [17]. Similar
to [30, 17], we also adopt self-ensemble strategy [17] to fur-
ther improve our RDN and denote the self-ensembled RDN
as RDN+. As analyzed above, a deeper and wider RDN
would lead to a better performance. On the other hand, as
most methods for comparison only use about 64 filters per
Conv layer, we report results of RDN by using D = 16, C =
8, and G = 64 for fair comparison. EDSR [17] is skipped
here, because it uses far more filters (i.e., 256) per Conv
layer, leading to a very wide network with high number of
parameters. However, our RDN would also achieve compa-
rable or even better results than those by EDSR [17].

Table 2 shows quantitative comparisons for x2, x3, and
x4 SR. Results of SRDenseNet [31] are cited from their
paper. When compared with persistent CNN models ( SR-
DenseNet [31] and MemNet [26]), our RDN performs the
best on all datasets with all scaling factors. This indicates
the better effectiveness of our residual dense block (RDB)
over dense block in SRDensenet [31] and memory block in
MemNet [26]. When compared with the remaining mod-
els, our RDN also achieves the best average results on most
datasets. Specifically, for the scaling factor x2, our RDN
performs the best on all datasets. When the scaling factor
becomes larger (e.g., x3 and x4), RDN would not hold
the similar advantage over MDSR [17]. There are mainly
three reasons for this case. First, MDSR is deeper (160
v.s. 128), having about 160 layers to extract features in LR
space. Second, MDSR utilizes multi-scale inputs as VDSR
does [10]. Third, MDSR uses larger input patch size (65
v.s. 32) for training. As most images in Urban100 contain
self-similar structures, larger input patch size for training
allows a very deep network to grasp more information by
using large receptive field better. As we mainly focus on
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’ Dataset | Scale Bicubic ‘ SRCNN ‘ LapSRN ‘ DRRN ‘ SRDenseNet ‘ MemNet ‘ MDSR ‘ RDN ‘ RDN+ ‘
[3] [13] [25] [31] [26] [17] (ours) (ours)

X2 [ 33.66/0.9299 [ 36.66/0.9542 [37.52/0.9591 | 37.74/0.9591 - 37.78/0.9597 |38.11/0.9602 | 38.24/0.9614 | 38.30/0.9616

Set5 x3 | 30.39/0.8682 | 32.75/0.9090 | 33.82/0.9227 | 34.03/0.9244 - 34.09/0.9248 | 34.66/0.9280 | 34.71/0.9296 | 34.78/0.9300
x4 | 28.42/0.8104 | 30.48/0.8628 | 31.54/0.8855 | 31.68/0.8888 | 32.02/0.8934 | 31.74/0.8893 |32.50/0.8973 | 32.47/0.8990 | 32.61/0.9003

X2 [30.24/0.8688 [ 32.45/0.9067 | 33.08/0.9130 [ 33.23/0.9136 - 33.28/0.9142 [ 33.85/0.9198 [ 34.01/0.9212 | 34.10/0.9218

Setl4 x3 | 27.55/0.7742 | 29.30/0.8215 | 29.79/0.8320 | 29.96/0.8349 - 30.00/0.8350 | 30.44/0.8452 | 30.57/0.8468 | 30.67/0.8482
x4 | 26.00/0.7027 |27.50/0.7513 | 28.19/0.7720 | 28.21/0.7721 | 28.50/0.7782 | 28.26/0.7723 | 28.72/0.7857 | 28.81/0.7871 | 28.92/0.7893

X2 [29.56/0.8431 [ 31.36/0.8879 | 31.80/0.8950 [ 32.05/0.8973 e 32.08/0.8978 [ 32.29/0.9007 | 32.34/0.9017 | 32.40/0.9022

B100 x3 | 27.21/0.7385 | 28.41/0.7863 | 28.82/0.7973 | 28.95/0.8004 /- 28.96/0.8001 | 29.25/0.8091 | 29.26/0.8093 | 29.33/0.8105
x4 | 25.96/0.6675 | 26.90/0.7101 |27.32/0.7280 | 27.38/0.7284 | 27.53/0.7337 | 27.40/0.7281 |27.72/0.7418 | 27.72/0.7419 | 27.80/0.7434

X2 [26.88/0.8403 [29.50/0.8946 [30.41/0.9101 [ 31.23/0.9188 -l 31.31/0.9195 [ 32.84/0.9347 [32.89/0.9353 [ 33.09/0.9368

Urban100 | x3 | 24.46/0.7349 | 26.24/0.7989 |27.07/0.8272 | 27.53/0.8378 -- 27.56/0.8376 | 28.79/0.8655 | 28.80/0.8653 | 29.00/0.8683
x4 | 23.14/0.6577 | 24.52/0.7221 | 25.21/0.7553 | 25.44/0.7638 | 26.05/0.7819 | 25.50/0.7630 |26.67/0.8041 | 26.61/0.8028 | 26.82/0.8069

%2 [30.80/0.9339 [ 35.60/0.9663 | 37.27/0.9740 | 37.60/0.9736 e 37.72/0.9740 | 38.96/0.9769 [ 39.18/0.9780 | 39.38/0.9784

Mangal09 | x3 |26.95/0.8556 | 30.48/0.9117 | 32.19/0.9334 | 32.42/0.9359 /- 32.51/0.9369 | 34.17/0.9473 | 34.13/0.9484 | 34.43/0.9498
x4 | 24.89/0.7866 | 27.58/0.8555 |29.09/0.8893 | 29.18/0.8914 -/- 29.42/0.8942 | 31.11/0.9148 | 31.00/0.9151 | 31.39/0.9184

Table 2. Benchmark results with BI degradation model. Average PSNR/SSIM values for scaling factor x2, x3, and x4.

Original Bicubic SRCNN LapSRN DRRN MemNet MDSR RDN
— — : — =

PSNR/SSIM 22.11/0.5951 23.59/0.6695 24.03/0.7019 24.35/0.7133 24.17/0.6987 24.80/0.7469 25.20/0.7529

T T T T ZZ T 77 A Z7 o
s
. Jol7 . JL7 . Jol7 £ J5l7 . JoL7 . JL7

SELZ FL25RZ F2RZ FRRL FLRZ Fo R L F 2L FT

&7
>

PSNR/SSIM 22.09/0.7856 28.27/0.8854 30.05/0.9226 31.30/0.9278 31.48/0.9294 33.78/0.9431 34.66/0.9458

Figure 6. Visual results with BI model (x4). The SR results are for image “119082” from B100 and “img_043" from Urban100 respectively.

the effectiveness of our RDN and fair comparison, we don’t and Mangal09 with scaling factor x3. Our RDN and
use deeper network, multi-scale information, or larger in- RDN+ perform the best on all the datasets with BD and
put patch size. Moreover, our RDN+ can achieve further DN degradation models. The performance gains over other
improvement with self-ensemble [17]. state-of-the-art methods are consistent with the visual re-
In Fig. 6, we show visual comparisons on scale x4. For sults in Figs. 7 and 8.

image “119082”, we observe that most of compared meth- For BD degradation model (Fig. 7), the methods using
ods would produce noticeable artifacts and produce blurred interpolated LR image as input would produce noticeable
edges. In contrast, our RDN can recover sharper and clearer artifacts and be unable to remove the blurring artifacts. In
edges, more faithful to the ground truth. For the tiny line contrast, our RDN suppresses the blurring artifacts and re-
(pointed by the red arrow) in image ““img_043’, all the com- covers sharper edges. This comparison indicates that ex-
pared methods fail to recover it. While, our RDN can re- tracting hierarchical features from the original LR image
cover it obviously. This is mainly because RDN uses hier- would alleviate the blurring artifacts. It also demonstrates
archical features through dense feature fusion. the strong ability of RDN for BD degradation model.

For DN degradation model (Fig. 8), where the LR image
is corrupted by noise and loses some details. We observe

Following [38], we also show the SR results with BD that the noised details are hard to recovered by other meth-
degradation model and further introduce DN degradation ods [3, 10, 38]. However, our RDN can not only handle the
model. Our RDN is compared with SPMSR [20], SR- noise efficiently, but also recover more details. This com-
CNN [3], FSRCNN [4], VDSR [10], IRCNN_G [38], and parison indicates that RDN is applicable for jointly image
IRCNN_C [38]. We re-train SRCNN, FSRCNN, and VDSR denoising and SR. These results with BD and DN degrada-
for each degradation model. Table 3 shows the average tion models demonstrate the effectiveness and robustness of
PSNR and SSIM results on Set5, Set14, B100, Urban100, our RDN model.

5.5. Results with BD and DN Degradation Models
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Dataset | Model | Bicubi SPMSR SRCNN FSRCNN VDSR IRCNN.G | IRCNNC RDN+
atase ode 1eubie [20] 3] 4] [10] [38] [38] (ours) (ours)
Ses BD | 28.78/0.8308 | 32. 21/0 9001 | 32.05/0.8944 | 26.23/0.8124 | 33.25/0.9150 | 33.38/0.9182 | 33.17/0.0157 | 34.58/0.0280 | 34.70/0.9289

DN | 24.01/0.5369 25.01/0.6950 | 24.18/0.6932 | 25.20/0.7183 | 25.70/0.7379 | 27.48/0.7925 | 28.47/0.8151 | 28.55/0.8173

Sels BD | 26.38/0.7271 | 28. 89/0 3105 | 28.80/0.8074 | 24.44/0.7106 | 29.46/0.8244 | 20.63/0.8281 | 29.55/0.8271 | 30.53/0.8447 | 30.64/0.8463

© DN | 22.87/0.4724 23.78/0.5898 | 23.02/0.5856 | 24.00/0.6112 | 24.45/0.6305 | 25.92/0.6932 | 26.60/0.7101 | 26.67/0.7117
5100 BD | 26.33/0.6918 | 28. 13/0 7740 | 28.13/0.7736 | 24.86/0.6832 | 28.57/0.7893 | 28.65/0.7922 | 28.49/0.7886 | 29.23/0.8079 | 29.30/0.8093
DN | 22.92/0.4449 23.76/0.5538 | 23.41/0.5556 | 24.00/0.5749 | 24.28/0.5900 | 25.55/0.6481 | 25.93/0.6573 | 25.97/0.6587

Urbantoo | BD [ 2352006862 [ 25. 84/0 7856 | 25.70/0.7770 | 22.04/0.6745 | 26.61/0.8136 | 26.77/0.8154 | 26.47/0.8081 | 28.46/0.8582 | 28.67/0.8612
DN | 21.63/0.4687 21.90/0.5737 | 21.15/0.5682 | 22.22/0.6096 | 22.90/0.6429 | 23.93/0.6950 | 24.92/0.7364 | 25.05/0.7399

Maneal0o | B | 2546008149 [29.64/00.0003 | 29.47/0.8924 | 23.04/0.7927 | 31.06/0.9234 [31.15/0.9245 [31.13/00.9236 |3397/0.9465 | 34.34/0.9483
anga DN | 23.01/0.5381 /- 23.75/0.7148 | 22.39/0.7111 | 24.20/0.7525 | 24.88/0.7765 | 26.07/0.8253 | 28.00/0.8591 | 28.18/0.8621

Table 3. Benchmark results with BD and DN degradation models. Average PSNR/SSIM values for scaling factor x 3.

Bicubic SPMSR SRCNN RDN

Original

IRCNN_G

PSNR/SSIM 21.91/0.7212 23.76/0.8178 24.70/0.8324

PSNR/SSIM 29,20/0 8880
Figure 7. Visual results using BD degradation model with scal-
ing factor x3. The SR results are for image “img_096" from Ur-
ban100 and “img-099” from Urban100 respectively.

SRCNN VDSR IRCNN_C

22.88/0.6248  24.50/0.7477 25.03/0.7500 25 36/0. 7859

Original Bicubic RDN

L A
25.77/0.8448 28.45/0.8901

PSNR/SSIM 24.58/0.5737 25.60/0.8187 30.84/0.9167
s - =2 FE BT
K ik ik &i o

Rk
iy
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ey W
e

26.17/0.8544

PSNR/SSIM
Figure 8. Visual results using DN degradation model with scaling
factor x3. The SR results are for image “302008” from B100 and
“LancelotFullThrottle” from Mangal09 respectively.

24.52/0.6601 27.11/0.8861 26.49/0.9237  31.29/0.9508

5.6. Super-Resolving Real-World Images

We also conduct SR experiments on two representa-
tive real-world images, “chip” (with 244 x200 pixels) and
“hatc” (with 133x 174 pixels) [41]. In this case, the original

Bicubic

VDSR

LapSRN MemNet

Figure 9. Visual results on real-world images with scaling factor
x 4. The two rows show SR results for images “chip” and “hatc”
respectively.

HR images are not available and the degradation model is
unknown either. We compare our RND with VDSR [10],
LapSRN [13], and MemNet [26]. As shown in Fig. 9, our
RDN recovers sharper edges and finer details than other
state-of-the-art methods. These results further indicate the
benefits of learning dense features from the original input
image. The hierarchical features perform robustly for dif-
ferent or unknown degradation models.

6. Conclusions

In this paper, we proposed a very deep residual dense
network (RDN) for image SR, where residual dense block
(RDB) serves as the basic build module. In each RDB, the
dense connections between each layers allow full usage of
local layers. The local feature fusion (LFF) not only stabi-
lizes the training wider network, but also adaptively controls
the preservation of information from current and preceding
RDBs. RDB further allows direct connections between the
preceding RDB and each layer of current block, leading to
a contiguous memory (CM) mechanism. The local resid-
ual leaning (LRL) further improves the flow of information
and gradient. Moreover, we propose global feature fusion
(GFF) to extract hierarchical features in the LR space. By
fully using local and global features, our RDN leads to a
dense feature fusion and deep supervision. We use the same
RDN structure to handle three degradation models and real-
world data. Extensive benchmark evaluations well demon-
strate that our RDN achieves superiority over state-of-the-
art methods.
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