
Learning Transferable Subspace
for Human Motion Segmentation

Lichen Wang,∗ Zhengming Ding,∗ Yun Fu∗†
∗Department of Electrical & Computer Engineering, Northeastern University, Boston, USA

†College of Computer & Information Science, Northeastern University, Boston, USA
wanglichenxj@gmail.com, allanding@ece.neu.edu, yunfu@ece.neu.edu

Abstract

Temporal data clustering is a challenging task. Existing meth-
ods usually explore data self-representation strategy, which
may hinder the clustering performance in insufficient or cor-
rupted data scenarios. In real-world applications, we are eas-
ily accessible to a large amount of related labeled data. To
this end, we propose a novel transferable subspace cluster-
ing approach by exploring useful information from relevant
source data to enhance clustering performance in target tem-
poral data. We manage to transform the original data into
a shared low-dimensional and distinctive feature space by
jointly seeking an effective domain-invariant projection. In
this way, the well-labeled source knowledge can help obtain a
more discriminative target representation. Moreover, a graph
regularizer is designed to incorporate temporal information
to preserve more sequence knowledge into the learned repre-
sentation. Extensive experiments based on three human mo-
tion datasets illustrate that our approach is able to outperform
state-of-the-art temporal data clustering methods.

Introduction
Temporal data segmentation is a critical technique utilized
in many real-world applications as data preprocessing pro-
cess, such as natural language processing, motion analysis
and action recognition. The goal is to divide a long temporal
data sequence into several short, non-overlapping, meaning-
ful and reasonable segments. Temporal segmentation can be
easily concatenated with other post-processing methods to
further enhance task performances. Assume there is a video
sequence which contains several continuous actions. Since
conventional action recognition approach is designed to rec-
ognize videos which only contain a single action. Thus, a
preprocessing segmentation process is essential.

Compared with independent static data, the successive in-
formation residing in data points is a unique cue to guide the
clustering algorithms. And it is effective to fully utilize the
data dependency to improve clustering performance. A com-
prehensive survey (Keogh and Kasetty 2003) reveals that
temporal data clustering is difficult due to the data dimen-
sion and complex temporal connection. Based on the catego-
rization mentioned in (Yang and Chen 2011), there are three
lines of temporal clustering methods, including model-based
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Figure 1: Framework of our approach. The information of
source attempts to help target data clustering through knowl-
edge transfer, which is used to reconstruct the target data.
Furthermore, we seek a domain-invariant projection to align
different distributions between the two datasets.

(Smyth 1999; Xiong and Yeung 2003), temporal-proximity-
based (Keogh and Kasetty 2003) and representation-based
algorithms (Dimitrova and Golshani 1995; Chen and Chang
2000). Among them, representation-based approach is the
most popular one, especially the methods based on subspace
clustering algorithms.

Subspace clustering has ideal performance in wide appli-
cations. Several representative subspace clustering methods
have been proposed, including sparse subspace clustering
(SSC) (Elhamifar and Vidal 2009), least-square regression
(LSR) (Lu et al. 2012) as well as low-rank representation
(LRR) (Liu et al. 2013), etc. The core idea of subspace clus-
tering is learning a distinctive and low-dimensional data rep-
resentations. The representations are used as input for exist-
ing clustering algorithms, which are applicable to temporal
data clustering. Several methods are designed for temporal
data segmentation. (Li, Li, and Fu 2015) designed a dictio-
nary which is simultaneously updated in the learning pro-
cess to obtain expressive codings. (Talwalkar et al. 2013)
proposed a novel divide-and-conquer algorithm for large-
scale subspace segmentation. Since these methods utilize
self-representation strategy, and thus, they may hinder the
clustering performance when the data are insufficient or cor-
rupted. Furthermore, since the methods belong to unsuper-
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vised learning scenario without extra information to guide
the segmentation process. Thus, it is difficult to segment data
into expected groups. Supervised learning is still not an ideal
solution due to high cost to generate labeled data.

Although specific labeled data are difficult to achieve, re-
lated and well-labeled data are widely available. It is reason-
able to explore information from related data to help cluster-
ing process. To this end, we propose a novel transferable
temporal data clustering approach, and the goal is to explore
the usage of source knowledge to improve the segmenta-
tion performance in target domain. It’s a challenging task
due to the source and target distribution gap which would
easily cause negative transfer problems. The crucial idea of
our model is to learn a domain-shared subspace, where a
reconstruction-based strategy is applied to guide the knowl-
edge transfer. Therefore, the new learned representations for
target domain are effective enough to do further clustering.
To our best knowledge, this is the pioneer work to explore
transfer learning in temporal data clustering. The contribu-
tions of this work are as follows:

• We propose a novel transfer learning based subspace clus-
tering approach, which adapts useful information from
relevant data to improve the clustering performance in
target temporal data. Specifically, a reconstruction-based
strategy is adopted to guide the knowledge transfer by
seeking effective new representations.

• A domain-invariant projection is learned to mitigate the
data distribution differences between source and target
domains. Meanwhile, a graph regularizer is built to cap-
ture the temporal information of source and target for bet-
ter clustering.

• Non-trivially, an optimization algorithm is designed to
learn the representation and projection simultaneously
and efficiently, which are used to construct a robust affin-
ity graph for further motion segmentation.

Related Work
We discuss three related work including subspace clustering,
temporal data segmentation and transfer learning.

Subspace Clustering. Subspace clustering seeks to find
clusters in different and distinctive subspaces. Sparse based
clustering methods (SSC) (Elhamifar and Vidal 2009) uti-
lizes sparse constraints to learn a sparse representation of
data. Least-square regression (LSR) (Lu et al. 2012) encour-
ages a grouping effect which tends to group highly corre-
lated data together by using the Frobenius norm. Low-rank
representation (LRR) (Liu et al. 2013) analyzes the global
structure in feature space and seeks the lowest-rank repre-
sentation. Discriminative subspace clustering (DSC) (Zo-
grafos, Ellis, and Mester 2013) incorporates discriminative
information into the model by using a quadratic classifier
trained from unlabeled data. However, these methods are not
well designed for temporal data segmentation. They model
the data points independently but neglect the temporal rela-
tionship in the sequential data points.

Temporal Data Clustering. The goal of temporal data
clustering is to divide a long temporal data into several short,

non-overlapping and meaningful groups. Semi-Markov K-
means clustering (Robards and Sunehag 2009) is designed
to find repeated patterns residing in temporal format data.
Hierarchical aligned cluster analysis (Zhou, De la Torre,
and Hodgins 2013) utilizes a dynamic time alignment ker-
nel to cluster time series data. Maximum-margin clustering
method (Hoai and De la Torre 2012) simultaneously rec-
ognizes the length and position of corresponding segments.
Temporal Subspace Clustering (TSC) (Li, Li, and Fu 2015)
jointly learns a dictionary and representations with a regula-
tion to decode temporal information. Basically, these tempo-
ral clustering methods dig clustering information only from
the data. These approaches are difficult to robustly cluster
temporal data into a reasonable, meaningful and expected
result. Thus, we propose a transfer learning based segmenta-
tion approach, which borrows information from labeled ex-
tra data to facilitate the target clustering performance.

Transfer Learning. Transfer learning is a popular tech-
nique which transfers knowledge from one task to dif-
ferent but related tasks. A comprehensive survey can be
found in (Pan and Yang 2010). According to (Pan and Yang
2010), our approach belongs to transductive transfer sce-
nario (Zhang, Zhang, and Ye 2012; Dai et al. 2007; Ando
and Zhang 2005; Blitzer, McDonald, and Pereira 2006;
Daumé III, Kumar, and Saha 2010; Argyriou, Evgeniou, and
Pontil 2007; Wang and Mahadevan 2008). In transductive
transfer learning, the tasks of source and target are same,
however, the domains of source and target are different. Do-
main shifting is the key problem of transfer learning since
the distributions of source and target data are inconsistent.
One solution is to learn a data representation, which attempts
to adjust both distributions and obtains a well-aligned fea-
ture space (Zhang, Zhang, and Ye 2012; Ding and Fu 2017).
Low-rank transfer learning is proposed to use incomplete
multiple source data better (Ding, Shao, and Fu 2016; 2014;
2015). Our approach is different from previous work, since
the methods introduced above mainly focus on classification
problems and transfer label information between domains.
While our approach manages to transfer clustering informa-
tion for temporal data segmentation tasks.

The Proposed Approach
We explore the transfer learning idea in temporal data clus-
tering in a semi-supervised strategy.

Learning Transferable Representation
To transfer knowledge across different domains, we adopt
a reconstruction-based scheme to seek new representations,
which are lying in the similar data distribution. The recon-
struction strategy is shown as follows:

X ≈ XSZ, (1)

where X = [XS , XT ] ∈ R
d×n is the concatenated of source

and target samples points XS ∈ R
d×nS and XT ∈ R

d×nT ,
each column in X represents a sample. d is the feature di-
mension, nS , nT are the sample numbers and n = nS +nT .
Z = [z1, z2, ..., zn] is the learned representation of X , each
zi is the representation of xi. Z = [ZS , ZT ] ∈ R

nS×n is
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also the concatenation of source and target representations
ZS and ZT , where ZS ∈ R

nS×nS , ZT ∈ R
nS×nT .

As mentioned above, XS and XT have different data
distributions. If XS is directly used for reconstruction, the
learned representation Z would contain high reconstruction
errors. Therefore, we jointly seek a domain-invariant projec-
tion P ∈ R

r×d which reduces the distribution gap between
XS and XT during training process, where r is the dimen-
sion of P which regulates the dimension of projected space.
Thus, we refine the reconstruction strategy as follow:

PX ≈ PXSZ. (2)

To solve the constraint of Eq. (2), we design a formulation
based on least-square regression, and the objective function
is formulated as follow:

min
P,Z

‖PX − PXSZ‖2F + λ1(‖P‖2F + ‖Z‖2F), (3)

where ‖Z‖F is the Frobenius norm, and ‖Z‖2F =∑r
i=1

∑n
j=1 |Zi,j |2. λ1 is a trade-off parameter. ‖PX −

PXSZ‖2F captures the reconstruction error, ‖P‖2F and ‖Z‖2F
are used to constrain the variable scale and model the global
subspace structure in X . Moreover, Frobenius norm is help-
ful to learn a more distinctive structure in Z(Lu et al. 2012).
That is to say, such reconstruction can ensure that the same
cluster data reconstruct the same cluster in both source and
target domain to guide knowledge transfer.

Temporal Graph Regularizer
Since successive information is crucial to guide segmen-
tation process, we design a graph regularization function
ft(Z) to incorporate the temporal information. The purpose
of ft(Z) is to make the neighbors of learned representation
samples close to each other. In our approach, zi is the ith
column of Z which correlates to the ith sample xi. ft(Z)
would regulate its neighbors [zi−s/2, ..., zi−2, zi−1, zi+1 ,

zi+2, ..., zi+s/2] close to zi, where s is the length of relevant

frames. The expression of ft(Z) is shown as follow:

ft(Z) =
1

2

n∑
i=1

n∑
j=1

wij‖zi − zj‖22 = tr(ZLWZ�), (4)

where tr(·) denotes the matrix trace which is defined to
be the elements sum on the matrix main diagonal. LW =
D − W is graph Laplacian matrix (Merris 1994), Dii =∑n

i=1 wij , where W ∈ R
n×n is the weight regularization

matrix. Each element of W is shown below:

wij =

{
1, if |i− j| ≤ s, l(zi) = l(zj), for source
1, if |i− j| ≤ s, for target
0, otherwise,

(5)

where l(zi) denotes the action label of zi of source data.
Different from previous work (Tierney, Gao, and Guo

2014) which assumes every frame sample has temporal con-
nections. Our approach only constrains the representation
samples belonging to the same group with temporal con-
straint in source part. Note that there is no requirement if the
class of source data would be overlapped with target data.

Labeled source data

0

0

Unlabeled target data

Cluster 1 Cluster 2

Figure 2: Structure of W in a simple case where s = 3,
nS = 9 and nT = 6.

We assume that every target data point has temporal con-
nections since the segmentation is unknown.

From Eq. (5), we can notice that when the distance be-
tween ith and jth sample points is less than s, the function
ft(Z) would regulate the learned representation to be close.
If the distance is greater than s, there is no regularization
between the two samples. In order to better visualize how
ft(Z) preserves label and temporal information, we illus-
trate a simple structure case of W in Figure 2 when s = 3,
nS = 9 and nT = 6. We can see that the sequential property
is preserved by the constraint weight between neighbor data
points. Furthermore, we set the correlation weights between
two different groups in source data as zeros. This strategy
fully utilizes label information to constrain the coding re-
sult. In this work, only binary weights are used for generat-
ing W . Other graph weighting algorithms and weight values
separately for temporal constraint and label constraint could
be deployed to further improve the performance. Moreover,
to preserve non-negative property of features, a constraint
Z ≥ 0 is added to the objective function. Putting all the
terms together, our objective function is proposed as fol-
lows:

min
P,Z

‖PX − PXsZ‖2F + λ1(‖Z‖2F + ‖P‖2F)
+λ2tr(ZLwZ

�),
s.t. Z ≥ 0, PXHX�P� = I,

(6)

where λ2 is utilized to balance the weights of different terms.
The constraint PXHX�P� = I would preserve the data
variance after adaptation, which implies and introduces ad-
ditional data discriminating ability into the learned model P .
X ∈ R

d×n is input matrix. H = I − 1
n1, where 1 ∈ R

n×n

is all-one matrix and I is an identity matrix.
After obtaining representation Z, a graph G is generated

for the sequential clustering process. In order to segment
temporal data accurately, the within-cluster samples are al-
ways highly correlated with each other. The definition of G
is given by:

G(i, j) =
z�
i zj

‖zi‖2‖zj‖2
, (7)

where zi is an instance of representation. When G is gen-
erated, an effective conventional clustering algorithm, Nor-
malized Cuts (Shi and Malik 2000), performs the final clus-
tering process. The approach is shown in Algorithm 1.
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Algorithm 1. Motion Subspace Clustering
Input: Source data XS and target data XT , step size η,

cluster numbers k, parameters λ1, λ2, α, s
Output: Clustering result Y
1: Generate temporal constraint matrix W and LW

2: while not converged do
3: Update P(k+1) using (13), fix other variables;
4: Update V(k+1) using (12), fix other variables;
5: Update Z(k+1) using (15), fix other variables;
6: Update Λk+1, Λk+1 = Λk + ηα(Vk+1 − Zk+1);
7: k = k + 1
8: end while
9: Build an undirected graph G based on Eq. (7)
10: Utilize NCut to cluster k clusters and get index Y

Optimization
Solving Eq. (6) is challenging since it is hard to get explicit
solutions. Thus, we solve the variables based on iterative
strategy (ADMM) (Boyd et al. 2011). We optimize one vari-
able by fixing others. An auxiliary variable V ∈ R

nS×n is
used in the optimization process. We transform Eq. (6) as
follow:

min
P,V,Z

‖PX − PXSV ‖2F + λ1(‖V ‖2F + ‖P‖2F)
+λ2tr(V LWV �),

s.t. V = Z,Z ≥ 0, PXHX�P� = I.

(8)

Then we convert Eq. (8) to an augmented Lagrangian func-
tion (Glowinski and Le Tallec 1989)

L = 1
2‖PX − PXSV ‖2F + λ1(‖V ‖2F + ‖P‖2F)
+λ2tr(V LWV �) + 〈Λ, V − Z〉+ α

2 ‖V − Z‖2F,
s.t., Z ≥ 0, PXHX�P� = I,

(9)
where Λ ∈ R

nS×n is the Lagrangian multiplier, and α is
a trade-off parameter. ADMM approach alternatively min-
imizes L with respect to Z, V and P . At the beginning of
optimization, P and Z are initialized with random value. V
and Λ are initialized with zero matrix.

Update V: By ignoring other variables, the Lagrangian
equation (9) can be written as follow:

min
V

1
2‖PX − PXSV ‖2F + λ1‖V ‖2F + λ2tr(V LWV �)

+〈Λ, V − Z〉+ α
2 ‖V − Z‖2F.

(10)
We assign the derivation of L with respect of V to zero.

The equation is shown below:

∂L
∂V = (−PXS)

�(−PXSV + PX) + 2λ1V
+2λ2V LW + Λ+ α(V − Z) = 0.

(11)

Then we can get the following equation:

[(PXS)
�(PXS) + (α+ 2λ1)I]V + V (2λ2LW )

= (PXS)
�PX − Λ + αZ.

(12)

Eq. (12) is a Sylvester equation, which is solved by
Bartels-Stewart algorithm (Bartels and Stewart 1972).

Update P: By ignoring other variables we simplify the
equation by converting the equation from Frobenius norm to
trace format. The transformed equation is shown below:

P = argmin
PXHX�P�=I

‖PX − PXSZ‖2F + λ1‖P‖2F
= argmin

PXHX�P�=I

tr(P (X −XSZ)(X −XSZ)�P�)

+λ1tr(PP�)
= argmin

PXHX�P�=I

tr(P [(X −XSZ)(X −XSZ)�

+λ1I]P
�).

(13)

Eq. (13) can be solved by using generalized Eigen-
decomposition:

[(X −XSZ)(X −XSZ)� + λ1I]ρ = γXHX�ρ. (14)

where γ is the eigenvalue of the corresponding eigenvec-
tor ρ of the generalized Eigen-decomposition formulation.
P = [ρ0, · · · , ρp−1]

� where ρi is the minimum eigenvalue
solutions to the eigenvalue problem

Update Z: By ignoring other variables, the function can
be written as follow:

min
Z

〈Λ, V − Z〉+ α

2
‖V − Z‖2F. (15)

The closed-form solution of Eq. (15) is Z = V + Λ
α . In

order to meet the non-negative constraint for Z, the update
rule is shown as follow:

Z = F+(V +
Λ

α
), (16)

where (F+(A))ij = max (Aij , 0), and it regulates the non-
negative value constraint and Aij is an element in matrix A.
The update steps are iteratively executed until the equation
is convergent. The optimization process is summarized as
Algorithm 1.

Complexity Analysis
There are two key time-consuming parts in our model
during optimization. The first one is the Step 3 (Eigen-
decomposition) and Step 4 (V Updating). Specifically, for
step 3, it contains Eigen-decomposition, which costs O(d3)
for the matrix with size of d × d. Step 4 updates V by us-
ing Bartels Stewart algorithm, and its complexity is O(n2

Sn).
Denote t as the iterations number, the total computational
complexity of our approach is O(td3+ tn2

Sn). Step 3 can be
reduced to O(d2.376) using the Coppersmith-Winograd al-
gorithm (Coppersmith and Winograd 1987). Step 4 mainly
suffers from the size of source data. Generally, we could
seek a more effective basis from source to reduce its size.
To this end, our approach is more applicable in real-world
applications.

Experiment
Temporal Datasets
Multi-modal Action Detection (MAD) Dataset (Huang
et al. 2014) contains multi-modal actions of 20 subjects
recorded by Microsoft Kinect in three formats. First is reg-
ular RGB image in resolution of 640 × 480. Second is 3D
depth image. The third is human skeleton information. Each
subject performs 35 actions in two different indoor environ-
ments. Figure 3(a) shows frame samples of MAD dataset.
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(a) MAD Dataset (b) Keck Dataset (c) Weizmann Dataset

Figure 3: Example frames of three human motion datasets.

Table 1: Clustering accuracies and NMI of compared methods on three human motion datasets. Names in brackets denote the
respective source dataset. The best and second best clustering results are denoted by bold and italic respectively.

(a) Results on MAD Dataset

Method Acc NMI
LRR 0.2397 0.2249
OSC 0.4327 0.5589
SSC 0.3817 0.4758
LSR 0.3979 0.3667
TSC 0.5556 0.7721
TSC (Weiz) 0.5418 0.7684
TSC (Keck) 0.5473 0.7691
Ours (Weiz) 0.5736 0.8202
Ours (Keck) 0.5792 0.8286

(b) Results on Keck Dataset

Method Acc NMI
LRR 0.4297 0.4862
OSC 0.4393 0.5931
SSC 0.3137 0.3858
LSR 0.4894 0.4548
TSC 0.4781 0.7129
TSC (MAD) 0.4653 0.6935
TSC (Weiz) 0.4548 0.6862
Ours (MAD) 0.5395 0.8049
Ours (Wei) 0.5485 0.7928

(c) Results on Weizmann Dataset

Method Acc NMI
LRR 0.3638 0.4382
OSC 0.5216 0.7047
SSC 0.4576 0.6009
LSR 0.5091 0.5093
TSC 0.6111 0.8199
TSC (MAD) 0.5961 0.8032
TSC (Keck) 0.5931 0.7971
Ours (MAD) 0.6208 0.8509
Ours (Keck) 0.6030 0.8326

Keck Gesture Dataset (Jiang, Lin, and Davis 2012) con-
sists of 14 different actions from military signals. The reso-
lution is 640× 480. Three subjects preforms the 14 gestures
and each action is repeatedly preformed 3 times by each sub-
ject. Thus, 3 × 3 × 14 = 126 human action videos are ob-
tained. The actions are captured by a fixed position camera
with static and simple background. The frame samples are
shown in Figure 3(b).

Weizmann Dataset (Gorelick et al. 2007) contains 90
video sequences include 10 different actions performed by
nine subjects in outdoor environments. The resolution is
180 × 144 with the frame rate of 50 fps. The subjects pre-
form ten regular actions including run, walk, skip and so on.
The frame samples are shown in Figure 3(c).

Experimental Setup
We extract low-level HoG features (Dalal and Triggs 2005)
and obtain a 324-dimensional feature vector from each
frame. Since different datasets contain different number of
actions, to make segmentation results comparable across dif-
ferent datasets, we randomly choose ten actions performed
by the same subject from each dataset. In evaluation, we uti-
lize 5 randomly selected sequences in source datasets, and
report the average performance. Moreover, since Weizmann
and Keck datasets contain only a single action per sequence,
we follow the setting of (Hoai and De la Torre 2012) which
concatenates single action from the same subject to generate
a long sequential data, each data contains 10 actions with
1000-3000 frame samples. The parameter values λ1 and λ2

are set to be 0.015 and 12 as the default, the correlated frame
distance s = 9 and the projection size r = 80. Parameter
sensitivity is analyzed later in this section. Our approach is

compared with five state-of-the-art methods listed below:

• Low-Rank Representation (LRR) (Liu et al. 2013)
seeks the representations of the lowest rank among all
candidates. LRR obtains the global structure from the
data. And it is a more effective approach for subspace seg-
mentation.

• Ordered Subspace Clustering (OSC) (Tierney, Gao,
and Guo 2014) proposes to explicitly enforce the tempo-
ral data representation to be close and achieves the best
performance for clustering data.

• Sparse Subspace Clustering (SSC) (Elhamifar and Vi-
dal 2009) assumes that each point has a sparse represen-
tation, and enforces a sparse constraint to learn a sparse
representation.

• Least Square Regression (LSR) (Lu et al. 2012) is
an efficient clustering approach. By using the Frobenius
norm, LSR lets the highly correlated data to be effectively
grouped together.

• Temporal Subspace Clustering (TSC) (Li, Li, and Fu
2015) proposes a temporal Laplacian regularization as
well as jointly learns a dictionary to obtain expressive and
distinctive codings for time series data.

We evaluate the compared methods by running the codes
provided by authors. All parameters are tuned to achieve
the best performance. Both Normalized Mutual Information
(NMI) and Accuracy (ACC) are utilized to test the clustering
performance of the methods.
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Figure 4: Visualization of clustering result. Ten colors de-
note ten different actions. The results illustrate that LRR,
LSR and SSC cannot segment temporal data accurately
since no temporal information preserved in the model. The
results of OSC and TSC are better but still contain fragments
and inaccurate part. While our approach contains less frag-
ments and sensitive to similar actions.

Performance Comparison
In our approach, we set one dataset as source and another
one as target. Since there are three datasets for evaluation,
each target dataset is segmented based on other two datasets
as source data respectively. Results are shown in Table 1.
For other methods, since they cannot utilize source infor-
mation, we only input the target data and get the segmen-
tation results. From Table 1 we can see that our approach
outperforms other methods. Compared with the second best
approach, TSC, our approach has averagely 5.3% and 7.1%
improvement in accuracy and NMI.

We visualize one MAD video segmentation results of our
approach and other methods in Figure 4. Different colors
indicate different segments (i.e., clusters). We observe that
SSC, LRR and LSR segment a lot of fragments in one action
sequence which is not reasonable. One reason is that these
methods do not preserve temporal information between ad-
jacent points. OSC and TSC have better performance since
both methods are designed for temporal data segmentation.
However, they still suffer from data variations. OSC still ex-
ists fragments situation and TSC is not sensitive in segment-
ing similar temporal data. However, since our approach uti-
lizes extra source data and temporal graph regularization, it
is able to obtain continuous segments and distinguish sim-
ilar but different actions. Therefore, our approach achieves
better and more accurate results than other methods.

Our approach fails to achieve significant improvement in
Weizmann dataset. We find out that there are various differ-
ences in Weizmann Dataset. First, since the action sequences

Table 2: Result of our model in manipulated dictionaries.
Ours-1: Original dictionary. Ours-2: Shuffle dictionary se-
quence. Ours-3: Add noise in dictionary.

Dictionary ACC NMI
Ours-1 0.5736 0.8202
Ours-2 0.5710 0.8188
Ours-3 0.5251 0.7598

are directly concatenated, the subject positions and motion
patterns changed suddenly between two sequences in some
cases, such as from moving to left switch to moving to right.
Second, since the video captured in different time, the illu-
mination situations in videos are inconsistent. Furthermore,
the subject visual appearance also changes such as clothes
and hair styles. However, in other two datasets the subject
performs the action without any appearance changing, and
the illumination is consistent in all actions which are sim-
ilar to real-world applications. These differences give com-
pared approaches distinctive cues while our method can only
obtain limited benefits from source data. Thus the improve-
ment of our approach is not significant compared with other
methods due to the data is distinctive already.

Source Data Analysis

To fairly compare with different methods, we concatenate
source and target data together as input to the second best
approach, TSC. This aims to demonstrate that our improve-
ment is not directly from data augmentation. Table 1 shows
the result. TSC performance drops slightly (about 1%) and
the result denotes two facts. First, simply increasing data
samples cannot improve clustering performance. Second,
the performance would reduce if the model cannot align the
distribution gap of source and target appropriately. It demon-
strates that our approach is able to well align different distri-
butions and transfer useful information to improve segmen-
tation performance.

To prove that source data are crucial to improve segmen-
tation performance, we manipulate the dictionary and test
the model. We set Weizmann as source and MAD as target.
First, original source is set as baseline (Ours-1). Second, we
randomly shuffle the sequence of dictionary (Ours-2). Third,
a Gaussian distribution noise xn ∼ N(0, 1) is added to dic-
tionary (Ours-3). The result is shown in table 2. We observe
that shuffling the dictionary sequence has less than 0.2%
negative influence on segmentation performance. However,
the result drops more than 7 % in accuracy and NMI when
adding Gaussian noise. Figure 6 further shows the perfor-
mance with different scales of noise added to dictionary. We
observe that the model achieves the best performance with-
out noise, and as the noise increases, the performance drops
significantly and then gradually becomes stable. The results
denote that clean and good structure of source data can help
to learn more distinctive representations and improve seg-
mentation performance. Adding noise would weaken or de-
stroy the structure information and weaken the reconstruc-
tion performance, thus it reduces the clustering performance.

4200



(a) (b)

Figure 5: (a) Performance in different number of sequential neighbors s. (b) Performance in different project size r.

Figure 6: Segmentation result when different variances of
Gaussian noise is added to dictionary.

Table 3: Results based on modifications of our model by
changing the reconstruction term.

Modified Model ACC NMI
Model-1 0.5415 0.8111
Model-2 0.5224 0.8066
Model-3 0.5268 0.7736
Model-4 0.4530 0.6866

Model Variant Analysis
To verify the effectiveness of each term in our model, we
change the first reconstruction term in Eq. (3), and the results
are shown in Table 3. We set MAD as source and Keck as
target. First, we test the original model as baseline in Model-
1. Second, we remove P and obtain Model-2: ‖X−XSZ‖2F .
Third, we remove P and concatenate XS and XT as dictio-
nary in Model-3: ‖X − XZ‖2F . Fourth, we set both source
and target data as dictionary in Model-4: ‖PX − PXZ‖2F .
We observe that when projection P is removed, the segmen-
tation accuracy drops more than 3% which indicates that P
is essential to connect both source and target data, and to im-
prove the performance. When we concatenate XT as dictio-
nary, the segmentation performance drops significantly. We
assume the reason for this situation is that since XT exists in
the dictionary, so target data could be represented by XT in-
stead of XS , and XS would have negative influence for the
segmentation performance. From the experimental results,
we conclude that every term in our approach is required and
contributes to improve the segmentation performance.

Figure 7: Parameter sensitivity tested on Keck dataset. Left
and right are visualization result of NMI and ACC metrics
with different value of λ1 and λ2.

Parameter Analysis

We use different values to test the parameter sensitivity of
our model on Keck and MAD as source. Figure 5(a) shows
that when s � 5, the performance would be accurate and
stable. λ1 constraints P and Z scale, and λ2 regulates the
temporal data constraint. Figure 5(b) shows the parameter
sensitivity of r. It indicates that if r � 20, the result is rel-
atively stable even though there is a little fluctuation as r
increases. s is also a major parameter in our model. The re-
sult in Figure 7 demonstrates that our approach can get an
accurate result when λ1 in the range of [0.02, 0.1] and λ2 in
the range of [9, 20]. The ranges of λ1 and λ2 are wide.

Conclusion

We introduced a novel transfer learning based temporal data
clustering approach in this paper. This approach adapted
useful information from relevant source data, and transferred
knowledge for target temporal data segmentation tasks.
Specifically, a reconstruction-based strategy was adopted to
guide the knowledge transfer. A domain-invariant projec-
tion was learned to mitigate the data distribution differences,
and a graph regularizer was built to capture the temporal in-
formation. Our approach outperformed state-of-the-art tem-
poral subspace clustering methods on three human motion
datasets. The results also demonstrated that our approach is
robust, accurate and parameter insensitive.
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