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Abstract This paper conducts a comprehensive study of the Lagrangian-based
hydrodynamic model with application to highway state estimation. Our analysis
is motivated by the practical problems of freeway traffic monitoring and estima-
tion using multi-source data measured from mobile devices and fixed sensors. We
conduct rigorous mathematical analysis on the Hamilton-Jacobi representation of
the Lighthill-Whitham-Richards model in the transformed coordinates, and derive
explicit and closed-form solutions with piecewise affine initial, boundary, and inter-
nal conditions, based on the variational principle. A numerical study of the Mobile
Century field experiment demonstrates some unique features and the effectiveness in
traffic estimation of the Lagrangian-based model.
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1 Introduction

Highway traffic state estimation is one of the essential components in traffic man-
agement. From an estimation perspective, it is desirable to have a substantial amount
of information available. Technologies of traffic monitoring such as Eulerian sens-
ing (loop detector, video camera) and Lagrangian sensing (on-board smart phone or
GPS) provide large and dense data sets and potentially lead to more accurate esti-
mation. However, from a modeling point of view, the inclusion of additional data
usually leads to inconsistency with an established traffic model, such as the Lighthill-
Whitham-Richards (LWR) model (Lighthill and Whitham 1955; Richards 1956).
Such incompatibility between observations (value conditions) and the mathemati-
cal model is often manifested in the non-existence of entropy solution to the partial
differential equation (PDE).

The well-known hydrodynamic traffic models (Lighthill and Whitham 1955;
Richards 1956) have been mostly formulated in Eulerian coordinates (time t , loca-
tion x); see Bressan and Han (2011, 2012); Claudel and Bayen (2010a, b); Daganzo
(2005, 2006); Lighthill and Whitham (1955); Newell (1993) and Richards (1956).
The Eulerian-based model describes vehicle density and flux using a scalar con-
servation law. This type of PDE is usually associated with initial/boundary value
conditions which are inherently Eulerian. Initial and boundary value problems, if
well posed, leads to the existence and uniqueness of a solution (Bressan 2000; Evans
2010; Garavello et al. 2016).

While a spectrum of mathematical analyses and computational methods exist in
the current literature that deal with initial/boundary value problems for partial differ-
ential equations (Daganzo 2005, 2006; Evans 2010; Le Floch 1988; LeVeque 1902),
these are insufficient to address the problems of traffic state estimation and recon-
struction arising in the context of mobile sensing. Indeed, the fast developing and
maturing traffic monitoring systems, with Lagrangian sensing capabilities through
on-board devices, enables higher coverage of the physical domain and requires fast
and accurate data fusing techniques. Claudel and Bayen (2010a, b, 2011) took the
first step in integrating fixed and mobile sensing into a single Hamilton-Jacobi equa-
tion in Eulerian coordinates. This was done through the notion of internal boundary
conditions (IBC), which are internal to the spatio-temporal domain of the PDE. In
order to avoid the issue of non-existence of solutions, Claudel and Bayen (2010a,
b) adapted a more general solution class known as the Barron-Jensen/Frankowska
(BJ/F) solutions (Aubin 2009; Barron and Jensen 1990). This type of solution, in
contrast to the viscosity solution, is lower-semicontinuous, and the corresponding
computational method is known as the generalized Lax-Hopf formula.

The Lagrangian coordinates system (LCS), applied to hydrodynamic modeling,
was introduced in Courant and Friedrichs (1999) in the context of gas dynamics and
subsequently studied in, e.g. Leclercq et al. (2007) and Laval and Leclercq (2013). It
consists of two independent parameters: time (t) and vehicle label (n). In contrast to
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the Eulerian coordinate system, the LCS is trajectory-based, i.e. it describes the evo-
lution of variables of interest along a particle trajectory. The hydrodynamic traffic
models in Lagrangian coordinates describes vehicle spacing and vehicle speed using
a scalar conservation law. A detailed review of this model will be presented later in
this article. The idea conveyed in the Lagrangian-based approach, i.e. the trajectory-
based description of traffic flow, provides new insights of the hydrodynamic model.
The LCS establishes a natural modeling framework for moving vehicles regardless
of their physical locations, which can be potentially applied to vehicle-based cyber-
physical systems such as mobile networking or mobile internet. With increasing
availability of floating car data, as well as car-to-car communication, a vehicle-based
traffic model could offer additional capabilities and insights unavailable in a location-
based model. The Lagrangian coordinate system and its applications to traffic flow
theory, network modeling and intelligent transportation system remain a promising
yet less exploited field.

Recent studies (Leclercq et al. 2007; Yuan et al. 2011) showed the computational
advantage of Lagrangian-based PDE over Eulerian-based PDE in terms of finite
difference algorithms. The Lagrangian-based conservation law allows only non-
negative wave propagation speed instead of both positive and negative wave speeds
as in the Eulerian-based model, which reduces the Godunov scheme (Godunov 1959)
to a simple upwind scheme. As we will see later in this article, the Lagrangian-based
model also admits a simpler solution representation when the Lax-Hopf formula is
used as the computational method. Despite these desirable features, the Lagrangian-
based traffic models are not sufficiently studied and understood in the current lite-
rature, especially its potential contributions to real-world traffic estimation, data
assimilation, inverse modeling as well as mobile networking, which has motivated
our work presented in this paper.

This article conducts a comprehensive study of the Lagrangian-based traffic model
in terms of model derivation and justification, value conditions, numerical algorithm as
well as its application to traffic state estimation/reconstruction. In particular, we adapt
the notion of viability episolution (Claudel and Bayen 2010a, b) to the Hamilton-
Jacobi equation. As previously mentioned, the Lagrangian-based approach yields sim-
pler solution representation than the Eulerian-based approach. Moreover, the resulting
solution in Lagrangian coordinates provides easy access to vehicle-based information
such as vehicle trajectory and velocity field, which are not directly recovered through
Eulerian-based models. Specific technical contents of this article are as follows.

1 We show the relationship between viscosity solutions of the Eulerian and
Lagrangian based Hamilton-Jacobi equations. To our knowledge, this is the first
rigorous results regarding the equivalence between the H-J equations in these
two coordinate systems.

2 We present a framework for fusing both Eulerian (location-fixed) and
Lagrangian (vehicle-fixed) sensing data into the Lagrangian PDE. By applying
the viability theory and generalized Lax-Hopf formula (Aubin 2009; Claudel and
Bayen 2010a, b) to the Lagrangian based Hamilton-Jacobi equation. We provide
closed-form solution with piecewise affine value conditions.

3. Through a numerical study of theMobile Century field experiment (Herrera et al.
2009), we demonstrate the practicality and convenience of using car label as a
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free variable in the highway traffic models and the capability of Lagrangian-
based PDE to perform data fusing, this is applied to highway traffic estimation
and reconstruction.

The rest of the article is organized as follows: in Section 2, we discuss the hydro-
dynamic traffic model in the transformed coordinate system. Section 3 introduces
the viability episolutions of the Hamilton-Jacobi equation and generalized Lax-Hopf
formula. Both Eulerian and Lagrangian sensing data are discussed and integrated
into the Lagrangian PDE. Section 4 conducts further investigation of the Lax-Hopf
formula in the presence of piecewise affine value conditions and derives explicit solu-
tions to the Lagrangian PDE with various value conditions. Finally, in Section 5 we
apply the Lagrangian-based model and methodology to a real-world traffic estima-
tion problem, using data collected from theMobile Century field experiment (Herrera
et al. 2009).

2 The LWR Model in Transformed Coordinates

In this section, we present and discuss the LWR model in Eulerian and Lagrangian
coordinates. The transformation between these two coordinate systems is made
through a function inversion under minor assumptions. Along with the Lagrangian
coordinates comes a new equation describing the traffic dynamics, which will be
related to the original equation in Eulerian coordinates; the two equations will be
respectively presented in Sections 2.1 and 2.2. Result on the equivalence of solutions
of both equations is established in Section 2.3.

2.1 The LWR Model in Eulerian Coordinates

Traditionally, the LWR model has been formulated in Eulerian coordinates (t, x) as
a scalar conservation law (Lighthill and Whitham 1955; Richards 1956):

∂

∂t
ρ(t, x) + ∂

∂x
f (ρ(t, x)) = 0 (t, x) ∈ [0, +∞) × [0, L] (2.1)

where the model concerns with vehicle density ρ(t, x) and flow (flux) f (ρ(t, x)).
The fundamental diagram is a concave function of the density ρ:

f (ρ) = ρ v(ρ) ρ ∈ [0, ρmax] (2.2)

where ρmax is the jam density and the vehicle speed v(ρ) ∈ [0, vmax] is a decreas-
ing function of density, vmax denotes the free flow speed. The flux function f (·) is
assumed to be concave with maximal value M attained at ρ∗, M is recognized as the
flow capacity, and ρ∗ is called the critical density. See Fig. 1 for some examples of
the density-flow functional relationship.



Lagrangian-based Hydrodynamic Model for Traffic Data Fusion... 1075

We introduce the Moskowitz function N(· , ·) (Moskowitz 1965; Claudel and
Bayen 2010a, b), defined via the following identities

N(t2, x2) − N(t1, x1) = −
∫ x2

x1

−ρ(t1, x) dx +
∫ t2

t1

f (ρ(t, x2)) dt (2.3)

In other words, N(t, x) is the cumulative vehicle count at location x by the time t ,
The properties of the Moskowitz function have been extensively studied, for instance
in Newell (1993), and we have the identities

∂

∂t
N(t, x) = f (ρ(t, x)) ,

∂

∂x
N(t, x) = −ρ(t, x) almost everywhere

(2.4)
It is shown, for example in Evans (2010), that if ρ(t, x) is the weak entropy solution
to (2.1), then the corresponding Moskowitz function defined in (2.3) is the viscosity
solution to the following Hamilton-Jacobi Eq. (2.5) .

∂

∂t
N(t, x) − f

(
− ∂

∂x
N(t, x)

)
= 0 (2.5)

Note that a viscosity solution to the Eq. (2.5) is Lipschitz continuous, but not nec-
essarily continuous differentiable due to shocks in density ρ(t, x). There exists,
however, other classes of solutions to Hamilton-Jacobi Eq. (2.5), for example, the
lower-semicontinuous Barron-Jensen/Frankowska solutions derived through viabil-
ity theory (Aubin 2009; Barron and Jensen 1990; Frankowska 1993). This type of
solution only need to satisfy the value conditions in the inequality sense, and can
be obtained using the generalized Lax-Hopf formula. We will apply this notion of
solutions to the Hamilton-Jacobi equations later in this article.

The model described above is Eulerian-based, i.e. in the coordinates represent-
ing space and time. The goal of Section 2.2 is to express the LWR model in
the Lagrangian coordinate system (t, n), where n represents vehicle label. The
Lagrangian coordinates are concerned with a particular car, and move with it in the
space-time domain. Note that in the continuum, n is treated as a real number. In the
Lagrangian system, the focus is no longer the density or flow at a point (t, x), but
instead the velocity and location of the vehicle identified by (t, n).

2.2 The LWR Model in the Lagrangian Coordinates

Now we want to make the coordinate transformation from (t, x) to (t, n), where the
quantity n is given by the Moskowitz function

n = N(t, x) (2.6)

representing the cumulative vehicles that has passed location x by time t . Throughout
the rest of this article, we assume the vehicle density is uniformly positive, i.e. there
exists δ > 0 such that

ρ(t, x) ≥ δ, ∀ (t, x)

This assumption does not compromise the validity or applicability of the model,
because if a vacuum state occurs in a segment of road, it separates two independent
sub problems, where the solution of one does not affect that of the other. Notice that
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by this assumption, n = N(t, ·) is a strictly decreasing function of x, whose inverse
will be denoted

x = X(t, n) (2.7)

where X(t, n) represents the location of vehicle labeled n at time t . The transfor-
mation of the Eulerian coordinates (t, x) and Lagrangian coordinates (t, n) is now
defined by (2.6) and (2.7). Notice that the vehicle label n is treated as a continuum.

Denote the velocity of vehicle labeled n at time t to be v(t, n), the spacing (recip-
rocal of density) around vehicle labeled n at time t to be s(t, n). Note that s(t, n)

can be interpreted as the space occupied by the vehicle. For t1 > t2, n1 > n2, we
deduce the following identities:

X(t1, n)−X(t2, n) =
∫ t1

t2

v(τ, n) dτ, X(t, n1)−X(t, n2) = −
∫ n1

n2

s(t, n) dn

(2.8)
The meanings of (2.8) are straightforward: displacement (X) is integral of speed (v)
over time (t); the distance between vehicles n1 and n2 is the integral of car spacings
over all cars in between. Notice that car n1 is ahead of car n2. We can rewrite (2.8)
as follows

∂

∂t
X(t, n) = v(t, n),

∂

∂n
X(t, n) = −s(t, n) almost everywhere (2.9)

where X(t, n), v(t, n) and s(t, n) denote the location, velocity and spacing of
vehicle labeled n at time t , respectively.

Remark 2.1 It is well-known that the viscosity solution N(t, x) to (2.5) is Lipschitz
continuous. The assumption of uniformly positive density implies that X(t, n) is
also Lipschitz continuous, then by Rademacher’s theorem it is almost everywhere
differentiable, but may have countably many kinks due to discontinuities (shocks).
Thus we need to emphasize “almost everywhere” for the validity of (2.4) and (2.9).

Before we introduce the Hamilton-Jacobi equation in Lagrangian coordinates,
we need to articulate the spacing-velocity relationship. Given the density-velocity
function ρ �→ v(ρ), define ψ : [1/ρmax, +∞) → [0, vmax]

ψ(s)
.= v (1/s) (2.10)

then ψ (s(t, n)) equals velocity v(t, n), we thus deduce from (2.9) that

∂

∂t
X(t, n) − ψ

(
− ∂

∂n
X(t, n)

)
= 0 (2.11)

The Hamiltonian ψ(·) expresses vehicle velocity as a function of spacing, and we
stipulate that it is a continuous, concave function. ψ(·) is uniquely determined by the
density-velocity relationship, therefore there is a one-to-one correspondence between
ψ(·) and the fundamental diagram f (·). Examples of different fundamental diagrams
and their corresponding ψ(·) are shown in Fig. 1.
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We also deduce informally from (2.11) the scalar conservation law

∂

∂t
s(t, n) + ∂

∂n
ψ (s(t, n)) = 0 (2.12)

by the word ‘informally’, we imply that before working with (2.12), one needs to
establish properties of the weak solution such as existence/uniqueness and related it
to the entropy solution of the original conservation law (2.1).

In the rest of this article, we focus on the Hamilton-Jacobi Eq. (2.11) in Lagrangian
coordinates, its initial/boundary/internal boundary conditions, numerical solution
and applications to highway traffic estimation. Section 2.3 is devoted to justifying
Eq. (2.11).

2.3 Viscosity Solutions to the Hamilton-Jacobi Equations

The main purpose of this section is to justify the Hamilton-Jacobi equation in
Lagrangian coordinates (2.11), in the sense of viscosity solutions. Recent work
(Leclercq et al. 2007; Yuan et al. 2011) refers to the equivalence of weak solutions to
a system of conservation laws in gas dynamics (Wagner 1987), which, however, does
not involve Hamilton-Jacobi equations, and the result does not apply immediately to
scalar conservation laws. In order to provide a solid foundation of our work based on
Hamilton-Jacobi equation, we provide a mathematical analysis of the H-J solutions
in both coordinate systems.

We start with a very general definition of viscosity solution of Hamilton-Jacobi
equation in the form

ut + H(∇u) = 0 (2.13)

where the unknown u(t, x) ∈ R
m and ∇u is the gradient of u with respect to x.

For simplicity of notations, the subscript denotes partial differentiation. In what fol-
lows, C, C1 denotes the set of continuous and continuously differentiable functions,
respectively.

0

Greenshields

ρ
max

ρ

f(ρ)

1/ρ
max

v
max

s

v

0

Triangular

ρ
max ρ

f(ρ)

1/ρ
max

s

v
max

v

Fig. 1 Hamiltonians in Eulerian and Lagrangian coordinates. Left: the Greenshields and
Triangular fundamental diagram. Right: the equivalent spacing-velocity curve
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Definition 2.2 A function u ∈ C(�) is a viscosity subsolution of (2.13) if, for every
C1 function ϕ = ϕ(t, x) such that u − ϕ has a local maximum at (t, x), there holds

ϕt (t, x) + H(∇ϕ) ≤ 0 (2.14)

Similarly, u ∈ C(�) is a viscosity supersolution of (2.13) if, for every C1 function
ϕ = ϕ(t, x) such that u − ϕ has a local minimum at (t, x), there holds

ϕt (t, x) + H(∇ϕ) ≥ 0 (2.15)

We say that u is a viscosity solution of (2.13) if it is both a supersolution and a
subsolution in the viscosity sense.

Remark 2.3 If u is a C1(�) function and satisfies (2.13) at every x ∈ �, then u is
also a solution in the viscosity sense. Conversely, if u is a viscosity solution, then
the equality must hold at every point x where u is differentiable. In particular, if u is
Lipschitz continuous, then it is almost everywhere differentiable, hence (2.13) holds
almost everywhere in �.

The aim of this section is to establish equivalence analysis of the viscosity
solutions of

Nt(t, x) − f (−Nx(t, x)) = 0 (2.16)

Xt(t, n) − ψ (−Xn(t, n)) = 0 (2.17)

A simple calculation shows that ψ(s) = s f (1/s). The following theorem establishes
the connection between (2.16) and (2.17).

Theorem 2.4 Assume that N(t, x), (t, x) ∈ � ⊂ (−∞, +∞) × R
n, is a viscosity

solution to (2.16), furthermore, assume that the density is uniformly positive, i.e.
ρ(t, x) ≥ δ > 0, ∀(t, x) ∈ �. Then function X(t, ·) obtained by inverting N(t, ·)
is a viscosity solution to (2.17).

Proof By assumption, N(t, ·) is strictly decreasing with

δ |x1 − x2| ≤ |N(t, x1) − N(t, x2)| ≤ ρmax |x1 − x2| ∀ x1, x2

then X(t, ·) is also strictly decreasing with

1/ρmax|n1 − n2| ≤ |X(t, n1) − X(t, n2)| ≤ 1/δ |n1 − n2| ∀ n1, n2 (2.18)

We start by showing that X(·, ·) is a subsolution. Indeed, given any C1 function
Y = Y (t, n) such that X − Y has a local maximum at (t0, n0). Without loss of
generality, we assume X(t0, n0) − Y (t0, n0) = 0. We focus on the 2-dimensional
plane 	0 by fixing t = t0 (see Fig. 2).

Since X − Y attains a local maximum at (t0, n0), by (2.18) there must hold

∂

∂n
Y (t0, n0) < 0
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Fig. 2 Graphs of X(t0, ·) and
Y(t0, ·)

t=t0

0X(t  ,  ).
0Y(t  ,  ).

0 0(t  , n  )

n

t

x

n0

By C1 continuity, there exists a neighborhood �1 of (t0, n0) such that

∂

∂n
Y (t, n) < 0 ∀(t, n) ∈ �1

Then, we may define C1 function M(t, x) such that n = M(t0, ·) is the inverse
of x = Y (t0, ·) in �1 ∩ 	0. In addition, N − M attains a local maximum at
(t0, X(t0, n0)). We use the fact that N(t, x) is a viscosity solution and apply (2.14)
to get

Mt(t, x) ≤ f (−Mx(t, x)) (2.19)

Differentiating identity Y (t, M(t, x)) = x w.r.t. t , and using (2.19), we deduce

0 = Yt +Yn Mt ≥ Yt +Yn f (−Mx) = Yt +Yn f

(
− 1

Yn

)
= Yt −ψ(Yn) (2.20)

Here we use the fact that M(t, ·), Y (t, ·) are both C1 and inverse of each other,

d

dn
{n = M(t, Y (t, n)} =⇒ 1 = Mx · Yn

Since Y is arbitrary, (2.20) implies that X(t, n) is a subsolution. The case for
supersolution is completely similar.

Remark 2.5 Similar proof can be used to show the reverse: given a viscosity solution
X(·, ·) to (2.17), then N(t, ·) obtained via inverting X(t, ·) provides a viscosity
solution to (2.16).

Theorem 2.4 establishes equivalence of Hamilton Jacobi equations in the two coor-
dinate systems, in the sense of viscosity solution. We proceed in the next section
to explore its applications to traffic data fusion and state estimation. This requires
a solution method that is capable of incorporating mobile and fixed data with large
quantity and high dimensions. The class of viscosity solutions, despite their math-
ematical rigor, suffer from existence problems in the presence of multiple value
conditions (initial, boundary and internal boundary conditions). Thus, we turn to
a more general solution class known as the viability solutions developed in Aubin
(2009), Aubin et al. (2008), and Claudel and Bayen (2010a).
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3 Numerical Algorithm and Value Conditions

In this section, we focus on numerical solution to the Hamilton-Jacobi equation

∂tX(t, n) − ψ (−∂nX(t, n)) = 0 (3.21)

given initial/intermediate condition, boundary condition and internal boundary con-
ditions, to be precisely defined below. One question arises as how to define a proper
solution to the problem when the viscosity solution satisfying (3.21) do not nec-
essarily satisfy the numerous value conditions. The viability theory (Aubin 2009;
Aubin et al. 2008) provides appropriate tools to answer this question, by construct-
ing a semi-analytical solution to the problem using the Lax-Hopf formula (Claudel
and Bayen 2010a, b). The resulting solution is the lower-semicontinuous Barron
Jensen/Frankowska solution (Barron and Jensen 1990; Frankowska 1993), which
will be discussed in Section 3.1. For practical reasons, we only discuss the applica-
tion of viability theory to Hamilton-Jacobi Eq. (3.21), while referring the readers to
Aubin (2009) for more background on viability theory. Section 3.2 defines the value
conditions and interprets their meanings in relation to the two coordinate systems.

3.1 Viability Episolution to the Hamilton-Jacobi Equation (3.21)

This section presents the viability episolution (Claudel and Bayen 2010a) and its
solution method known as the generalized Lax-Hopf formula. We first define the
domain of Eq. (3.21):

(t, n) ∈ [0, T ] × [N1, N2]

for some T > 0; N1, N2 represent upstream boundary and downstream boundary
of the Lagrangian domain. In the following definition, we define the value condition
for (3.21), which is a generalization of initial condition and boundary condition, and
conditions prescribed inside the domain.

Definition 3.1 A value condition C(·, ·) is a lower-semicontinuous function from a
subset � of [0, T ] × [N1, N2] to R

The value condition may be extended to the whole domain by assigning C(t, n) =
+∞ whenever (t, n) /∈ �. This convention enables us to compare and manipulate
value conditions with different domains. We introduce the concave transformation of
Hamiltonian ψ(·):

ψ∗(u)
.= sup

s∈[1/ρmax,+∞)

{ψ(s) − u s}

The following generalized Lax-Hopf formula provides semi-analytical viability
episolution (Aubin et al. 2008; Claudel and Bayen 2010a).
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Theorem 3.2 The viability episolution to (3.21) associated with value condition
C(·, ·) is characterized by the Lax-Hopf formula

XC(t, n) = inf
(u, T )∈Dom(ψ∗)×R+

(
C(t − T , x + T u) + T ψ∗(u)

)
(3.22)

Proof See Claudel and Bayen (2010a)

For a solution of the Hamilton-Jacobi equation, we indicate its dependence on the
value condition C by a subscript. Equation (3.22) implies an important inf-morphism
property (Aubin et al. 2008; Claudel and Bayen 2010a)

Proposition 3.3 (inf-morphism property) Let C(·, ·) be the minimum of finitely
many value conditions,

C(t, n)
.= min

i=1,...,m
Ci (t, n) ∀ (t, n) ∈ [0, T ] × [N1, N2]

Then
XC(t, n) = min

i=1,...,m
XCi

(t, n) (3.23)

This property allows the PDE to incorporate an arbitrary number of value con-
ditions; it also decomposes a complex problem involving multiple value conditions
into smaller subproblems, each with a single value condition.

3.2 Value Conditions for Continuous Solutions

The value conditions described in the previous section are mathematical represen-
tations of real traffic measurements; according to the source of data, they can be
categorized as Eulerian sensing and Lagrangian sensing. The former refers to quan-
tities measured with fixed location such as loop detector and video camera, the latter
are obtained from on-board devices with continuous positioning capabilities. It is
demonstrated in Claudel and Bayen (2010a, b) that the Eulerian based Hamilton-
Jacobi equation is capable of fusing both Eulerian and Lagrangian data. This section
shows that the same holds for Lagrangian-based equation.

We consider the continuous version of the value conditions associated with the
Hamilton-Jacobi equations.

∂tM(t, x) − f (−∂xM(t, x)) = 0 (Eulerian based) (3.24)

∂tX(t, n) − ψ (−∂nX(t, n)) = 0 (Lagrangian based) (3.25)

To illustrate the connection between value conditions in the two coordinate systems,
we make a few assumptions on the value condition C.
(A1) The domain of C is a continuous curve parametrized by τ ∈ [τmin, τmax]:

Dom(C) ⊂ [0, T ] × [N1, N2] (respectively [0, T ] × [X1, X2])
Dom(C) = (t (τ ), n(τ )) (respectively (t (τ ), x(τ )))

τ ∈ [τmin, τmax]
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(A2) C (t (·), n(·)) is a continuous function on [τmin, τmax].
Given a continuous value condition C for (3.24), whose domain is a subset of the

x − t plane, question arises as how to fuse this into the Lagrangian based equation.
Intuitively, one needs to switch the domain and range of C before applying it to (3.25).
The next proposition shows that this is indeed the case.

Proposition 3.4 (Sufficient condition for equivalence of value conditions)
Let CE (t (τ ), x(τ )) and CL(t (τ ), n(τ )), τ ∈ [τmin, τmax] be two value conditions

for (3.24) and (3.25), respectively. Then the solutions to (3.24) and (3.25) satisfying
each value condition are equivalent if

n(τ) = CE (t (τ ), x(τ )) , x(τ ) = CL (t (τ ), n(τ ))

Proof Let NCE (t, x) be the solution to (3.24) satisfying condition CE , let XCL(t, n)

be the solution to (3.25) satisfying condition CL. For each t , sinceNCE (t, ·) is strictly
increasing, we denote its inverse by N−1

CE (t, ·). Then by Theorem 2.4, N−1
CE (·, ·) is a

valid solution to the HJ Eq. (3.25).
On the other hand, for every τ ∈ [τmin, τmax],

N−1
CE (t (τ ), n(τ ))=N−1

CE

(
t (τ ),CE(t (τ ), x(τ ))

)
=N−1

CE

(
t (τ ), NCE (t (τ ), x(τ ))

) =x(τ)

(3.26)
Equation (3.26) implies that N−1

CE (·, ·) satisfies the value condition CL (t (τ ), n(τ ))

and thus is the unique solution to (3.25) associated with value condition CL. We
conclude N−1

CE (t, n) = XCL(t, n).

Example 1 Consider an Eulerian sensor (such as a loop detector) that counts the
passing vehicles at location x0 during time interval [t1, t2]. Suppose the domain and
measurement of the value condition CE provided by this sensor are shown in Figs. 3
and 4, respectively. LetNCE (t, x) be the viability solution. We define value condition
CL with domain depicted in Fig. 4 and value in Fig. 3; applying it to the Lagrangian
based equation yields equivalent solution to NCE .

This section addresses two important aspects of the Lagrangian based PDE:
numerical method and value conditions. It is seen from Proposition 3.4 that value
conditions in either coordinate system can be easily integrated into the equation of
the other. In the next section, we articulate the piecewise affine value conditions and
compute the analytical solution of Eq. (3.25) with these conditions.

4 Solution with Piecewise Affine (PWA) Value Conditions

In this section we apply the Lax-Hopf formula (3.22) to obtain closed form solution.
We assume piecewise affine (PWA) initial, boundary and internal boundary condi-
tions for the Hamilton-Jacobi Eq. (2.11), which is equivalent to requiring piecewise
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Fig. 3 Domain of CE
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constant spacing and velocity values. This assumption enables us to construct
closed-form solutions. Due to the fact that any function with certain regularity (e.g.
piecewise continuous) can be well approximated using linear spline functions, the
PWA assumption is not restrictive in application.

It has been observed in Leclercq et al. (2007) and Yuan et al. (2011) that the
Lagrangian based conservation law (2.12) has some numerical advantages over the
Eulerian based equation since the flux function ψ(·) is monotonic, and as a result
the Godunov finite difference method reduces to a simple upwind scheme. In this
section we have similar observations by comparing the viability solutions in both
coordinates: we are able to unify the upstream/downstream and internal boundary
conditions into one type of condition and solve for it using one single formula.

Section 4.1 explicitly defines piecewise affine initial/intermediate, upstream/
downstream and internal boundary conditions; in Section 4.2, we present explicit
formula for viability episolution with a simple flux function.

4.1 Piecewise Affine Value Conditions

We start with articulating the simple piecewise affine value conditions, including ini-
tial (intermediate), upstream, downstream and internal conditions. These are building
blocks of more complicated PWA value conditions.

Fig. 4 Measurement of CE
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Definition 4.1 (PWA initial/intermediate condition). Set t = t0 ≥ 0, given
real numbers si ≥ 0, ni, i ∈ {1, . . . , mini}, the j th affine component of ini-
tial/intermediate condition is

Cini(t0, n) = − sj n + dj , n ∈ [nj , nj+1] (4.27)

To ensure continuity, we require

dj = sj nj −
j−1∑
l=1

(nl+1 − nl), j = 2, . . . , mini

Definition 4.2 (PWA upstream boundary condition). Fix n = N1, given real num-
bers vi ≥ 0, t i , i ∈ {1, . . . , mup}, the j th affine component of upstream boundary
condition is defined as

Cj
up(t, N1) = vj t + bj , t ∈ [tj , tj+1] (4.28)

To ensure continuity of upstream boundary condition, we set

bj = − vj tj +
j−1∑
l=1

(t l+1 − t l)vl, j = 2, . . . , mup

Definition 4.3 (PWA downstream boundary condition). Fix n = N2, given real
numbers vi ≥ 0, ti , i ∈ {1, . . . , mdown}, the j th affine component of downstream
boundary condition is defined as

Cj
down(t, n) = vj t + bj , (t, n) ∈ [tj , tj+1] × {N2} (4.29)

where

bj = − vj tj +
j−1∑
l=1

(tl+1 − tl)vl, j = 1, . . . , mdown

Definition 4.4 (Affine internal boundary condition). Given real numbers α, β,
tmin, tmax, nmin, nmax, and r ≥ 0, the affine internal boundary condition is defined as

Cint (t, n) = β + α (t − tmin) t ∈ [tmin, tmax], n = nmin + r(t − tmin) (4.30)

Recall that the domain of our consideration is [0, T ] × [N1, N2], thus the
upstream/downstream boundary conditions refer to (part of) the trajectories of the
first and last car within our scope.

4.2 Explicit Formulae for Viability Episolutions

In the presence of piecewise affine (PWA) data, the solution of Lagrangian Eq. (3.25)
with any continuous and concave Hamiltonian can be computed explicitly using
Lax-Hopf formula (3.22), as in Claudel and Bayen (2010a, b). We are going to, in
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this article, derive formulae with a simple Hamiltonian ψ(s) corresponding to the
triangular fundamental diagram:

f (ρ) =
{

vmax ρ ρ ∈ [0, ρ∗]
vb(ρmax − ρ) ρ ∈ (ρ∗, ρmax]

where vmax > 0 and vb > 0 denote the forward and backward kinematic wave
speeds, respectively; vmax also represents the maximum vehicle speed. ρ∗ and ρmax
denote, respectively, the critical and maximum densities. Following these notations,
we define smin

.= 1/ρmax, s∗ .= 1/ρ∗, and

ψ(s) =
{

k(s − smin) s ∈ [smin, s∗]
vmax s ∈ (s∗, +∞)

(4.31)

where k
.= vb · ρmax, which is immediately derived from the relationship between

ψ(·) and the triangular fundamental diagram f (·), as shown in Fig. 1. Moreover, the
concave conjugate of ψ reduces to

ψ∗(u) = s∗ (k − u) − ksmin = s∗ (k − u) − vb u ∈ [0, k] (4.32)

Proposition 4.5 With the affine value conditions defined in (4.27)–(4.30), and
assuming a Hamiltonian (4.31), the solutions to the Lagrangian Hamilton-Jacobi
Eq. (3.25) can be explicitly expressed as

1. PWA Initial/intermediate value problem
if sj ≤ s∗,

X
j
ini(t, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−sj n + dj + (t − t0)(ksj − vb),

nj + k(t − t0) ≤ n ≤ nj+1 + k(t − t0);

−sj nj + dj + (t − t0)vmax − s∗ (n − nj ),

0 ≤ n − nj ≤ k(t − t0).

(4.33)

if sj > s∗,

X
j
ini(t, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−sj nj+1 + dj + (t − t0)vmax − s∗ (n − nj+1),

0 ≤ n − nj+1 ≤ k(t − t0);

−sj n + dj + vmax(t − t0),

nj ≤ n ≤ nj+1.

(4.34)

2. Upstream boundary value problem

X
j
up(t, n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vj tj+1 + bj + vmax(t − tj+1) − s∗(n − N1),

0 ≤ n − N1 ≤ k(t − tj+1);

vj t + bj − (n − N1)
vj + vb

k
,

max{0, k(t − tj+1)} ≤ n − N1 ≤ k(t − tj ).

(4.35)
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3. Downstream boundary value problem

X
j
down(t, x) = vj tj+1 + bj + (t − tj+1) vmax, (t, x) ∈ [tj+1, +∞) × {N2}

(4.36)
4. Internal boundary value problem

Xint (t, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β + α(t − tmin) + (α + vb)
n − nmin − r(t − tmin)

r − k
r (t − tmin) ≤ n − nmin ≤ k(t − tmin) and
k(t − tmax) < n − nmax;

β + n − nmin

r
α + vmax

(
t − tmin − n − nmin

r

)

0 ≤ n − nmin < r(t − tmin) and n ≤ nmax;

β + α (tmax − tmin) + (t − tmax)vmax − s∗ (n − nmax),

0 ≤ n − nmax ≤ k(t − tmax).

(4.37)

Remark 4.6 (4.37) is well defined even for cases k = r and r = 0.

Proof Apply the Lax formula to the piecewise conditions (4.27)–(4.30) and ψ∗,
verifying (4.33)–(4.37) are straightforward.

It turns out that the formulae for upstream, downstream and internal bound-
ary conditions (4.35)–(4.37) can be unified into one. In other words, the upstream
and downstream conditions can be treated as spacial cases of internal boundary
conditions. Indeed, since the wave speed in the Lagrangian equation is always non-
negative, the value conditions only influence the region with larger n; see Fig. 5 for
an example. This coincides with the observation that traffic conditions experienced
by some vehicles cannot affect vehicles in front of them (with smaller n).

Proposition 4.7 Each j -th component of (4.28) and (4.29) can be rewritten as (4.30)
with r = 0, nmax = N1 and r = 0, nmin = N2, respectively. Furthermore, with this
specification, (4.35) and (4.36) coincide with (4.37).

Proof To verify the equivalence between (4.35), (4.36) and (4.37), notice that the
second part of (4.37) is infeasible for s = 0, and the rest is directly checked.

We have so far expressed the solution for each type of condition in Proposition
4.5. To compute the solution taking into account contributions of all value conditions,
we invoke the inf-morphism property in Proposition 3.3 and take the minimum over
all solutions (4.33), (4.34) and (4.37).

The numerical performance of the aforementioned algorithm is enhanced in two
ways. First, each solution (4.33), (4.34) and (4.37) is expressed explicitly and free of
spatial discretization; second, the algorithm is highly parallelizable: the full problem
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Fig. 5 Left: range of influence of an internal boundary condition (black line). Regions represented in
(4.37) can be seen clearly. Value of this condition cannot propagate backward to the region n < 10. Right:
3d demonstration of the solution to the internal boundary value problem

can be decomposed into sub-problems involving simple value conditions, and each
sub-task is independent of each other.

In summary, we have established the LWR model in transformed coordinates and
justified the new Hamilton-Jacobi equation; both Eulerian sensing and Lagrangian
sensing have been integrated into the Lagrangian based equation, whose solution is
solved in closed form in conjunction with various value conditions. As an application
of the model and solution method, we will conduct a numerical study of highway
traffic estimation in Section 5.

5 Numerical Study

5.1 The Mobile Century Field Experiment

On February 8, 2008, an experiment in traffic monitoring, nicknamed the Mobile
Century, was launched between 9:30 am to 6:30 pm on freeway I-880 near Union
City in the San Francisco Bay Area, California. This experiment involved 100 vehi-
cles carrying GPS-enabled Nokia N95 phones, which repeatedly drove loops of 6-10
miles in length continuously for 8 hours.

Carried by each probing vehicle, the smart phone was storing its position and
velocity every 3-4 seconds, which allowed the trajectory of the equipped vehicle to
be computed. In addition to the cell phone GPS data, inductive loop detector data
obtained through the Freeway Performance Measurement System (PeMs) database
are available. The readers are referred to Herrera et al. (2009) for more details of
experimental design and data description.

5.2 Numerical Implementation

The freeway segment of interest is a 3.45 mile stretch of I-880 North Bound, between
PeMS station 400536 (23.36 postmile), to postmile 26.82. There are two sources of
data, the cumulative vehicle count, obtained via loop detector station 400536, which
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counted passing vehicles every 30 s, and on-board smart phones recording vehicle
velocity and trajectory every 3-4 s. The time period of our measurement is 1 hour
from 11:30 am to 12:30 pm, which involves approximately 5000 vehicles. We take
into account 97 mobile data samples, as well as vehicle count obtained from Station
400536 in order to label our probing vehicles.

We consider the freeway segment as a homogeneous road, and seek a unique fun-
damental diagram f (·) for the density-flow relation or ψ(·) for the spacing-velocity
relation. We prefer to utilize data collected in the experiment for the best functional
fitting. Unfortunately, we do not have access to either the maximal density ρmax, or
an appropriate way to measure it directly. Instead, we take advantage of the relation

f (ρ) = ρ v(ρ) (5.38)

and collect flow as well as velocity data. More precisely, for appropriate time instance
t0, we estimate the flow through Station 400536 using a 30 s vehicle count, and record
the velocity of the probing vehicles passing the same location at t0. Then, density is
estimated as the quotient of flow and velocity. Scatter plots of 324 samples are shown
in Figs. 6 and 7.

For a triangular density-flow relationship depicted in Fig. 6, the parameters are
chosen to be

f (ρ) =
{

vmax ρ ρ ∈ [0, ρ∗]
vb (ρmax − ρ) ρ ∈ (ρ∗, ρmax] (5.39)

vmax = 31.5 m/s, vb = 3.90 m/s, ρ∗ = 0.055 veh/m, ρmax = 0.50 veh/m.

(5.40)
where vmax, vb, ρ∗, ρmax are respectively, free flow speed, backward-propagating
kinematic wave speed, critical density and maximal (jam) density. For the corre-
sponding spacing-velocity relationship, the parameters are chosen to be

ψ(s) =
{

k(s − smin) s ∈ [smin, s∗]
vmax s ∈ (s∗, +∞)

(5.41)

k = 1.95 veh/s, smin = 2.00 m/veh, s∗ = 18.15 m/veh, vmax = 31.5 m/s.
(5.42)

where smin and s∗ are minimum and critical spacings, respectively.

5.3 Numerical Results

As an application of the Hamilton-Jacobi equation in Lagrangian coordinates and
viability episolution, we will reconstruct the traffic state between postmile 23.36
and 26.82, for a time period of one hour, using only Lagrangian sensing. Figure 8
shows 97 mobile data we utilize for this numerical experiment. For the viability solu-
tion to the Hamilton-Jacobi Eq. (3.21), we use internal boundary conditions based on
trajectories of 44 probing vehicles, which account for 0.88% of the total monitored
traffic volume. Notice that the on-board sensors recorded vehicle position every 3-4
seconds, this implies approximately 100-300 sample points per vehicle, among which
we only utilize 10 sample points, this is for numerical simplicity and also shows
robustness of the algorithm.
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One task of Lagrangian traffic estimation is the construction of vehicle trajectories.
Given the solution X(·, ·), for a car labeled n0, the estimated trajectory is sim-
ply X(·, n0). Two examples, including both estimated trajectory and measurement
obtained from mobile sensors, are shown in Figs. 9 and 10.

A partial solution based on 8 internal boundary conditions obtained via mobile
sensors are shown in Fig. 11. It should be noted that the viability solution only
satisfies inequality constraints, i.e.

XC(t, n) ≤ C(t, n), (t, n) ∈ Dom(C)

In case of strict inequality, the value conditions and the model are said to be incom-
patible. The incompatibility is due to either measurement error or modeling error,
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Fig. 8 Plots of probing vehicle trajectories used to cover the freeway segment during the study period

this gives rise to the issues of data assimilation and reconciliation, in which modeling
parameters, or sensing data, are tuned to best fit each other. The readers are referred
to Claudel and Bayen (2011) for full details.
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Fig. 9 Estimated and true trajectory of vehicle #8685



Lagrangian-based Hydrodynamic Model for Traffic Data Fusion... 1091

12:16:40 12:18:20 12:20:00 12:21:40 12:23:20 12:25:00

23.61

23.92

24.23

24.54

24.85

25.17

25.48

25.79

26.10

26.41

Local Time

Po
st

M
ile

 

 

Reconstructed trajectory

Sensing data
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Fig. 11 Solution of Hamilton-Jacobi Eq. (3.21) with 8 internal boundary conditions, solid lines are vehicle
trajectories recorded by mobile sensors
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Fig. 12 Vehicle velocity (m/s) estimation based on (5.43)

Based on the solution X(t, n), we can further estimate vehicle-based velocity, via

∂tX(t, n) = ψ (s(t, n)) = v(t, n) (5.43)

Figure 12 shows the velocity field involving vehicle labels ranging from 7650−7950.
From this picture, we observe time-varying traffic conditions from free flow to con-
gestion then back to uncongested traffic. This phenomenon is also reflected in Fig. 8,
where all vehicles seemed to experience a slow down whithin postmile 25.5 − 26.3.
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Fig. 13 Summary of errors for travel time estimation
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In order to examine the accuracy of travel time estimation, we compare the actual
travel times of 97 probing vehicles with the estimated travel times obtained from the
reconstructed trajectories. The results are summarized in Fig. 13. Note that, given the
travel times through the study area ranging from 5-10 min, the errors shown in this
figure are considered minor, which demonstrates the effectiveness of the proposed
model in travel time estimation.

6 Conclusion

This article presents the Lagrangian coordinate system in the hydrodynamic traf-
fic model, and studies the Hamilton-Jacobi equation describing traffic quantities
associated with moving vehicles. A numerical algorithm capable of fusing high
dimensional mobile data is applied to highway traffic flows and yields promising
results in terms of traffic reconstruction and travel time estimation.

Compared to Eulerian based LWR model, the Lagrangian approach models traffic
flows in a moving reference frame, and the corresponding PDE provides knowledge
of vehicle based quantities such as trajectory and speed. We have also demonstrated
a few numerical advantages in the Lagrangian-based Hamilton-Jacobi equation due
to monotonic hamiltonian.

A well-developed theory on Lagrangian-based traffic models will lead to more
mature modeling and computational methodologies as well as more advanced appli-
cations to the cyber-physical traffic systems such as car-to-car networking and mobile
internet. For future work, more refined models need to be developed, taking into
account the modeling uncertainty such as vehicle inhomogeneity and car overtaking.
Extension to network will be of great interest, although this is mathematically more
challenging.
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