
Combinatorial Bandits for Incentivizing Agents with Dynamic Preferences

Tanner Fiez∗, Shreyas Sekar∗, Liyuan Zheng, and Lillian J. Ratliff

Electrical Engineering Department, University of Washington

Abstract

The design of personalized incentives or rec-

ommendations to improve user engagement

is gaining prominence as digital platform

providers continually emerge. We propose

a multi-armed bandit framework for match-

ing incentives to users, whose preferences are

unknown a priori and evolving dynamically

in time, in a resource constrained environ-

ment. We design an algorithm that com-

bines ideas from three distinct domains: (i)

a greedy matching paradigm, (ii) the upper

confidence bound algorithm (UCB) for ban-

dits, and (iii) mixing times from the theory of

Markov chains. For this algorithm, we provide

theoretical bounds on the regret and demon-

strate its performance via both synthetic and

realistic (matching supply and demand in a

bike-sharing platform) examples.

1 INTRODUCTION

The theory of multi-armed bandits plays a key role in

enabling personalization in the digital economy (Scott,

2015). Algorithms from this domain have successfully

been deployed in a diverse array of applications includ-

ing online advertising (Lu et al., 2010; Mehta and Mir-

rokni, 2011), crowdsourcing (Tran-Thanh et al., 2014),

content recommendation (Li et al., 2010), and selecting

user-specific incentives (Ghosh and Hummel, 2013; Jain

et al., 2014) (e.g., a retailer offering discounts). On the

theoretical side, this has been complemented by a litany

of near-optimal regret bounds for multi-armed bandit

settings with rich combinatorial structures and complex

agent behavior models (Chen et al., 2016; Gai et al.,

2011; Kveton et al., 2015; Sani et al., 2012). At a high

∗Authors contributed equally.

level, the broad appeal of bandit approaches for allocat-

ing resources to human agents stems from its focus on

balancing exploration with exploitation, thereby allow-

ing a decision-maker to efficiently identify users’ prefer-

ences without sacrificing short-term rewards.

Implicit in most of these works is the notion that in large-

scale environments, a designer can simultaneously allo-

cate resources to multiple users by running independent

bandit instances. In reality, such independent decompo-

sitions do not make sense in applications where resources

are subject to physical or monetary constraints. In simple

terms, matching an agent to a resource immediately con-

strains the set of resources to which another agent can be

matched. Such supply constraints may arise even when

dealing with intangible products. For instance, social

media platforms (e.g., Quora) seek to maximize user par-

ticipation by offering incentives in the form of increased

recognition—e.g., featured posts or badges (Immorlica

et al., 2015). Of course, there are supply constraints on

the number of posts or users that can be featured at a

given time. As a consequence of these coupling con-

straints, much of the existing work on multi-armed ban-

dits does not extend naturally to multi-agent economies.

Yet, another important aspect not addressed by the litera-

ture concerns human behavior. Specifically, users’ pref-

erences over the various resources may be dynamic—

i.e. evolve in time as they are repeatedly exposed to the

available options. The problem faced by a designer in

such a dynamic environment is compounded by the lack

of information regarding each user’s current state or be-

liefs, as well as how these beliefs influence their prefer-

ences and their evolution in time.

Bearing in mind these limitations, we study a multi-

armed bandit problem for matching multiple agents to a

finite set of incentives1: each incentive belongs to a cate-

1We use the term incentive broadly to refer to any resource
or action available to the agent. That is, incentives are not lim-
ited to monetary or financial mechanisms.

gory and global capacity constraints control the number

of incentives that can be chosen from each category. In

our model, each agent has a preference profile or a type

that determines its rewards for being matched to differ-

ent incentives. The agent’s type evolves according to a

Markov decision process (MDP), and therefore, the re-

wards vary over time in a correlated fashion.

Our work is primarily motivated by the problem faced

by a technological platform that seeks to not just max-

imize user engagement but also to encourage users to

make changes in their status quo decision-making pro-

cess by offering incentives. For concreteness, consider

a bike-sharing service—an application we explore in our

simulations—that seeks to identify optimal incentives for

each user from a finite bundle of options—e.g., varying

discount levels, free future rides, bulk ride offers, etc.

Users’ preferences over the incentives may evolve with

time depending on their current type, which in turn de-

pends on their previous experience with the incentives.

In addition to their marketing benefits, such incentives

can serve as a powerful instrument for nudging users to

park their bikes at alternative locations—this can lead to

spatially balanced supply and consequently, lower rejec-

tion rates (Singla et al., 2015).

1.1 CONTRIBUTIONS AND ORGANIZATION

Our objective is to design a multi-armed bandit algorithm

that repeatedly matches agents to incentives in order to

minimize the cumulative regret over a finite time hori-

zon. Here, regret is defined as the difference in the re-

ward obtained by a problem specific benchmark strategy

and the proposed algorithm (see Definition 1). A prelim-

inary impediment in achieving this goal is the fact that

the capacitated matching problem studied in this work is

NP-Hard even in the offline case. The major challenge

therefore is whether we can achieve sub-linear (in the

length of the horizon) regret in the more general match-

ing environment without any information on the users’

underlying beliefs or how they evolve?

Following preliminaries (Section 2), we introduce

a simple greedy algorithm that provides a 1/3–

approximation to the optimal offline matching so-

lution (Section 3). Leveraging this first contribu-

tion, the central result in this paper (Section 4) is

a new multi-armed bandit algorithm—MatchGreedy-

EpochUCB (MG-EUCB)—for capacitated matching

problems with time-evolving rewards. Our algorithm ob-

tains logarithmic (and hence sub-linear) regret even for

this more general bandit problem. The proposed ap-

proach combines ideas from three distinct domains: (i)

the 1/3–rd approximate greedy matching algorithm, (ii)

the traditional UCB algorithm (Auer et al., 2002), and

(iii) mixing times from the theory of Markov chains.

We validate our theoretical results (Section 5) by per-

forming simulations on both synthetic and realistic in-

stances derived using data obtained from a Boston-based

bike-sharing service Hubway (hub). We compare our

algorithm to existing UCB-based approaches and show

that the proposed method enjoys favorable convergence

rates, computational efficiency on large data sets, and

does not get stuck at sub-optimal matching solutions.

1.2 BACKGROUND AND RELATED WORK

Two distinct features separate our model from the ma-

jority of work on the multi-armed bandit problem: (i)

our focus on a capacitated matching problem with finite

supply (every user cannot be matched to their optimal in-

centive), and (ii) the rewards associated with each agent

evolve in a correlated fashion but the designer is unaware

of each agent’s current state. Our work is closest to (Gai

et al., 2011) which considers a matching problem with

Markovian rewards. However, in their model the rewards

associated with each edge evolve independently of the

other edges; as we show via a simple example in Sec-

tion 2.2, the correlated nature of rewards in our instance

can lead to additional challenges and convergence to sub-

optimal matchings if we employ a traditional approach as

in (Gai et al., 2011).

Our work also bears conceptual similarities to the rich

literature on combinatorial bandits (Badanidiyuru et al.,

2013; Chen et al., 2016; Kveton et al., 2014, 2015; Wen

et al., 2015). However, unlike our work, these papers

consider a model where the distribution of the rewards

is static in time. For this reason, efficient learning al-

gorithms leveraging oracles to solve generic constrained

combinatorial optimization problems developed for the

combinatorial semi-bandit setting (Chen et al., 2016;

Kveton et al., 2015) face similar limitations in our model

as the approach of (Gai et al., 2011). Moreover, the re-

wards in our problem may not have a linear structure so

the approach of (Wen et al., 2015) is not applicable.

The novelty in this work is not the combinatorial aspect

but the interplay between combinatorial bandits and the

edge rewards evolving according to an MDP. When an

arm is selected by an oracle, the reward of every edge

in the graph evolves—how it evolves depends on which

arm is chosen. If the change occurs in a sub-optimal di-

rection, this can affect future rewards. Indeed, the dif-

ficulties in our proofs do not stem from applying an or-

acle for combinatorial optimization, but from bounding

the secondary regret that arises when rewards evolve in a

sub-optimal way.

Finally, there is a somewhat parallel body of work

on single-agent reinforcement learning techniques (Azar

et al., 2013; Jaksch et al., 2010; Mazumdar et al., 2017;

Ratliff et al., 2018) and expert selection where the re-

wards on the arms evolve in a correlated fashion as in

our work. In addition to our focus on multi-agent match-

ings, we remark that many of these works assume that the

designer is aware (at least partially) of the agent’s exact

state and thus, can eventually infer the nature of the evo-

lution. Consequently, a major contribution of this work is

the extension of UCB-based approaches to solve MDPs

with a fully unobserved state and rewards associated with

each edge that evolve in a correlated fashion.

2 PRELIMINARIES

A designer faces the problem of matching m agents to in-

centives (more generally jobs, goods, content, etc.) with-

out violating certain capacity constraints. We model this

setting by means of a bipartite graph (A, I,P) where A
is the set of agents, I is the set of incentives to which the

agents can be matched, and P = A × I is the set of all

pairings between agents and incentives. We sometimes

refer to P as the set of arms. In this regard, a matching is

a set M ⊆ P such that every agent a ∈ A and incentive

i ∈ I is present in at most one edge belonging to M .

Each agent a ∈ A is associated with a type or state θa ∈
Θa, which influences the reward received by this agent

when matched with some incentive i ∈ I. When agent a
is matched to incentive i, its type evolves according to a

Markov process with transition probability kernel Pa,i :
Θa × Θa → [0, 1]. Each pairing or edge of the bipartite

graph is associated with some reward that depends on the

agent–incentive pair, (a, i), as well as the type θa.

The designer’s policy (algorithm) is to compute a match-

ing repeatedly over a finite time horizon in order to max-

imize the expected aggregate reward. In this work, we

restrict our attention to a specific type of multi-armed

bandit algorithm that we refer to as an epoch mixing pol-

icy. Formally, the execution of such a policy α is divided

into a finite number of time indices [n] = {1, 2, . . . , n},
where n is the length of the time horizon. In each time

index k ∈ [n], the policy selects a matching α(k) and

repeatedly ‘plays’ this matching for τk > 0 iterations

within this time index. We refer to the set of iterations

within a time index collectively as an epoch. That is,

within the k–th epoch, for each edge (a, i) ∈ α(k), agent

a is matched to incentive i and the agent’s type is allowed

to evolve for τk iterations. In short, an epoch mixing

policy proceeds in two time scales—each selection of a

matching corresponds to an epoch comprising of τk it-

erations for k ∈ [n], and there are a total of n epochs.

It is worth noting that an epoch-based policy was used

in the UCB2 algorithm (Auer et al., 2002), albeit with

stationary rewards.

Agents’ types evolve based on the incentives to which

they are matched. Suppose that β
(k)
a denotes the type

distribution on Θa at epoch k and i ∈ I is the incentive

to which agent a is matched by α (i.e., (a, i) ∈ α(k)).

Then, β
(k+1)
a (θa) =

∑

θ′∈Θa
P τk
a,i(θ

′, θa)β
(k)
a (θ′).

For epoch k, the rewards are averaged over the τk itera-

tions in that epoch. Let rθa,i denote the reward received

by agent a when it is matched to incentive i given type

θ ∈ Θa. We assume that rθa,i ∈ [0, 1] and is drawn from a

distribution Tr(a, i, θ). The reward distributions for dif-

ferent edges and states in Θa are assumed to be indepen-

dent of each other. Suppose that an algorithm α selects

the edge (a, i) for τ iterations within an epoch. The ob-

served reward at the end of this epoch is taken to be the

time-averaged reward over the epoch. Specifically, sup-

pose that the k–th epoch proceeds for τk iterations be-

ginning with time tk—i.e. one plus the total iterations

completed before this—and ending at time tk+1 − 1 =
tk + τk − 1, and that θa(t) denotes agent a’s state at

time t ∈ [tk, tk+1 − 1]. Then, the time-averaged reward

in the epoch is given by r
θa(tk)
a,i = 1

τk

∑tk+1−1
t=tk

r
θa(t)
a,i .

We use the state as a superscript to denote dependence

of the reward on the agent’s type at the beginning of the

epoch. Finally, the total (time-averaged) reward due to a

matching α(k) at the end of an epoch can be written as
∑

(a,i)∈α(k) r
θa(tk)
a,i .

We assume that the Markov chain corresponding to each

edge (a, i) ∈ P is aperiodic and irreducible (Levin et al.,

2009). We denote the stationary or steady-state distribu-

tion for this edge as πa,i : Θa → [0, 1]. Hence, we define

the expected reward for edge (a, i), given its stationary

distribution, to be µa,i = E
[
∑

θ∈Θa
rθa,iπa,i(θ)

]

where

the expectation is with respect to the distribution on the

reward given θ.

2.1 CAPACITATED MATCHING

Given P = A × I, the designer’s goal at the beginning

of each epoch is to select a matching M ⊆ P—i.e. a

collection of edges—that satisfies some cardinality con-

straints. We partition the edges in P into a mutually ex-

clusive set of classes allowing for edges possessing iden-

tical characteristics to be grouped together. In the bike-

sharing example, the various classes could denote types

of incentives—e.g., edges that match agents to discounts,

free-rides, etc. Suppose that C = {ξ1, ξ2, . . . , ξq} de-

notes a partitioning of the edge set such that (i) ξj ⊆ P
for all 1 ≤ j ≤ q, (ii)

⋃q
j=1 ξj = P , and (iii) ξj∩ξj′ = ∅

for all j 6= j′. We refer to each ξj as a class and for any

given edge (a, i) ∈ P , use c(a, i) to denote the class that

this edge belongs to, i.e., (a, i) ∈ c(a, i) and c(a, i) ∈ C.

Given a capacity vector b = (bξ1 , . . . , bξq) indexed on

the set of classes, we say that a matching M ⊆ P is a

feasible solution to the capacitated matching problem if:

a) for every a ∈ A (resp., i ∈ I), the matching must

contain at most one edge containing this agent (resp.,

incentive)
b) and, the total number of edges from each class ξj

contained in the matching cannot be larger than bξj .

In summary, the capacitated matching problem can be

formulated as the following integer program:

max
∑

(a,i)∈P w(a, i)x(a, i)

s.t.
∑

i∈I x(a, i) ≤ 1 ∀a ∈ A
∑

a∈A x(a, i) ≤ 1 ∀i ∈ I
∑

(a,i)∈ξj
x(a, i) ≤ bξj , ∀ξj ∈ C

x(a, i) ∈ {0, 1}, ∀(a, i) ∈ P

(P1)

We use the notation {P, C, b, (w(a, i))(a,i)∈P} for a ca-

pacitated matching problem instance. In (P1), w(a, i)
refers to the weight or the reward to be obtained from the

given edge. The term x(a, i) is an indicator on whether

the edge (a, i) is included in the solution to (P1). Clearly,

the goal is to select a maximum weight matching subject

to the constraints. In our online bandit problem, the de-

signer’s actual goal in a fixed epoch k is to maximize the

quantity
∑

(a,i)∈P r
θa(tk)
a,i x(a, i), i.e., w(a, i) = r

θa(tk)
a,i .

However, since the reward distributions and the current

user type are not known beforehand, our MG-EUCB al-

gorithm (detailed in Section 4.2) approximates this ob-

jective by setting the weights to be the average observed

reward from the edges in combination with the corre-

sponding confidence bounds.

2.2 TECHNICAL CHALLENGES

There are two key obstacles involved in extending tra-

ditional bandit approaches to our combinatorial setting

with evolving rewards, namely, cascading sub-optimality

and correlated convergence. The first phenomenon oc-

curs when an agent a is matched to a sub-optimal arm i
(incentive) because its optimal arm i∗ has already been

assigned to another agent. Such sub-optimal pairings

have the potential to cascade, e.g., when another agent

a1 who is matched to i in the optimal solution can no

longer receive this incentive and so on. Therefore, unlike

the classical bandit analysis, the selection of sub-optimal

arms cannot be directly mapped to the empirical rewards.

Correlated Convergence. As mentioned previously, in

our model, the rewards depend on the type or state of an

agent, and hence, the reward distribution on any given

edge (a, i) can vary even when the algorithm does not

select this edge. As a result, a naı̈ve application of a ban-

dit algorithm can severely under-estimate the expected

reward on each edge and eventually converge to a sub-

optimal matching. A concrete example of the poor con-

vergence effect is provided in Example 1. In Section 4.2,

we describe how our central bandit algorithm limits the

damage due to cascading while simultaneously avoiding

the correlated convergence problem.

Example 1 (Failure of Classical UCB). Consider a

problem instance with two agents A = {a1, a2}, two

incentives I = {i1, i2} and identical state space i.e.,

Θa1
= Θa2

= {θ1, θ2}. The transition matrices and

deterministic rewards for the agents for being matched

to each incentive are depicted pictorially below: we as-

sume that ǫ > 0 is a sufficiently small constant.

θ1 θ2

rθ1a1,i1
= 0 rθ2a1,i1

= 1

1

ǫ
0 1− ǫ

Edge

(a1, i1)

θ1 θ2

rθ1a1,i2
= 0.5 rθ2a1,i2

= 0.5

ǫ

1
1− ǫ 0

Edge

(a1, i2)

θ1 θ2

rθ1a2,i1
= 0.5 rθ2a2,i1

= 0.5

ǫ

1
1− ǫ 0

Edge

(a2, i1)

θ1 θ21

ǫ
0 1− ǫ

Edge

(a2, i2)

rθ1a2,i2
= 0 rθ2a2,i2

= 1

Agent a1 Agent a2

Figure 1: (a) State transition diagram and reward for each edge:
note that the state is associated with the agent and not the edge.

Clearly, the optimal strategy is to repeatedly chose the

matching {(a1, i1), (a2, i2)} achieving a reward of (al-

most) two in each epoch. An implementation of tra-

ditional UCB for the matching problem—e.g., the ap-

proach in (Chen et al., 2016; Gai et al., 2011; Kveton

et al., 2015)—selects a matching based on the empirical

rewards and confidence bounds for a total of
∑n

k=1 τk
iterations, which are then divided into epochs for con-

venience. This approach converges to the sub-optimal

matching of M = {(a1, i2), (a2, i1)}. Indeed, every

time the algorithm selects this matching, both the agents’

states are reset to θ1 and when the algorithm explores

the optimum matching, the reward consistently happens

to be zero since the agents are in state θ1. Hence, the

rewards for the (edges in the) optimum matching are

grossly underestimated.

3 GREEDY OFFLINE MATCHING

In this section, we consider the capacitated matching

problem in the offline case, where the edge weights are

provided as input. The techniques developed in this sec-

tion serve as a base in order to solve the more general

online problem in the next section. More specifically, we

assume that we are given an arbitrary instance of the ca-

pacitated matching problem {P, C, b, (w(a, i))(a,i)∈P}.

Algorithm 1 Capacitated-Greedy Matching Algorithm

1: function MG((w(a, i))(a,i)∈P , b)

2: G∗ ← ∅, E′ ← P
3: while E′ 6= ∅:
4: Select (a, i) = argmax(a′,i′)∈E′ w(a′, i′)
5: if|G∗ ∩ c(a, i)| < bc(a,i) then

6: G∗ ← G∗ ∪ {(a, i)}
7: E′ ← E′ \ {(a′, i′)} ∀(a′, i′) : a′ = a or i′ = i

else

8: E′ ← E′ \ {(a, i)}
9: return G∗

10: end function

Given this instance, the designer’s objective is to

solve (P1). Surprisingly, this problem turns out to be NP-

Hard and thus cannot be optimally solved in polynomial

time (Garey and Johnson, 1979)—this marks a stark con-

trast with the classic maximum weighted matching prob-

lem, which can be solved efficiently using the Hungarian

method (Kuhn, 1955).

In view of these computational difficulties, we develop

a simple greedy approach for the capacitated matching

problem and formally prove that it results in a one-third

approximation to the optimum solution. The greedy

method studied in this work comes with a multitude of

desirable properties that render it suitable for matching

problems arising in large-scale economies. Firstly, the

greedy algorithm has a running time of O(m2 logm),
where m is the number of agents—this near-linear ex-

ecution time in the number of edges makes it ideal for

platforms comprising of a large number of agents. Sec-

ondly, since the output of the greedy algorithm depends

only on the ordering of the edge weights and is not sen-

sitive to their exact numerical value, learning approaches

tend to converge faster to the ‘optimum solution’. This

property is validated by our simulations (see Figure 2c).

Finally, the performance of the greedy algorithm in prac-

tice (e.g., see Figure 2b) appears to be much closer to the

optimum solution than the 1/3 approximation guaranteed

by Theorem 1 below.

3.1 ANALYSIS OF GREEDY ALGORITHM

The greedy matching is outlined in Algorithm 1. Given

an instance {P, C, b, (w(a, i))(a,i)∈P}, Algorithm 1

‘greedily’ selects the highest weight feasible edge in each

iteration—this step is repeated until all available edges

that are feasible are added to G∗. Our main result in this

section is that for any given instance of the capacitated

matching problem, the matching G∗ returned by Algo-

rithm 1 has a total weight that is at least 1/3–rd that of

the maximum weight matching.

Theorem 1. For any given capacitated matching prob-

lem instance {P, C, b, (w(a, i))(a,i)∈P}, let G∗ denote

the output of Algorithm 1 and M∗ be any other feasi-

ble solution to the optimization problem in (P1) includ-

ing the optimum matching. Then,
∑

(a,i)∈M∗ w(a, i) ≤
3
∑

(a,i)∈G∗ w(a, i).

The proof is based on a charging argument that takes

into account the capacity constraints and can be found

in Section B.1 of the supplementary material. At a high

level, we take each edge belonging to the benchmark M∗

and identify a corresponding edge in G∗ whose weight is

larger than that of the benchmark edge. This allows us to

charge the weight of the original edge to an edge in G∗.

During the charging process, we ensure that no more than

three edges in M∗ are charged to each edge in G∗. This

gives us an approximation factor of three.

3.2 PROPERTIES OF GREEDY MATCHINGS

We conclude this section by providing a hierarchi-

cal decomposition of the edges in P for a fixed in-

stance {P, C, b, (w(a, i))(a,i)∈P}. In Section 4.1, we

will use this property to reconcile the offline version

of the problem with the online bandit case. Let G∗ =
{g∗1 , g∗2 , . . . , g∗m} denote the matching computed by Al-

gorithm 1 for the given instance such that w(g∗1) ≥
w(g∗2) ≥ . . . ≥ w(g∗m) without loss of generality2. Next,

let G∗
j = {g∗1 , g∗2 , . . . , g∗j } for all 1 ≤ j ≤ m—i.e. the j

highest-weight edges in the greedy matching.

For each 1 ≤ j ≤ m, we define the infeasibility set HG∗

j

as the set of edges in P that when added to G∗
j violates

the feasibility constraints of (P1). Finally, we use LG∗

j to

denote the marginal infeasibility sets—i.e. LG∗

1 = HG∗

1

and

LG∗

j = HG∗

j \HG∗

j−1, ∀ 2 ≤ j ≤ m. (1)

We note that the marginal infeasibility sets denote a mu-

tually exclusive partition of the edge set minus the greedy

matching—i.e.,
⋃

1≤j≤m LG∗

j = P \ G∗. Moreover,

since the greedy matching selects its edges in the de-

creasing order of weight, for any g∗j ∈ G∗, and every

(a, i) ∈ LG∗

j , we have that w(g∗j) ≥ w(a, i).

Armed with our decomposition of the edges in P \ G∗,

we now present a crucial structural lemma. The follow-

ing lemma identifies sufficient conditions on the local

ordering of the edge weights for two different instances

under which the outputs of the greedy matching for the

instances are non-identical.

Lemma 1. Given instances {P, C, b, (w(a, i))(a,i)∈P}
and {P, C, b, (w̃(a, i))(a,i)∈P} of the capacitated match-

ing problem, let G∗ = {g∗1 , g∗2 , . . . , g∗m} and G̃ denote

2If g = (a, i), we abuse notation and let w(g) = w(a, i).

the output of Algorithm 1 for these instances, respec-

tively. Let E1, E2 be conditions described as follows:

E1 ={∃j < j′ |(w̃(g∗j) < w̃(g∗j′)) ∧ (g∗j′ ∈ G̃)}
E2 ={∃g∗j ∈ G∗, (a, i) ∈ LG∗

j |
(w̃(g∗j) < w̃(a, i)) ∧ ((a, i) ∈ G̃)}.

If G∗ 6= G̃, then at least one of E1 or E2 must be true.

Lemma 1 is fundamental in the analysis of our MG-

EUCB algorithm because it provides a method to map the

selection of each sub-optimal edge to a familiar condition

comparing empirical rewards to stationary rewards.

4 ONLINE MATCHING—BANDIT

ALGORITHM

In this section, we propose a multi-armed bandit algo-

rithm for the capacitated matching problem and analyze

its regret. For concreteness, we first highlight the in-

formation and action sets available to the designer in

the online problem. The designer is presented with a

partial instance of the matching problem without the

weights, i.e., {P, C, b} along with a fixed time horizon

of n epochs but has the ability to set the parameters

(τ1, τ2, . . . , τn), where τk is the number of iterations un-

der epoch k. The designer’s goal is to design a policy α
that selects a matching α(k) in the k–th epoch that is a

feasible solution for (P1). At the end of the k–th epoch,

the designer observes the average reward r
θa(k)
a,i for each

(a, i) ∈ α(k) but not the agent’s type. We abuse notation

and take θa(k) to be the agent’s state at the beginning

of epoch k. The designer’s objective is to minimize the

regret over the finite horizon.

The expected regret of a policy α is the difference in

the expected aggregate reward of a benchmark match-

ing and that of the matching returned by the policy,

summed over n epochs. Owing to its favorable prop-

erties (see Section 3), we use the greedy matching on

the stationary state rewards as our benchmark. Measur-

ing the regret with respect to the unknown stationary-

distribution is standard with MDPs (e.g., see (Gai et al.,

2011; Tekin and Liu, 2010, 2012)). Formally, let

G∗ denote the output of Algorithm 1 on the instance

{P, C, b, (µa,i)(a,i)∈P}—i.e., with the weights w(a, i)
equal the stationary state rewards µa,i.

Definition 1. The expected regret of a policy α with re-

spect to the greedy matching G∗ is given by

Rα(n) = n
∑

(a,i)∈G∗

µa,i −
n
∑

k=1

∑

(a,i)∈α(k)

E[r
θa(k)
a,i],

where the expectation is with respect to the reward and

the state of the agents during each epoch.

4.1 REGRET DECOMPOSITION

As is usual in this type of analysis, we start by decompos-

ing the regret in terms of the number of selections of each

sub-optimal arm (edge). We state some assumptions and

define notation before proving our generic regret decom-

position theorem. A complete list of the notation used

can be found in Section A of the supplementary mate-

rial.

1. For analytic convenience, we assume that the number

of agents and incentives is balanced and therefore,

|A| = |I| = m. WLOG, every agent is matched to

some incentive in G∗; if this is not the case, we can

add dummy incentives with zero reward.
2. Suppose that G∗ = {g∗1 , g∗2 , . . . , g∗m} such that

µg∗

1
≥ . . . ≥ µg∗

m
and let i∗(a) denote the incen-

tive that a is matched to in G∗. Let L∗
1, . . . L

∗
m be the

marginal infeasibility sets as defined in (1).
3. Suppose that τ0 ≥ 1 and τk = τ0 + ζk for some

non-negative integer ζ.

Let 1{·} be the indicator function—e.g., 1{(a, i) ∈
α(k)} is one when the edge (a, i) belongs to the match-

ing α(k), and zero otherwise. Define Tα
a,i(n) =

∑n
k=1 1{(a, i) ∈ α(k)} to be the random variable that

denotes the number of epochs in which an edge is se-

lected under an algorithm α. By relating E[Tα
a,i(n)] to

the regret Rα(n), we are able to provide bounds on the

performance of α.

By adding and subtracting
∑

(a,i)∈P E[Tα
a,i(n)]µa,i from

the equation in Definition 1, we get that

Rα(n) =
∑

(a,i)∈P E[Tα
a,i(n)](µa,i∗(a) − µa,i)

+
∑n

k=1

∑

(a,i)∈P E[1{(a, i) ∈ α(k)}
(

µa,i − r
θa(k)
a,i

)

].

To further simplify the regret, we separate the edges

in P by introducing the notion of a sub-optimal edge.

Formally, for any given a ∈ A, define Sa :=
{(a, i) | µa,i∗(a) ≥ µa,i ∀i ∈ I} and S :=

⋃

a∈A Sa.

Then, the regret bound in the above equation can be sim-

plified by ignoring the contribution of the terms in P \S .

That is, since µa,i∗(a) < µa,i for all (a, i) ∈ P \ S ,

Rα(n) ≤∑

(a,i)∈S E[Tα
a,i(n)](µa,i∗(a) − µa,i)

+
∑n

k=1

∑

(a,i)∈P E[1{(a, i) ∈ α(k)}
(

µa,i − r
θa(k)
a,i

)

].

(2)

Recall from the definition of the marginal infeasibility

sets in (1) that for any given (a, i) ∈ P \G∗, there exists

a unique edge g∗j ∈ G∗ such that (a, i) ∈ L∗
j . Define

L−1(a, i) := g∗j ∈ G∗ such that (a, i) ∈ L∗
j . Now, we

can define the reward gap for any given edge as follows:

∆a,i =







µa,i∗(a) − µa,i, if (a, i) ∈ S
µL−1(a,i) − µa,i, if (a, i) ∈ (P \G∗) \ S
µg∗

j−1
− µg∗

j
, if (a, i) = g∗j for j ≥ 2

This leads us to our main regret decomposition result

which leverages mixing times for Markov chains (Fill,

1991) along with Equation (2) in deriving regret bounds.

For an aperiodic, irreducible Markov chain Pa,i, using

the notion that it convergences to its stationary state un-

der repeated plays of a fixed action, we can prove that for

every arm (a, i), there exists a constant Ca,i > 0 such

that
∣

∣E
[

µa,i − r
θa(k)
a,i

]
∣

∣ ≤ Ca,i/τk—in fact, this result

holds for all type distributions β
(k)
a of the agent.

Proposition 1. Suppose for each (a, i) ∈ P , Pa,i is an

aperiodic, irreducible Markov chain with corresponding

constant Ca,i. Then, for a given algorithm α where τk =
τ0 + ζk for some fixed ζ > 0, we have that

Rα(n) ≤∑

(a,i)∈S Eα

[

Tα
a,i(n)

]

(∆a,i +
Ca,i

τ0
)

+m
C

∗

ζ

(

1 + log
(

ζ(n− 1)/τ0 + 1
))

.

The proof of this proposition is in Section B.2 of the sup-

plementary material.

4.2 MG-EUCB ALGORITHM AND ANALYSIS

In the initialization phase, the algorithm computes and

plays a sequence of matchings M1,M2, . . . ,Mp for a to-

tal of p epochs. The initial matchings ensure that ev-

ery edge in P is selected at least once—the computa-

tion of these initial matchings relies on a greedy cov-

ering algorithm that is described in Section C.1 of the

supplementary material. Following this, our algorithm

maintains the cumulative empirical reward r̄a,i for ev-

ery (a, i) ∈ P . At the beginning of (say) epoch k, the

algorithm computes a greedy matching for the instance

{P, C, b, (w(a, i))(a,i)∈P} where w(a, i) = r̄a,i/Ta,i +
ca,i, i.e., the average empirical reward for the edge added

to a suitably chosen confidence window. The INCENT(·)
function (Algorithm 2, described in the supplementary

material since it is a trivial function) plays each edge in

the greedy matching for τk iterations, where τk increases

linearly with k. This process is repeated for n−p epochs.

Prior to theoretically analyzing MG-EUCB, we return to

Example 1 in order to provide intuition for how the algo-

rithm overcomes correlated convergence of rewards.

Revisiting Example 1: Why does MG-EUCB work? In

Example 1, the algorithm initially estimates the empiri-

cal reward of (a1, ii) and (a2, i2) to be zero respectively.

However, during the UCB exploration phase, the match-

ing M1 = (a1, i1), (a2, i2) is played again for epoch

length > 1 and the state of agent a1 moves from θ1 to

θ2 during the epoch. Therefore, the algorithm estimates

the average reward of each edge within the epoch to be

≥ 0.5, and the empirical reward increases. This contin-

ues as the epoch length increases, so that eventually the

Algorithm 2 MatchGreedy-EpochUCB

1: procedure MG-EUCB(ζ, τ0,P)

2: t1 ← 0, r̄a,i ← 0 & Ta,i ← 1 ∀(a, i) ∈ P
3: M1,M2, . . . ,Mp ⊂ P s.t. (a, i) ∈ Mj ⇔ (a, i) /∈

Mℓ ∀ℓ 6= j ⊲ see Supplement C.1 for details

4: INCENT(·) ⊲ see Alg. 2 in Supplement C

5: for1 ≤ n ≤ m ⊲ play each arm once

6: (r̄a,i)(a,i)∈Mn
← INCENT(Mn, tn, n, τ0, ζ)

7: tn+1 ← tn + τ0 + ζn
8: end for

9: while n > m
10: MG = MG((r̄a,i/Ta,i + c

Ta,i

a,i (n))(a,i)∈P)

11: (ra,i(tn))(a,i)∈MG
← INCENT(MG, tn, n, τ0, ζ)

12: r̄a,i ← r̄a,i +
1

τ0+ζn
ra,i(tn) ∀(a, i) ∈MG

13: Ta,i ← Ta,i + 1 ∀(a, i) ∈MG

14: tn+1 ← tn + τ0 + ζn; n← n+ 1
15: end while

16: end procedure

empirical reward for (a1, i1) exceeds that of (a1, i2) and

the algorithm correctly identifies the optimal matching as

we move from exploration to exploitation.

In order to characterize the regret of the MG-EUCB algo-

rithm, Proposition 1 implies that it is sufficient to bound

the expected number of epochs in which our algorithm

selects each sub-optimal edge. The following theorem

presents an upper bound on this quantity.

Theorem 2. Consider a finite set of m agents A and

incentives I with corresponding aperiodic, irreducible

Markov chains Pa,i for each (a, i) ∈ P . Let α be the

MG-EUCB algorithm with mixing time sequence {τk}
where τk = τ0 + ζk, τ0 > 0, and ζ > 0. Then for every

(a, i) ∈ S ,

Eα[Ta,i(n)] ≤ 4m2

∆2
a∗,i∗

(

ρa∗,i∗√
τ0

+
√
6 log n+ 4 logm

)2

+ 2(1 + log(n))

where (a∗, i∗) = argmax(a1,i1)∈P\g∗

1

⌈

4
∆2

a1,i1

(ρa1,i1√
τ0

+
√
6 log n+ 4 logm

)2
⌉

, and ρa,i is a constant specific to

edge (a, i).

The full proof of the theorem is provided can be found in

the supplementary material.

Proof (sketch.) There are three key ingredients to the

proof: (i) linearly increasing epoch lengths, (ii) overcom-

ing cascading errors, and (iii) application of the Azuma-

Hoeffding concentration inequality.

By increasing the epoch length linearly, MG-EUCB en-

sures that as the algorithm converges to the optimal

References

Hubway: Metro-boston’s bikeshare program. [available

online: https://thehubway.com].

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine

Learning, 47(2):235–256, May 2002. doi: 10.1023/A:

1013689704352.

M. G. Azar, A. Lazaric, and E. Brunskill. Regret bounds

for reinforcement learning with policy advice. In

Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 97–112,

2013.

K. Azuma. Weighted sums of certain dependent random

variables. Tohoku Math. J., 19(3):357–367, 1967. doi:

10.2748/tmj/1178243286.

A. Badanidiyuru, R. Kleinberg, and A. Slivkins. Ban-

dits with knapsacks. In Proc. 54th Annual IEEE

Symp. Foundations of Computer Science, pages 207–

216, 2013.

W. Chen, Y. Wang, Y. Yuan, and Q. Wang. Combinato-

rial multi-armed bandit and its extension to probabilis-

tically triggered arms. J. Machine Learning Research,

17:50:1–50:33, 2016. URL http://jmlr.org/

papers/v17/14-298.html.

J. Fill. Eigenvalue bounds on convergence to stationarity

for nonreversible markov chains, with an application

to the exclusion process. Ann. Appl. Probab., 1(1):

62–87, 1991.

G. Folland. Real Analysis. Wiley, 2nd edition, 2007.

Y. Gai, B. Krishnamachari, and M. Liu. On the combina-

torial multi-armed bandit problem with markovian re-

wards. In Proc. Global Communications Conf., pages

1–6, 2011. doi: 10.1109/GLOCOM.2011.6134244.

M. R. Garey and David S. Johnson. Computers

and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979. ISBN 0-7167-

1044-7.

A. Ghosh and P. Hummel. Learning and incentives in

user-generated content: multi-armed bandits with en-

dogenous arms. In Proc. of ITCS 2013, pages 233–

246, 2013.

W. Hoeffding. Probability inequalities for sums of

bounded random variables. J. American Statistical

Association, 58(301):13–30, 1963. doi: 10.2307/

2282952.

Nicole Immorlica, Gregory Stoddard, and Vasilis

Syrgkanis. Social status and badge design. In Proceed-

ings of the 24th International Conference on World

Wide Web, WWW 2015, Florence, Italy, May 18-22,

2015, pages 473–483, 2015.

S. Jain, B. Narayanaswamy, and Y. Narahari. A mul-

tiarmed bandit incentive mechanism for crowdsourc-

ing demand response in smart grids. In Proc. of AAAI

2014, pages 721–727, 2014.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal Re-

gret Bounds for Reinforcement Learning. J. Machine

Learning Research, 11:1563–1600, 2010.

H. W. Kuhn. The hungarian method for the assign-

ment problem. Naval Research Logistics, 2(1-2):83–

97, 1955.

B. Kveton, Z. Wen, A. Ashkan, H. Eydgahi, and

B. Eriksson. Matroid bandits: Fast combinatorial op-

timization with learning. In Proc. of UAI 2014, pages

420–429, 2014.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba

Szepesvari. Tight regret bounds for stochastic com-

binatorial semi-bandits. In Artificial Intelligence and

Statistics, pages 535–543, 2015.

D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains

and Mixing Times. American Mathematical Society,

2009.

Lihong Li, Wei Chu, John Langford, and Robert E.

Schapire. A contextual-bandit approach to personal-

ized news article recommendation. In Proc. 19th In-

tern. Conf. World Wide Web, pages 661–670, 2010.

T. Lu, D. Pál, and M. Pál. Contextual multi-armed ban-

dits. In Proc. of AISTATS 2010, pages 485–492, 2010.

E. Mazumdar, R. Dong, V. Rúbies Royo, C. Tomlin, and

S. S. Sastry. A Multi-Armed Bandit Approach for On-

line Expert Selection in Markov Decision Processes.

arxiv:1707.05714, 2017.

A. Mehta and V. Mirrokni. Online ad serving: Theory

and practice, 2011.

L. J. Ratliff, S. Sekar, L. Zheng, and T. Fiez. Incentives in

the dark: Multi-armed bandits for evolving users with

unknown type. arxiv, 2018.

Amir Sani, Alessandro Lazaric, and Rémi Munos. Risk-

aversion in multi-armed bandits. In Proc. of NIPS

2012, pages 3284–3292, 2012.

S. L. Scott. Multi-armed bandit experiments in the on-

line service economy. Applied Stochastic Models in

Business and Industry, 31(1):37–45, 2015.

A. Singla, M. Santoni, G. Bartók, P. Mukerji, M. Mee-

nen, and Andreas Krause. Incentivizing users for bal-

ancing bike sharing systems. In Proc. of AAAI 2015,

pages 723–729, 2015.

Cem Tekin and Mingyan Liu. Online algorithms for the

multi-armed bandit problem with markovian rewards.

In Communication, Control, and Computing (Aller-

ton), 2010 48th Annual Allerton Conference on, pages

1675–1682. IEEE, 2010.

Cem Tekin and Mingyan Liu. Online Learning of Rested

and Restless Bandits. IEEE Transactions on Informa-

tion Theory, 58(8):5588–5611, 2012.

L. Tran-Thanh, S. Stein, A. Rogers, and N. R. Jen-

nings. Efficient crowdsourcing of unknown experts

using bounded multi-armed bandits. Artif. Intell., 214:

89–111, 2014.

Zheng Wen, Branislav Kveton, and Azin Ashkan. Ef-

ficient learning in large-scale combinatorial semi-

bandits. In International Conference on Machine

Learning, pages 1113–1122, 2015.

