Safety, Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure

12th Int. Conf. on Structural Safety and Reliability, Vienna, Austria, 6-10 August 2017

Christian Bucher, Bruce R. Ellingwood, Dan M. Frangopol (Editors)

[ASSAR=— ©2017 TU-Verlag Vienna, ISBN 978-3-003024-28-1

A sequential decision making prospective on resilience

Matteo Pozzi®, Milad Memarzadeh®

“Department of Civil and Environmental Engineering, Carnegie Mellon University
Department of Environmental Science Policy and Management, University of California Berkeley

Abstract: We investigate how sequential decision making analysis can be used for
modeling system resilience. In the aftermath of an extreme event, agents involved
in the emergency management aim at an optimal recovery process, trading off the
loss due to lack of system functionality with the investment needed for a fast re-
covery. This process can be formulated as a sequential decision-making optimiza-
tion problem, where the overall loss has to be minimized by adopting an
appropriate policy, and dynamic programming applied to Markov Decision Pro-
cesses (MDPs) provides a rational and computationally feasible framework for a
quantitative analysis. The paper investigates how trends of post-event loss and
recovery can be understood in light of the sequential decision making framework.
Specifically, it is well known that system’s functionality is often taken to a level
different from that before the event: this can be the result of budget constraints
and/or economic opportunity, and the framework has the potential of integrating
these considerations. But we focus on the specific case of an agent learning some-
thing new about the process, and reacting by updating the target functionality level
of the system. We illustrate how this can happen in a simplified setting, by using
Hidden-Model MPDs (HM-MDPs) for modelling the management of a set of
components under model uncertainty. When an extreme event occurs, the agent
updates the hazard model and, consequently, her response and long-term planning.

1 Introduction: resilience of controlled systems

Resilience is a key aspect in the behavior of dynamic systems, and it indicates the system’s
capability of recovering after disruptions as those induced by extreme events [1-2]. For civil
infrastructure systems, however, the recovery process is the outcome of a complicate inter-
play between the physical changes, due to degradation and damages induced by the extreme
event, and the decisions of the infrastructure managers, that we call “agents” in the following.
The recovery process can be fast or slow depending on the priorities and decision attitude of
the agents. Generally, their aim is not to restore the system’ functionality as soon as possible,
“at any cost”: it is to find an optimal trade-off between the cost for restoration and that for the
loss of functionality. We posit that the traditional metric of “long-term expected utility” or
“expected cost” in rational decision making can measure resilience.

In this paper, we illustrate how resilience emerges from optimal system management, and
how we can explain it in terms of optimal behavior. In Section 2 we define the basis for se-
quential decision making, in Section 3 we connect this to resilience analysis, in Section 4 we
describe in details an application, before drawing conclusions in 5.
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2 Sequential decision making

In sequential decision making, an agent acts in time, for achieving a long-term goal. As the
effects of her actions cannot be decoupled, she has to identify not just an optimal current ac-
tion, but a whole long-term policy. That policy strongly depends on the assumed system be-
haviour, which is stochastic when the agent can provide only uncertain prediction of the
response to her actions, and on the reward or losses that she receives.

2.1 Markov Decision Processes

MDPs and partially observables MDPs have been extensively applied to civil systems (e.g,
by [4-5]). In a Markov Decision Process (MPD), an agent interacts with a system, observing
completely its current state, selecting actions and getting a loss, or reward [3]. Time is discre-
tized into a set of instants, evenly separated by period At, so that discrete variables s;, and a;
indicates the state and action at time t,, defined in domain S = {1,2,...,|S|} and A =
{1,2, ..., |A|} respectively. The immediate cost function C (s, a) depends on current state s and
action a, while transition probability T(s,a,s") = P[si;; = s'|sy = s, a, = a] models the
Markovian dynamic of the controlled system, P[E’|E] being the conditional probability of
event E' given event E. The agent selects actions relying on direct observation of the system
state, with the aim of minimizing value V, i.e. the infinite-horizon expected discounted sum
of costs that, at time tg, is V = Yoy *c, where ¢, = C(sg,ay). As the system state is a
sufficient statistic, the agent can base her policy to the observation of the current state. Opti-
mal policy 7* and corresponding value V" derives from Bellman’s equation:

V*(s) = mingu[Cls,a) +y ZISS,I:1 T(s,a,s)V*(s")]

IS1

(1ab)
m*(s) = argminge4[C(s, @) + ¥ Xy, T(s, a, sV (s)]

where y is the one-step discount factor. Optimal value and policy are stationary, because re-
ward and transition matrix are so, and the agent is planning for an infinite time horizon.
While recursive Eq.1(a) cannot be easily solved directly, due to its non-linearity, the value V
following policy m can be express in a linear recursive form and in matrix-vector form as:

Ve(s) = Cs, ()] + ¥ B0, Tls, (s), s TWe(s")  [1—yTplvy = 1y (2a,b)

where entry i of [|S]| X 1] vectors v, and ry are V(i) and (i, (1)) respectively, entry (i,j)
of [|S| x |S]] matrix T, is T (i, (i), j), and I is the identity matrix. We solve Eq.2 exactly or
approximately. In the “policy iteration” method [3], we (i) arbitrary initialize the policy,
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Figure 1: Graph of a HM-MDP (a), typical diagram of the system disruption in time (b).
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(ii) evaluate it through Eq.2, (iii) improve it applying Eq.1(b) (using V instead of V" in the
At the end of the analysis, we get optimal policy m*, which prescribes an action for each
observed current state. Following this policy, the agent gets expected value V.

2.2 Bayesian model updating and MDP under model uncertainty

In previous section, we have showed how to identify the optimal policy when the dynamic
model (i.e. transition function T) 1s known. Here we discuss Hidden-Model MDP (HM-MDP)
[6]: the extended case when the model is uncertain. Model can be defined by parameter 0,
that is persistent in time, but unknown to the agent. Her belief on the model is capture by
probability density pg, so that transition T is now also a function of 8. In this setting, one task
1s learning and updating the probability of 8 during the process: by using Bayes’ rule, poste-
rior probability at time t; is given by pg|y, X py,|9Pg, Where Y} includes the set of relevant
information collected up to that time, including the observed trajectory of system’s states.
Figure 1(a) shows the influence diagram of an HM-MDP, including states, observations,
costs, actions, and the model. Shaded nodes are observable in due time, and arrows describe
the conditional independence structure.

The other task is to control the system under model uncertainty: depending on the as-
sumptions and the required accuracy, a wide range of methods is available [6]. One simple
method is to derive an average model, by computing the expected transition function as
Ti(i,a,)) = Egy [T(i,a,j,0)], where E,,[f(x)] is the expected value of f according to
probability p(x|z). The average model can be used in the policy iteration method, to define
an optimal policy my: the agent can adopt that policy until new information comes, then she
can update the distribution again, compute a new average model and a corresponding new
policy. The method is inexact for two reasons. First, it does not predict that any additional
information will be available in the future, and it is hence an “open-loop” method. Second,
the method does not account for model persistency: policy m;, was optimal ended under the
incorrect assumption that a new value of 6 is independently generated from pgy, at each
future step. Nonetheless, we adopt this approach as a approximate method.

3 Describing resilience using MDPs

Figure 1(b) illustrates a typical recovery process for a system damaged by an extreme event:
its functionality drops due the direct impact, and the recovery depends on the repair and
maintenance policy. Resilience can be (inversely) related the shaded area in graph (b) [3].
Sometimes, the agent decides to restore the functionality to the level before the event, how-
ever she can also decide otherwise, and take the system to a new updated equilibrium. This
can happen for many reasons: because of budget constraints, because of the availability of
new technologies, or because of an updated system demand, or because of the “opportunity”
for replacing components that the damage provides (while it was not convenient to replace
the functioning components before the event).

All those features can be included in a sequential decision making framework. However,
here we focus our attention to a specific reason for updating the equilibrium level: by facing
the event, the agent can learn something about the hazard and/or the system vulnerability,
update her knowledge and, consequently, her policy, selecting a new level. In the following
Section we present in details a setting where this happens.
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4 Modelling system maintenance under extreme events

To investigate how we can intend resilience from a sequential decision making prospective,
we consider an agent controlling an infrastructure system before, during and after an extreme
event. This agent has a prior model of the occurrence rate for these events, she has to plan in
advance and can update her policy in face of new observations of these events.

4.1 Problem statement

We consider a system made up by similar components, exposed to extreme events. The sys-
tem supplies a service to society, to meet its demand. We discretize time in weeks (so At is 7
days). Weekly demand D is unknown, and the agent models it as a set of independent random
variables lognormally distributed by pp. System state defines the number of functioning
components, so that there are n;, components at time t;. Components deteriorate, and they
are prone to failure when extreme events occur. The change Any in the number of functioning
components from ¢ to £, .4 1s given by three contributions:

Ank =Npyqp — N = Anl({a) _ An,((d) _ An’({ee) 3

where An{® is the decision variable and defines the number of components to be added, An'®

of those damaged by deterioration and An,(fe) of those damaged by extreme events. Binary
variable e, defines the occurrence of an extreme event in the previous time interval, and is
Bernoulli distributed with rate 6, in turn modeled as 6~Beta(ay, fy). If an event occurs, the
functioning components fail independently with uncertain probability P,, that defines the

event intensity and follows distribution f,. Hence, An,(fe) 1s binomially distributed, while the

survived components fail independently with probability P; due to deterioration and Angcd) 1s
also binomially distributed:

{ ex~Bernoulli(9) An?|[e, = 0] =0
=1

; . AP ~Binomial(n, — An'®®, P (4a,b,c)
Pek~fe An}({ee)l[ek k ( k k d)

]~Binomial(ny, ., ) '

Overall cost C is the sum of two contributions: Cr and Cr. Repairing cost Cg, for adding
An® components is the sum of constant term cy, if at least one component is added, and of a
non linear function of the number of components added, via coefficients ¢, and v:

C(An@) = ¢, I[An® > 0] + ¢, [An@]" (5)

Expected cost for insufficient components Cr is a function of the lacking components
Anjacx = D — n, via parameters Cpen and 7: function g defines this cost for one value of de-
mand D, and Cp is its expected value:

g(ATl ) _ {Cpen [Anlack]77 Anlack >0
lack/ —

0 Ay <0 Cp(n) =E,g =E) max{cpen[p — n]”,o} (6a.b)

4,2 Formulation as a MDP and a HM-MDP

To describe the problem outlined in Section 4.1 in the framework of Section 2, we define
Sk = nyi + 1, so that the first state refers to zero active components, and (|S| — 1) is the max-
imum number of components. Action defines the number of added components as a;, =

An,({a) + 1, so that a;, = 1 if no components are added at time ;.
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We derive from Eqs.3-4 the transition matrix with no added component, and similarly
those for any specified number of added components, while the complete cost function de-
rived from Eqs.5-6.

Because of prior conjugacy, if Y}, is the observed number of extreme events in the [tg,t)]
period, the posterior probability of rate 6 is:

0|Y,~Beta(ag + Y, Bs + k — V) @)

4.3 Numerical investigation

We select parameters as follows. The maximum number of components N is equal to 100.
The weekly demand of functioning components is defined by probability pp « InNV (Ap,{3),
with A, = log 40 and {p, = 10%, where In/V is the log-normal distribution. The prior infor-
mation on extreme event rate is so that the expected value and the coefficient of variation of
0 are 0.2% w™?! (corresponding to a return period of 10 years) and 70%, respectively, so that
ag = 2, Bg = 1,000. P, is beta-distributed: f, = Beta(a,, 8,), with the expected value and
the coefficient of variation of P, both equal to 50%, so that a, = ., = 1.5. P; is 0.2%, so
that the expected annual number of degraded components is 10 when n = N. Costs are de-
fined by ¢y = 4K$, ¢, = 10K$, v =2, cpen = 1K$, 1 = 2. Weekly discount factor is
y = 99.9%, corresponding to an annual factor of 95%.

Figure 2 summarizes inputs and outputs for the application: graph (a) reports the distribu-
tion of weekly demand D, graph (b) the corresponding expected cost Cr, obtained by Eq.6,
graphs (c-d) the optimal policy and value (i.e. expected discounted cost), as derived from
Eq.1. All graphs are plotted up to n = Ny; = 70. The agent will add components below
Nopt = 56, while she will prefer not to when n = n,,.. The less the number of components,
the higher Cr, the number of components to be added, and the value. The value is 4.34M$
when n = Ny, and increases of additional 6.39MS$ is the system is completely destroyed (i.e.,
when n is zero).
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Figure 2: Demand distribution (a), expected cost for lacking components (b), optimal policy: number of compo-
nents to be added (c), expected discounted cumulative cost (d).
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Figure 3: probability distribution of intensity (a), cost function for repairing (b), posterior distribution of ex-
treme event rate (c) and corresponding complement CDF at given times (d).

Figure 3(a) and (b) reports the probability of intensity P, and the cost of repairing C as a
function of the number of added components. We assume that two extreme events occurs
during the management process: at t;, and t,gg, 1.€. after 2 months and after about 10 years
from the beginning. The corresponding posterior belief on extreme event rate 6, obtained
through Eq.7, is represented in graph (c) and (d): specifically, (c) shows the 20-year time do-
main, and (d) focuses on 4 times, before and after the extreme events. As anticipated in Sec-
tion 4.2, the agent belief shifts towards higher values of 0 after an extreme event.
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Figure 4: recovery process using the policy optimal before the first event (a), corresponding limit distribution
(b), corresponding quantities for the policy after the first extreme event (c-d).
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Figure 5: foward simulations of system maintenence (a), corresponding controlling actions (b).

To 1illustrate the recovery process at different times, we can predict the evolution of the
controlled system after an extreme event. Let us assume that, at time ¢;, the agent identifies
optimal policy 1y, and adopts it from that time on. Because of randomness in the system evo-
lution, we cannot predict it with certainty. However, having defined T (i,)) =

T, (i, t (i), ) as the transition function when 7y, is in control, pg = Tg;;_k p;. defines the evo-

lution of the probability distribution of the system state, where vector pj lists probability
P[n; = i] for i from 0 to N. Moreover, by using a large value for d, we derive p,, the as-
ymptotic limit distribution for the Markov process. Figure 4 shows the evolution of the con-
trolled system after an event that takes the number of components down to 10. To do so, we
initialize pj, to a vector of zeros except for a single 1 in position 10+1, then we can compute
py for any d > k. Graph (a) makes use of g, the optimal policy before the first extreme
event, practically identical to that at the beginning of the process, plotted in Figure 2(c). The
graph reports the expected value and the 95% confidence bounds, while Figure 4(b) plots the
PDF and CDF of the asymptotic limit distribution. The system never goes above nqp¢, be-
cause the policy never prescribes to venture in that region. The randomness in the evolution is
due to degradation and occurrence of extreme events.

Because of the change in the agent belief, shown in Figure 3(c-d), the assumed expected
transition probability changes, and so does the optimal policy. Specifically, n,pc grows up to
62 components after the first extreme event, and goes down to 55 just before the second
event, after which it grows again to 60. Graph (c-d) refers to time t;,, after the occurrence of
the first extreme event. Both the short-time evolution and the limit distribution show that the
agent will adopt a higher number of components, for counter-balancing the increased esti-
mated frequency of events.

Figure 5 plots 100 time-domain forward simulations (one with a thicker line): we sample

variables ey, P, An,(fe), An,((d) for each time ¢, and we close the loop by the optimal policy.

ey
Up to k =9, no extreme events have occurred and the agent follows the policy plotted in
Figure 2(c) with minor adjustment due to the observation of no events. However, at t;y, an
event occurs (i.e., e;o = 1), and the optimal policy significantly changes. Before that, the
system stays at N, = 56, and the agent repairs all failed components. However, as ngp¢

grows up to 62 after the event, the new equilibrium point is higher than the pre-event one.
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5 Conclusions

Our aim 1n this paper was to illustrate how to model the maintenance and control of a infra-
structure system exposed to extreme events by using MDPs and HM-MDPs. Many features
relevant for resilience analysis can be derived by this framework. For example, graphs as
those in Figure 4 can be used for assessing resilience, as in Figure 1. The shaded area in the
latter figure can be intended as a cumulative disruption, which the agent should keep low.
However, we note that, in our example, the aim of the agent is more complicated. First, the
disruption can be non-linearly related to the cost, according to Eq.6, while it is linearly relat-
ed to the shaded area. Second, the agent can decide to have more components than those nec-
essary to cover the demand, to increase redundancy and reduce the effects of extreme events.
The solution also includes the effects on ordinary degradation and maintenance: the agent
knows that to maintain many redundant components is expensive, as she has to cover their
recurrent maintenance costs. Overall, the agent selects a recovery level for responding to the
short-term demand, but also for preparing the response to the next shock. We also note how
rich the outcome of the MDP analysis is: the value plotted in Figure 2(d), for example, can be
used in the design phase, by integrating it with the construction cost to identify the optimal
design in terms of number of components. That analysis is also able to formalize the updating
process of the equilibrium level, and transient phase to this new target.

We have selected the simplified example presented above for the easiness of solving it
(less than 10 rounds of the policy iteration algorithm are sufficient for finding the optimal
solution). Despite this, we hope that this initial research can be followed by additional work
to better relate sequential system control and resilience.
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