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Abstract: We conjecture that the Fourier coefficients of a degree three Siegel form,
1//X1s, count the degeneracy of three-center BPS bound states in type II string the-
ory compactified on K3 x T%. We provide evidence for our conjecture in the form of
consistency with physical considerations of wall-crossing, holographic bounds, and the ap-
pearance of suitable counting functions (involving the inverse of the modular discriminant
A and the inverse of the Igusa cusp form ®;,) in limits where the count degenerates to

involve single-center or two-center objects.
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1 Introduction

The microscopic accounting of black hole entropy for suitably simple (BPS) black holes [1]
is one of the triumphs of string theory. Hints of deep ties between this subject and natural
objects in number theory and the theory of automorphic forms began to appear with the
work of Dijkgraaf, Verlinde and Verlinde [2], where a degree two Siegel modular form —
the Igusa cusp form &,y — appears and plays a central role in determining the microstate
counts in N = 4 supersymmetric string theory on K3 x T2. A heuristic explanation of the
appearance of a hidden genus two curve in this problem was provided by Gaiotto [3], and
important further developments are reviewed in, for instance, [4, 5].

In a parallel line of development, it was soon realized that a given charge sector in su-
persymmetric string theory may also support multi-center BPS black hole configurations
[6, 7, 8]. These play a crucial role in resolving various paradoxes with the attractor mech-
anism for BPS black holes [9, 10], and appear in the proper interpretation of the states
the Igusa cusp form (or more properly 1/®¢) is enumerating [11, 12, 13, 14, 15, 16, 17].



In this paper, we further tie these lines of development together by proposing that
there is a preferred degree three Siegel form whose Fourier coefficients are counting the
microstates of three-center BPS solutions in type II string theory on K3 x T2. It will not
escape the attention of the reader that to the extent our conjecture holds, it suggests a
family of conjectures capturing higher multi-center degeneracies as well.

The organization of our exposition is as follows. In section 2, we introduce the hero
of our story, the degree three Siegel form y;5. In section 3 we give a first formulation
of our conjecture tying the Fourier coefficients of 1/,/X1s to degeneracies of BPS states,
ignoring subtleties related to wall crossing. In section 4, we make some of the ingredients
introduced here more precise, and review some relevant properties of three-center BPS
bound states, including BPS degeneracies of three-node quivers corresponding to the Higgs
branch of three-center “scaling solutions” found in earlier work [18, 19, 20, 21]. In section
5, we formulate a more precise version of the conjecture, taking into account wall crossing
ambiguities. Sections 6 and 7 witness various tests of the conjecture — with tests of wall-
crossing appearing in 6, and limits yielding 1/A and 1/® tested in section 7. We close

with a discussion of (admittedly big) open questions in section 8.

2 An interesting degree three Siegel form

We begin with the observation that the known counting functions for BPS state degen-
eracies on K3 x T? have simple relations to bosonic string partition functions. Recall that
the counting function for 1/2-BPS Dabholkar-Harvey states is given by

1, 1
At (1 —qgn)*

denus one =
where we have indicated that the inverse of A is also the (chiral) 1-loop bosonic partition
function. Similarly,

1
denus two — o
10

also arises as the genus two chiral measure in the bosonic string. So suggestively, the
genus one partition function counts 1/2-BPS objects, realized in supergravity as single-
center black holes, while the genus two partition function counts bound states of two
such 1/2-BPS objects, realized in supergravity as black hole configurations with up to two

centers.



These facts motivate, as a natural guess, the analogous genus-three measure

1 1
Z genus three = -
VvX18 X9

as the counting function for bound states of three 1/2-BPS objects, realized in supergravity
as black hole configurations with up to three centers. This function was found to occur in
the genus three partition function in [22]. Tt is easiest to describe as a product of theta

functions with characteristic, in the following way.

On a compact Riemann surface X of genus ¢, one can choose a symplectic basis for

H\(X,Z) a1,---ag,by, -+ ,by. Then a basis of holomorphic 1-differentials is determined by

/ Wy = 5@‘ .
a;

The period matrix of the surface is then fixed by

/ Wj = Tij,
b;

with 7 symmetric and Im(7) > 0. 7 gives the parametrization of Riemann surfaces X by

the conditions

the Siegel upper half space.
In terms of this data, recall that the genus g theta functions are given by (see e.g. [23])

0(z,7) = > exp <2m'(mtz + %mfrm)) .

meZ9

Here, 6 : CY x H; — C takes as arguments z € C? and the g x g period matrix 7.

The theta functions with characteristic can be similarly defined. Let
a=e+T17)€C’

with €, 0 taking values in %ZQ . With the Jacobian of X being J = C9/T, the class of « in
J is called a theta characteristic. We define the parity of a as 4ed mod 2. In particular, of
the 49 possible choices of characteristic, we then have 2971(29 — 1) odd ones and 2971 (29+1)

even ones. Now, define
1
0[a](z,T) = exp (27ri((5t(z +€) + §5t75)> O(z+€+716,7) .

These are the desired theta functions with characteristic. We will only need these evaluated
at z =0, and denote f[a] = 0]a|(T) = 0]a](z, T)]|.=o0-
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The automorphic forms A, &9 and y9 = /x1s all have simple definitions as products

of genus g = 1, 2,3 theta functions with characteristics:

A=2"T] 0l (g=1) (2.1)
p=2"[] 0l (9=2) (2.2)
xo=2""[] bla?  (9=3) (2:3)

« even

As there are 36 even theta functions with characteristic at genus three, xis indeed defines
an automorphic form of weight 18.

Our claim — which we make more precise below — is that Z,_3 = 1/x9 gives the BPS
counting function for bound states of three 1/2-BPS constituents on K3xT?, corresponding

to black hole configurations with up to three centers.

3 Conjecture

In this section we give a first formulation of our conjecture, without being precise about the
moduli-dependence of bound state degeneracies, and without being precise about various
sign ambiguities. We will likewise deliberately be vague about the distinction between
BPS indices and absolute degeneracies. In section 5 we will give a more precise version
of the conjecture, and argue that the sign ambiguities and moduli-dependence are in fact
closely related.

We first review the interpretation of Z,—; and Z,—, as BPS bound state counting
functions and then state our proposed generalization for Z,_3. The basic idea and our
notations are illustrated in fig. 3.1. For concreteness we consider type IIB string theory
compactified on T2 x K3. In a suitable duality frame, 1/2-BPS states are represented as
D-branes wrapping a 1-cycle v on T? and an even-dimensional cycle Q € Heyen(K3) =
Ho(K3)® Ho(K3)® Hy(K3). The number of BPS states 2 with charge I' = v x () depends

only on the duality invariant
1
r= 5@ Q. (3.1)

where the dot product denotes the signature (4,20) intersection product on Heyen(K3).

The generating function for the degeneracies €)(r) is Z,—; = 1/A, expanded in powers of

r =T (3.2)
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Figure 3.1: D-brane configurations, quiver diagrams encoding intersection numbers, and

bound state counting functions for g =1, g = 2 and g = 3.

that is to say,

Zyr (1) = = Q(r)a" =2 +242° 4+ 3242 + 32002° + - -- (3.3)

In the 4d N = 4 low energy effective supergravity theory, these 1/2-BPS states are realized
as “small” single-center black holes. The minimal value of r = %Qz is —1. This corresponds
to a rigid cycle @Q wrapped in K3, for example K3 itself or a supersymmetric 2-sphere.
Higher r correspond to wrapped branes with deformation moduli. A smooth genus g
supersymmetric 2-cycle has r = g — 1.

Next we consider two 1/2-BPS branes with charges I'; = v; X @y, i = 1,2, with 7, and
~o wrapped as in figure 3.1. These can form 1/4-BPS bound states with each other. The

brane configuration has the following duality invariants:

1
_Q%7 S

2 Q% ’ = _Ql ' Q2 . (34)

1
r -
2
The sign is chosen for consistency with conventions in later sections, but does not matter
at the level of precision of this section. The generating function for the bound state

degeneracies €)(r, s,a) is Z,—o = 1/Pq [2], expanded in powers of

2TiT11 2712 2712

r=e : y=e : u=e : (3.5)
where 7;; is the g = 2 period matrix; that is to say,

Z

g2 (T, y;u) = ZQ r,s,a) "y Ut (3.6)

q)l() l’ y Yy U



The sign ambiguity in the power of the expansion parameter u depends on whether one
views this as a large-u or a small-u expansion, and is related to ambiguities in the definition
of Q(r, s, a) due to background moduli dependence of the BPS spectrum, i.e. wall-crossing
[11, 12, 13, 14, 15, 16]. There are other subtleties when the charges (); are non-primitive
[24]. True to our promise, we ignore all of this here. In the 4d N' = 4 low energy
effective supergravity theory, these 1/4-BPS bound states are realized either as a single-
center (large) black hole, or as a 2-center bound state of 1/2-BPS (small) black holes
[11, 12, 13, 14, 16].

We are now ready to formulate our conjecture. To this end we consider three 1/2-BPS
branes with charges I'; = v; X Q;, ©« = 1,2,3, with the ; wrapped as in figure 3.1. The

brane configuration has the following duality invariants:

(r,s,t) = (307,303, 3Q3) , (a,b,¢) = —(Q1-Q2, Q2 Q3, Q3-Q1). (3.7)

Although for generic @; and at generic points in the 7% x K3 moduli space, these three
branes will not form BPS bound states [17], it is nevertheless the case that for suitable
charges and on suitable subloci of the moduli space, they will form BPS bound states. We
conjecture that the generating function for the bound state degeneracies §(r, s,t,a, b, ¢) is

Z4—3 = 1/X9, expanded in powers of

(x’ y) Z) = (627ri7—11, 627riT22’ 627”:7'33)7 ('Ux,'l},w) = (627ri7—12, 6271'7;7'23’ 627TiT13) (38)

where 7;; is the g = 3 period matrix; that is to say,

Zy—s(x,y, z;u,v,w) = Z Q(r,s,t,a,b,c) "y ZuFvPw . (3.9)

T Z, U, v, U)
X9 ( Y rstabc

As we will make precise in section 5, the sign ambiguities are again related to wall crossing
ambiguities. In the 4d A/ = 4 low energy effective supergravity theory, these bound states
are realized either as a single-center black hole, or as a 2-center bound state of 1/2-BPS
and a 1/4-BPS black hole, or as a 3-center bound state of 1/2-BPS black holes. The latter
includes in particular also scaling solutions.

To state a more precise version of the conjecture and to subject it to tests, we need a
more detailed description of these black hole configurations and their wall crossing prop-

erties. We turn to this next.



4 Black hole bound states

In this section we study in some detail the black hole configurations corresponding to bound
states of three 1/2-BPS D-branes as in fig. 3.1 on the right. The level of detail is needed
because several of our tests of the conjecture use wall-crossing in an essential way, so we will
need to be precise about bound state stability conditions and various signs on which these
conditions depend. We build up the relevant technology in steps. We begin by making
a few things in our discussion above a little bit more precise. We then discuss single-,
two- and three-center black hole realizations of the bound states of interest. In the final
part we review known results [18, 19, 20, 21] about the ground state degeneracy of 3-node
quiver quantum mechanics. Although these quivers do not accurately describe the bound
states of interest to us, they do have similar 3-particle bound state realizations, and their
degeneracies exhibit striking qualitative features suggestively similar to the degeneracies

extracted from Z,_3 = 1/xo.

4.1 D-brane setup

We consider again the three 1/2-BPS D-branes wrapped on cycles I'; = v; x @Q; as depicted
in fig. 3.1 on the right. More precisely, denoting the horizontal and vertical 1-cycles of the
T? by A and B, oriented such that the intersection product (A, B)72 = +1, we have:

F1:AXQ1, FQZ(B—A)XQQ, FgZ—BXQg, (41)

where Q); € Heven(K3). The 1-cycles are chosen to have intersection product (;,y;)r2 = +1
for all cyclically ordered pairs (7;,7;). The intersection products of the I'; are

a = <F27F1> = _Ql 'QQ, b= <F37F2> = _QQ'Qi’M c= <F17F3> = _Q3'Q17 (42>
as defined earlier in (3.7). We assume the charges @); are chosen such that
a,b,c >0, (4.3)

and we assume there exists a locus in the 72 x K3 moduli space where the three branes
are mutually supersymmetric. On general grounds [25, 26, 27, 18], supersymmetric bound
states of these branes will form when moving away from this locus along suitable (though
not arbitrary) directions in the moduli space.

A simple analogous brane setup, where existence of such brane configurations is readily

checked by elementary means, is given by a system of intersecting D3-branes on T? xT? xT?
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instead of T? x K3, with '} = A; X Ay x A3, Ty = (By — Ay) x (By — Ay) x (B3 — A3),
I's = —B; x By x Bs. The intersection products in this case are easily computed to be
a=0b=c=+1>0. If we take the complex structure moduli of the 72 factors to be
T =Ty =13 = €7/3, the periods Z; = fFi Q of the holomorphic 3-form Q = dz; A dzs A dzs
on T? x T? x T? are all equal to 1, so the branes are mutually supersymmetric at this point
in the moduli space. Moving the complex structure moduli slightly away from 7, = /3
in the appropriate directions produces BPS bound states of these intersecting D-branes.

Near the locus where the three constituents are mutually supersymmetric, the low
energy dynamics of the D-brane system is captured by a quiver-like N' = 4 supersymmetric
quantum mechanics model, similar but not identical to the 3-node cyclic quiver model
introduced in [18]. Counting BPS bound states amounts to counting the supersymmetric
ground states of this system. This problem was solved for 3-node cyclic quivers with
generic cubic superpotential in [18, 19, 20, 21]. However those results are not directly
applicable here. One difference is that the constituent branes necessarily have moduli in
the case of interest, since there are always at least the translation and Wilson line moduli
of the 1-cycles wrapped on 7T?. This allows for more general superpotentials depending
nontrivially on these moduli. For intersecting branes on 7%, including generalizations
to more complicated wrappings with larger values of a,b, ¢, explicit expressions for the
superpotential were obtained in [28] in terms of theta functions. Related explicit models
in ITA on T were constructed in [29].

One could at this point try to deduce the appropriate microscopic description for the
T? x K3-wrapped brane systems of interest, and to identify and count the appropriate
collection of BPS states directly in this description. We will not attempt this here. Instead
we will consider the 4d N = 4 low energy supergravity description of these bound states,
and use this in combination with the interpretation of Z,—; = 1/A and Z,_o = 1/®y( as

BPS counting functions to perform a number of rather nontrivial checks of our conjecture.

4.2 Single-center black hole solutions

A regular single-center BPS black hole solution with total charge I' = A x Q+ B x P exists
provided [30] Q% > 0, P2 > 0, A > 0, where A is called the discriminant,

A=Q*P*—(Q-P). (4.4)
The black hole entropy is then given by

S =mVA. (4.5)



When A = 0, the black hole becomes singular to leading order in the supergravity approxi-
mation, but may still have a finite size horizon when «’-corrections are taken into account,
giving rise to a small black hole. This is the case in particular for generic half-BPS charges,
i.e. charges in the duality orbit of I' = A x Q with ©?> > 0. If ' = A x Q with Q% = —2,
obtained for example by wrapping a D3 on a supersymmetric 2-sphere in the K3, we get
an elementary BPS particle rather than a black hole.

The total charge I' of the D-brane system considered above in section 4.1 is
F=T1+T+T3=Ax(Q1—Q2) +B x (Q2—Q3), (4.6)
so @ = Q1 — Q2 and P = @2 — Q3. The corresponding duality invariants are
Q=Qi+Q5—2Q1-Q2=2(r+s+a)
PP=Q3+ Q3 —2Q2 Qs =2(s +t+1D)
QP=—-Q1 - Q3+Q1-Q2+Q2-Q3s—Qi=c—a—b—2s. (4.7)
Plugging in (4.7) and reworking things a bit, we get

A =2(ab+ bc+ ca) — (a® + b* + ) + 4(rs + st +tr) + 4(rb + sc + ta)

= (Va+ Vb+ Vo) (Va+ Vb= VoV — VB + Vo) (—Va+ Vb + o)

+4(rs + st +tr) +4(rb + sc + ta) . (4.8)

In the limit a,b,c¢ > 7, s,t, we have Q2> 1 and P2 > 1, and A > 0 provided v/a, Vb, \/c

satisfy the triangle inequalities, i.e.
Va+Vb>ye,  Vb+vesva, et va>Vb. (4.9)

It can be checked that this remains a sufficient condition for existence of the BPS black

hole even when the a, b, ¢ are not parametrically larger than r, s, ¢.

4.3 Two-center solutions

Under suitable conditions, 2-center black hole bound states of the same total charge T’
exist. In general there may be a huge number of different ways of splittingup ' =T'4+1'p
to form a 2-center bound state with charges I' 4, 'g, but here we will only consider charges
obtained by merging two out of the three constituent charges I'y,I's, '3 into a black hole,

and binding this to the third one as a 2-center bound state. Consider first the split

FA:F1+F2:AX(Q1—Q2)+BXQQ, FB:F3:—BXQ3. (410)
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The quadratic invariants for I'4 are
QA =(Q1—Q2)*=2(r+s+a), Pi=2s, Qu-Pa=—(a+2s), (4.11)
so its discriminant is
Ap= Q%P5 —(Qa-Qp)* =drs—a’. (4.12)
Thus a regular single-center black hole of charge I' 4 exists provided
rys,t >0, 4rs > a*. (4.13)

Its entropy is Sy = mV/4rs — a?.

These two centers may form a bound state with equilibrium separation given by the
BPS constraint [6, §]

I'p, T
-Lﬂil:%:—@. (4.14)
|5 — 24

The constants 0p, 04 are determined by the charges and background moduli. In N = 2

language, they are more specifically expressed in terms of the central charges Z, and
Zp, as Og = 2Im(e"""ZB), 04 = QIm(e_mZA) = —0p, where € = I_gl’ Z = Zs+ Zp.
Since distances are positive, the bound state can only exist if (I'g,I'4)0p > 0. In the
case at hand, 0 = 035 = Im(e7*Z3) and (I'p,T4) = Q3 (Q1 — Q2) = b — ¢, so the
existence condition becomes (b — ¢)f3 > 0. The BPS degeneracy associated with this
configuration is 2 = [(I'p, '4)| 4 Qp, where Q 4, Qp are the degeneracies of the two centers
and |(I'p,'4)| = |b — ¢| is an electromagnetic intrinsic angular momentum degeneracy [7].

The other charge splittings, namely 'y =1, + '3, 'g=Tyand 'y =T35+4+11, ['g =15
can be treated analogously. To summarize, we get the following existence conditions and

degeneracies for the three possible two-center bound states under consideration:

(T +T19,T3): rs,t>0, drs>a*, (b—c)3>0 ~ Q=|b—c|Q42Q

Ty +T3,T1): 7rst>0, 45t >0, (c—a)fy >0 ~ Q=|c—a|Qz

Ty +T9,T3): 7rs,t>0, drs>c, (a—0)0>0 ~ Q=a—bQQ (4.15)
Marginal cases in which some of these inequalities are relaxed to equalities may exist as
well, as discussed under (4.5). Note that in the limit a, b, ¢ > r, s, t, none of these 2-center

solutions exist at all. The exact single-center degeneracies €); and €2, can be obtained
from the generating functions Z,_; = 1/A and Z,_y = 1/®9, as in (3.3) and (3.6).
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4.4 Three-center solutions

Likewise, three-center bound states with center charges I'y,T'5, '3 may exist. The BPS

position constraints generalizing (4.14) to three centers are

(I'1, T3) n (I'1,T9) (T'g, T') n (T2, T3) _ 0 (I3, Ta) n (I3, 1)

:91, = Uy, :937
w1 —xs| |z — 22 w2 — 21| |z2 — 3] w3 — 22| |zs — 2]
that is
c a a b b c
- :917 - _627 - :93 .
[z1 — @3] |z — 22 w2 — 1| w2 — 3] w3 — 2| |zs — 2]

Here 0; = 2Im(e"*Z;), €' = %, Z = Zy+ Zy+ Z3. Note that this implies 01 + 6 + 65 = 0,

so summing up the three equations above just gives 0 = 0.
These equations do not always have solutions. Assume for example 63 > 0, ¢; < 0.
>

Then the first equation implies >

¢ — and the second equation implies ——
lz1—22] lz1—23] |23 —x2]
|z1 —zo|+|r3—22]

|1 —23]

__c¢c
|z1 -3

inequality follows from the the triangle inequalities for the (1, s, x3)-triangle. Therefore

Combining these two inequalities implies a +b > ¢ > ¢, where the last
ifa+b<cand®f; >0, 0; <0, the 3-center bound state does not exist.

On the other hand, if a +b > ¢, b+ ¢ > a, ¢ + a > b, that is to say, if the intersection
products (a, b, c) satisfy the triangle inequalities, a branch of 3-center solutions always
exists. This branch is connected to so-called scaling solutions [18, 7, 31], consisting of
configurations for which the centers approach each other arbitrarily closely in coordinate
space, |z; — x;| — 0. In this limit, the position constraints reduce to the scale-invariant

equations

a b c

_ _ , 4.16
|zy — xa|  |ro— w3 |z — a4 (4.16)

Consistency with the triangle inequalities for the (x7,zs,z3)-triangle then requires that

a, b, c themselves satisfy the triangle inequalities, i.e.
a+b>c, b+c>a, ct+a>b. (4.17)

(Marginal cases in which an inequality becomes equality require a more careful discussion,
as the earlier analysis of the 03 > 0, §; < 0 case illustrates, but we will skip this.)
Although the coordinate size of these configurations goes to zero in the limit, their
physical size remains finite in the full supergravity solution [31]. In fact, in the scaling
limit, the solution becomes indistinguishable to a distant observer from a single-center

BPS black hole solution of total charge I' = I'y + I's + I's.  Consistency thus requires
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that the single-center discriminant A as given in (4.8) is positive whenever the triangle
inequalities (4.17) are satisfied. Happily, this is the case, as in general (4.17) implies (4.9).
The implication does not run the other way, so the existence of scaling solutions implies
the existence of single-center solutions, but the converse is not true in general.

If the triangle inequalities are not satisfied, scaling solutions do not exist, and by tuning
the background moduli close to values where the three central charge phases line up (so
0; — 0), the centers can be taken to be arbitrarily well-separated. In this case the BPS
degeneracy of the configuration can be determined from wall crossing arguments [18] or

by direct quantization of the system [32, 33, 21, 34]. Explicitly,
Q = Qc Ql QQ Qg 5 (418)

where €, is the “configurational” degeneracy (discussed below) and the 2; are the BPS
degeneracies of the 1/2-BPS centers I';. The exact single-center degeneracies €); can be
obtained from the generating functions Z,—; = 1/A as in (3.3).

The configurational factor €2, is most easily obtained from wall crossing. Assuming
a+ b < ¢, we know from our earlier discussion above that €2, = 0 in the moduli space
chamber 6; > 0, 03 < 0. When passing to other chambers, this may jump to nonzero
values. However such jumps can only happen at walls where the size of a bound state
diverges, i.e. when one of the centers is pushed out to or pulled in from infinity. If the first
center goes to infinity, then R = |21 — 23| = |z; — 23] — oo while r = |2y — 23] remains
finite. From the position constraint equations it then follows that “%* ~ 0y, S ~ —0y ~ 05.
Hence jumps of this kind occur when 63 > 0, 65 < 0 while #; passes through zero, with the
bound state existing on the side with (¢ —a)f; > 0. Since we assumed a+b < ¢, we have in
particular c—a > 0 so the bound state exists when 6, > 0. Near the transition, I'; is loosely
bound to a tighter bound state of I'; and I's. The latter has degeneracy |(I's,I'2)| = b,
and binding this (2 + 3)-atom to the first center multiplies this degeneracy by a factor
|(I'1,Ty + I's)| = ¢ — a, resulting in a total configurational degeneracy €. = b(a — ¢). Thus
we conclude that in the region 0; > 0, 5 < 0, 63 > 0, we have Q. = b(a — ¢). Similar
arguments can be used to determine (2. in all chambers, as well as for the other possible
violations of the triangle inequalities. We summarize the results for 2. in all of these cases

in the following table:

0, Oy O3 a+b<c b+c<a c+a<bd
— + +| Q=0 bla—c) alb—rc
) 0 c(b—a)
c(a —b) 0

H_
+
|
e
—~
o
|
>
~—




Notice that the difference A2, between these rows is always the same, independent of
which triangle inequality is violated, as dictated by the wall crossing formula. For example

the difference between rows 2 and 1 is

QCQ — QCJ = b(C — CL) (419)

)

for all three cases. Moreover, since the jumps are entirely determined by bound states of
divergent size, as opposed to scaling solutions, the same Af) can be expected to apply even
when the triangle inequalities are satisfied. This is borne out by explicit computations in
microscopic quiver models [18, 19, 20, 21].

To get the total degeneracy when scaling solutions do exist, i.e. when (a,b, c) satisfy
the triangle inequalities, one has to take into account condensation of light open strings
stretched between the constituent branes in the scaling regime, also known as the “Higgs
branch” of the system. A simple 3-node cyclic quiver model sharing this feature was
considered in [18] and further analyzed in [19, 20, 21]. As mentioned before at the end of
section 4.1, there is no reason to expect this to be a quantitatively accurate model for the
bound states of interest to us. However it should nevertheless give a reasonable model for
at least some qualitative features of the degeneracies. A generating function counting BPS

states of this model was found in [19]. In the chamber chamber 6, < 0, 6 < 0, 3 > 0, it

is given by
uv(1 — uv)
Q(a, b, c) uvw’ = : 4.20
azbc (a,b,¢) u'v'w (1 —u)?(1 —v)%(1 — uwv — vw — wu + 2 uvw) (420)
For example for (a,b) = (5,9), the degeneracies are given by
¢ 0 1 2 3 4 ) 6 7 8 9 10 11 12 13 14 15

Q(5,9,¢) | 45 40 35 30 25 20 141 -578 1583 2556 2685 1650 495 O O O

This agrees with the previous table for the range in which the triangle inequalities are
not satisfied, ¢ +5 < 9 and 5+ 9 < ¢. When they are satisfied, the degeneracies become
exponentially large. Asymptotically for large a, b, ¢ [19],
N
aaﬁﬁny oa+pB+y (4.21)
(@+ B =)ty =B) (B +y—a)itre ) '

Q(aN,BN,yN) ~ (

In particular when a = b = ¢ = N, this becomes Q(N, N, N) ~ 23V,
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5 A more precise conjecture

From the discussion above it is clear that the 3-constituent bound states degeneracies con-
jecturally counted by 1/x9 depend on the background moduli, and considerably more so
than the 2-constituent bound states counted by 1/®;9. More specifically, the spectrum
depends on the signs of the parameters 61, 65, 03 introduced above. In the following section
we will provide evidence that these wall crossing ambiguities are related to the sign am-
biguities in our conjecture as formulated in (3.9). Based on this evidence, a more precise

version of the conjecture appears to be
1

Xg(xa%Z;Uaan)

= Z Q(r,s,t,a,b,c) "y Zuv"w™, (5.1

rstabc

Zg=3(x7 Yy, zu,v, ’UJ) =

where (p, o, 7) are the following 6-dependent signs:

0, 0, 03| p o T
- = + ]+ + -
+ - |- 4+ +
£ + - |+ - +

An ambiguity still implicit in (5.1) is that the Taylor expansion of Z,_3 depends on the
order in which u, v and w are expanded. Equivalently, if the coefficients are extracted by
contour integration, the result depends on the contour, and more specifically on the relative
sizes of |ul, |v| and |w|. In the above it is understood that the variable with the negative
sign is expanded last. So for example if §; < 0, 63 > 0 (row 1), we first expand u, v around
zero (the order does not matter in this case), and next w around zero. Alternatively this
corresponds to picking a contour with |ul, |v] < Jw| < 1.

Another way of phrasing the above table is that in each chamber we have a particular
ordering of {I";,T's, '3}, to wit

0, 0, 05 ordering

— + 4+ |1 <Ty< Iy
+ — x| Ta<Is<Iy
+ + — [ I3<Iyi<Iy

Then the power m;; of the off-diagonal "™ in the expansion is fixed by

The Taylor expansion order (or integration contour) is likewise specified by this ordering,

with the expansion order determined by the induced pair ordering. For example if ['s <

s < 'y, we first expand in v = €™ then in w = €™ and finally in u = e2™"2,
3 1, ) ) y

15



6 Tests at leading order in the g-expansion of 1/xq

Recalling the definition (3.8) of the expansion parameters, let us explore the conjecture

for the leading term in the g-expansion, i.e. the small (z,y, z)-expansion of 1/yg, that is

1

11 -1
- Z(u,v,0) + - -+ | 6.1
Xg(l’,y,Z;U,U,w) vy (u ! w) - ( )

where

(1 —u)(1 —v)(1—w)\/Plu,v,w)
P(u,v,w) = u* +v° + w® — 2(uv + vw + wu) — 2uvw(u + v + w — 4) + uv*v’w?
= (Vu+ Vv + vV + Vuow) (Vi — Vo = Vu + Vuow)
X (=Vu+ Vv = Vw + Vuvw)(—vVu = Vo + Vw + Vuvw) . (6.2)

Z(u,v,w) =

Note that Z(u,v™ ', w™') = Z(u,v,w) and cyclic permutations thereof, but Z(u,v,w™') #
Z(u,v,w). According to the conjecture, the expansion of Z in powers of w, v, w should
count bound states in the (r,s,t) = (=1, —1, —1) sector of our D-brane setup. As recalled
under (3.3), this means that each of the constituent 1/2-BPS D-branes wraps a rigid cycle
Q;. According to (4.15), there are no 2-center bound states to consider in this sector.
Therefore the degeneracies predicted by 1/yg should count the three-particle bound states
discussed in 4.4.

We asserted in section 5 that Taylor expanding Z about (u,v,w) = (0,0,0) depends on
the order in which we are expanding, or equivalently on the contour we use to extract the
coefficients. For example, if we first expand in u, then in v, and finally in w, we get, up to

cubic order in u, v and up to zeroth' order in w:

Z(u,v,w) = u(v +v*(w™ +2) + v} (w2 + 2wl + 3))
+ut(o(w +2) +0*dw 2w +4) + 39w + 2w + 4wt +6))
+ US(v(w—z + 2w 4+ 3) + 0w B + 2w 4w +6)
+ 0336w — 18w + 12w + 6w +9)) + -+ . (6.3)

While this is symmetric under exchange u <> v, it is evidently not symmetric under

exchange of u <+ w, nor under exchange of u <> w".

LAll terms of positive order in w have the same coefficient as the corresponding terms of zeroth order in

w. For example the terms of order O(u?v3w™), n > 0, are u?v3(6 + 6w + 6w? + 6w3 + 6w + ---).
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Denote the coefficient of u®’w™ in this |u|,|v] < |w| < 1 expansion by Q(a,b,c).
An alternative expansion is obtained by first expanding in v and w and then in v, or
equivalently |u|, [w| < |v| < 1. The analog of Q(a,b,c) is now the coefficient of u®wv=°.
Denote this coefficient by Q'(a,b,c). Finally we can consider |v|,|w| < v < 1, with
coefficients 2”(a,b,c). The coefficients (a, b, c), '(a,b,c) and Q"(a,b,c) are almost the

same, but not quite. In the table below the coefficients are listed for (a,b) = (5,9):

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q(5,9,¢) 45 40 35 30 25 20 15891 —144638 569633 —1210896 1451475 925650 245025 0 0 0 0
Q' (5,9,¢) 0 0 0 0 0 0 15876 144648 569628 ~1210896 1451480 -925640 245040 20 25 30 35
Q' (5,9, ¢) 0 4 8 12 16 20 15900 —144620 569660 1210860 1451520 925596 245088 72 81 90 99
Q' —-Q 45 36 27 18 9 0 9 18 27 36 45 54 63 72 81 90 99
Q' —Q ~45 40 -35 -30 25 —20 -15 -10 -5 0 5 10 15 20 25 30 35

This exhibits a few notable features. First, the coefficients become exponentially large in
some range: roughly when (a,b,c) satisfy the triangle inequalities. Second, although in
the exponential regime, 0, €0, 0" are practically the same, there is a persistent difference

throughout. In fact the difference always equals
Y(a,b,c) — Qa,b,c) = alc—10), Q"(a,b,c) —Qa,b,c) =blc—a). (6.4)

Third, a + b < ¢ implies Q(a,b,¢) = 0 and ¢+ a < b implies "(a,b,c¢) = 0. Similarly,
though not visible in this example, b+c¢ < a implies ¥/ (a, b, ¢) = 0. We see that this exactly
matches the non-triangle degeneracies and wall crossing relations discussed in our analysis
of 3-center configurations, if and only if we make the chamber/expansion identifications
proposed in section 5.

Here, we have just discussed some simple examples. More general proofs and gener-
alizations of our checks to higher order terms in the g-expansion can be carried out, and
will appear in [35]. One can also obtain the large a, b, ¢ asymptotics of Q(a, b, ¢), similar

to (4.21), which we reproduce here (see [35] for further details):

(a+ B+ )P )N (6.5)
(a+ B =)+ =)t PB4+ —a)tie ) '

This asymptotic formula is valid provided «, 5 and « satisfy the triangle inequalities o+ >

(N, N ) ~

v, +7 > a,v+ a > . The degeneracy is exponentially large if these inequalities are
satisfied and N > 1. Physical consistency requires that the degeneracy can only become
exponentially large if scaling solutions exist. According to (4.17), scaling solutions exist
provided (a,b,c) = N(a, 3,7) satisfy the linear triangle inequalities, in striking agreement
with what we find here from the behavior of the coefficients of Z.

The expression (6.5) is reminiscent of (4.21), but is nevertheless different. In particular
when a = b = ¢ = N, the above becomes Q(N, N, N) ~ 33V in contrast to Q(N, N, N) ~
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23N one obtains from (4.21). Still, the similarity is rather suggestive. Presumably the

difference is due to differences in the microscopic model describing the bound states, in

particular the superpotential. It would be very interesting to show this explicitly.

Figure 6.1: Single center black hole entropy S(aN, SN, N) (orange) is always larger than
3-center entropy log Q(aN, SN, N) (blue).

Either way, according to our conjecture, the asymptotic formula (6.5) should give the
degeneracy of the Higgs branch of 3-particle scaling solutions in our setup, analogous to
the quiver model asymptotics (4.21). This degeneracy should correspond to a fraction of
the total degeneracy of charge I'. It can only be a fraction because there are many other
ways of splitting up I', and the total degeneracy should sum over all of those. Hence the
predicted log §2(a, b, ¢) should be bounded above by the single-center horizon area entropy.
Another argument is the holographic principle: since scaling solutions can be squeezed
into a region with surface area equal to the single-center black hole horizon area A, their

entropy must be bounded above by A/4G = Sgp:

log Q(a,b,c) < Spg = mv/Ala, b, ), (6.6)

with A(a, b, c) given by (4.8) with r = s =t = —1 and a,b,c > 1 satisfying the triangle
inequalities. For example for a = b = ¢ = N, this translates to the requirement 3log 3N <
73N, which is indeed satisfied as 3log3 ~ 3.3 and 7v/3 ~ 5.4. Happily, the inequality
persists for all values (a,b,c), as can be seen from fig. 6.1 combined with some simple

considerations of asymptotics.
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7 Higher order test and the appearance of 1/dy

In section 6 we gave examples illustrating that expansion ambiguities reproduce precisely
the expected wall crossing formulae for 3-center configurations in the (r, s, t) = (=1, —1, —1)
sector. However this sector is quite insensitive to the detailed geometry of K3 x T2,
because the constituents in this case are rigid and do not probe the internal space geometry.
In particular, the same wall crossing formulae would be obtained for the simple 3-node
quiver model with cubic superpotential (which however does not reproduce the correct
degeneracies in the scaling regime). So this test, although it passes a number of nontrivial
self-consistency checks, is still fairly weak in terms of singling out specifically K3 x T? as
the relevant compactification manifold.

To unambiguously see the fingerprints of K3 x T2 in wall crossing formulae, we need
to consider larger values of (r,s,t) as well as values of (a, b, c) such that two-center black
hole bound states may form and play a role in wall crossing, not just three-center ones.
Indeed for larger values of (r,s,t), the individual ; appearing in 3-center degeneracy
formulae such as (4.18) are counted by the 1/2-BPS partition function 1/A for K3 x T2
compactifications, and the €, ; appearing in 2-center degeneracy formulae such as (4.15)
are counted by the 1/4-BPS partition function 1/®;5. Although 1/A appears in many
contexts in string theory, 1/®y, is pretty much a smoking gun for K3 x T? specifically.

Recall that

1
= = + 24+ 3242 + 3200 2 + 25650 2° + - - - (7.1)
x
and
1 1 1 1
— = — (V4204 +(—+—) 2+ 24v 4 48v% + - - -
P10(y, 2;0) yz( ) Y 2) )
3 24
+<5+g)<—+48+327v+648v2+---)+(—+600v+1152v2+---)
Yy oz v v

48 600
+(y+2) (ﬁJrT—648+8376@+15600v2—|—--~)

327 648 25353
+y2( s —50064+130329v+209304v2+...) +e (72)
v v v

Below we bring focus to a number of concrete examples evident in these expansions
which strikingly confirm the K3 x T? expectations, including both the appearance of 1/A
and 1/@101
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Table 7.1: Degeneracies in the (—1,—1,0) sector

c 1 2 3 4 5 6 7 8 9 10 11 12 13

Q(5,7,¢) 720 600 1870 74760 ~631504 2698992 -6550056 9308496 ~T7467552 2968704 -387000 0 0
Q' (5,7, ¢) 0 0 ~2350 74400 —631744 2698872 -6550056 9308616 ~T7467312 2969064 ~386520 600 720
Q" (5,7,¢) 48 96 2206 74592 ~631504 2699160 ~6549720 9309000 ~7466880 2969544 385992 1176 1344
Q' —-Q 720 600 480 360 240 120 0 120 240 360 480 600 720
Q' —Q 672 -504 336 -168 0 168 336 504 672 840 1008 1176 1344

So in this sector, the relations of these degeneracies are

Y(a,b,c) — Qa,b,c) =24 x alc — b) 2(a,b,c) — Qa,b,¢) =24 x b(c—a)  (7.3)

Table 7.2: Degeneracies in the (—1,—1,1) sector

c 2 3 4 5 6 7 8 9 10 11

Q(4,6,c) 5552 —20106 399488 —~1967682 4729920 -5762306 3336160 —675690 37824 0
Q' (4,6,c) 368 ~23994 396896 —~1968978 4729920 5761010 3338752 —671802 43008 6480
Q" (4,6,c) 1664 —22050 399488 ~1965738 4733808 —5756474 3343936 665970 49488 13608
Q' —-Q 5184 3888 2592 1296 0 1296 2592 3888 5184 6480
Q7 —Q 3888 1944 0 1944 3888 5832 7776 9720 11664 13608

In this sector, the relations of these degeneracies are

Q'(a,b,c) — Qa,b,c) =324 x a(c — b) Q" (a,b,¢) — Qa,b,c) =324 x b(c —a) (7.4)

Table 7.3: Degeneracies in the (—1,0,1) sector

c 3 4 5 6 7 8 9 10

Q(3,5,¢) 407472 4448168 13869776 19957200 12621568 3200704 200250 0
Q' (3,5,¢) 454128 4424840 —13869776 19980528 —~12574912 3270688 -106938 116640
Q" (3,5,¢) —407472 4487048 ~13792016 20073840 —12466048 3395104 33030 272160
Q' —-Q 46656 23328 0 23328 46656 69984 93312 116640
Q- Q 0 38880 77760 116640 155520 194400 233280 272160

In this sector, the relations of these degeneracies are
Y(a,b,c)—Qa,b,c) = 24x324 xa(c—0b) 2 (a,b,c)—Qa,b,c) = 24x324xb(c—a) (7.5)

Note in the second and third tables, we did not include some small values of ¢, because
wall crossing at these charges is captured by ®;, x A~! instead of A™! x A™! x A~!: in
this regime, the bound state decay products include a 1/4-BPS black hole. Here are some
numerical examples. Consider (a,b,c) = (2,5,1) in the (—1,0, 1) sector, where {/(2,5,1) =
0 and 2"(2,5,1) = 23544. Note an integer factorization of 23544 is

23544 = 3 x 24 x 327 (7.6)
where 3 = b — a, 24 is the coefficient of 2" in the Taylor expansion of A(z)™! and 327 is

the coefficient of w' in the (—1,1) sector of @y, (y, z; w).
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For (a,b,c) = (3,4,1) in the (—1,1, 1) sector, we have
Q(3,4,1) — /(3,4,1) = 105048 = 1 x 324 x 327 (7.7)

where 1 = b — a, 324 is the coefficient of z! in the Taylor expansion of A(z)~!. Both of

these 2 examples show the following pattern(schematically) of wall-crossing
Q// — Q/ = (b - a/>91+392 (78)

where 3 means the number of states in the (1,3) subsystem and (2, is the appropriate
expansion coefficient in (7.1). Thus equation (7.8) exactly matches the structure of the 2-
center wall crossing formula (4.15), with ;3 the correct degeneracy for the charge I'; +T'y
on K3 x T?!

The following two tables are a short summary of more numerical results in the (r, s,t) =
(—1,1,1) sector.

Table 7.4: (—1,1,1) sector wall-crossing from (b — @)1 43

V' —Q b—a Q Qs (b—a) x U x Qs
(2,4,1) | 211896 2 324 327 211896
(3,4,1) | 105948 1 324 327 105948
(2,5,1) | 317844 1 324 327 317844
(3,5,1) | 211896 2 324 327 211896

Table 7.5: (—1,1,1) sector wall-crossing from (¢ — a)$2;Q243
QA"—Q c—a Q1 Qoyg (b—a) Xy X Qo3
(2,1,4) | 260658 2 1 130329 260658
(2,2,4) | 418608 2 1 209304 418608

where 130329 and 209304 are the coefficients of yzv and yzv? in the expansion of ®;;.

8 Discussion

In this paper we have put forward a conjecture for a precise counting function governing
the three-center BPS solutions in type II string compactification on K3 x T?. Support for
our conjecture comes from correct behavior under wall-crossing, and from the appearance
of the known counting functions governing single and two-center solutions (1/A and 1/®4)

in appropriate degenerate limits.
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The paper raises a number of questions:

e The objects we have described depend on a partition of the total charge I' into three
1/2-BPS charges I'1,T'5,I's. The invariants (7, s,t; a,b, ¢) defined in (3.7) depend on this
partition. Thus the coefficients Q(r, s, t;a,b,c¢) of 1/x9 do not count all BPS states with a
given total charge I', but rather count a partition-dependent subset thereof. Our results
suggest this subset is captured by a microscopic model characterized by (r, s,t;a, b, ¢), akin
to the simple cyclic 3-node quiver quantum mechanics models studied in [18, 19, 20, 21].
More specifically this should be a supersymmetric quantum mechanics model describing
the D-brane systems of section 4.1, in the spirit of for example the explicit models of
[29] describing D-branes on T°. What is the precise microscopic model appropriate for
our setup? More generally, one could ask if there exists a model-independent way of
characterizing Q(I';,T'2,T'3). A natural physical object depending on charge partitions is

the S-matrix; perhaps this may provide such a characterization along the lines of [36].

e We have loosely interpreted the coefficients of 1/x9 as BPS degeneracies, but did not
provide a definition in terms of a protected index. The standard index counting 1/4-BPS
states in A/ = 4 theories at generic points in the moduli space is the helicity supertrace
Bg. However this cannot be the appropriate index counting the states of interest to us:
with the exception of two-center bound states of 1/2-BPS black holes, multi-center bound
states are BPS only on positive-codimension subspaces of the moduli space, and have too
many fermionic zero modes to contribute to Bg [16, 17, 37, 38, 39]. Does there exist an
index interpretation of the coefficients Q(r, s,¢; a, b, ¢) on suitable subspaces of the moduli

space, perhaps along the lines of [37]7

e Our analysis of wall crossing and its relation to contour choices did not reach the level of
precision and generality of the prescriptions in [11, 13, 14, 15] for extracting BPS degen-
eracies from 1/®,, at a given point in the 7% x K3 moduli space. What is the analogous

prescription for extracting moduli-dependent degeneracies from 1/x97

e Is there a natural geometric way of understanding the origin of the genus-three Rie-
mann surface associated with 1/x97 A geometric origin of the genus-two Riemann surface
associated with 1/®;, was suggested in [3] and further clarified in [15]. Higher genus gen-
eralizations of this construction have appeared in counting higher-torsion dyons in N = 4
string theory [40, 24] and BPS states in geometrically engineered quantum field theories
[41, 42]. These higher-genus Riemann surfaces are non-generic, however, as they are holo-

morphically embedded in 7%, and thus correspond to a three-dimensional subspace of the
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higher-genus Siegel upper-half space. Understanding the relationship of our results with

these constructions should be instructive.

e The appearance of a degree three Siegel form counting three-center bound states suggests
that there should be a higher genus generalization, with a degree four Siegel form counting
four-center bound states and so forth. Indeed the number of duality invariants of a g-center
configuration equals g + (g) = % g(g+ 1), which equals the dimension of the genus-g Siegel
upper-half space.? At genus four we have a precise candidate, involving the Schottky form
Js [43]. Can one make a uniform story capturing the physics at all genera? A natural

conjecture is that it involves the chiral genus g bosonic string partition function.
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