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Abstract—The framework of Integral Quadratic Constraints
(IQC) introduced by Lessard et al. (2014) reduces the com-
putation of upper bounds on the convergence rate of several
optimization algorithms to semi-definite programming (SDP). In
particular, this technique was applied to Nesterov’s accelerated
method (NAM). For quadratic functions, this SDP was explicitly
solved leading to a new bound on the convergence rate of
NAM, and for arbitrary strongly convex functions it was shown
numerically that IQC can improve bounds from Nesterov (2004).
Unfortunately, an explicit analytic solution to the SDP was
not provided. In this paper, we provide such an analytical
solution, obtaining a new general and explicit upper bound on
the convergence rate of NAM, which we further optimize over
its parameters. To the best of our knowledge, this is the best,
and explicit, upper bound on the convergence rate of NAM for
strongly convex functions.

I. INTRODUCTION

Consider the problem

min
x∈Rp

f(x) (1)

under the following additional assumption, which holds

throughout this paper.

Assumption 1. 1) The function f is convex, closed and

proper;

2) Let Sd(m,L) be the set of functions h : R
d → R ∪

{+∞} such that m‖x−y‖2 ≤ (∇h(x)−∇h(y))
T
(x−

y) ≤ L‖x− y‖2 for all x, y ∈ R
d where 0 < m ≤ L <

∞ and ‖ · ‖ denotes the Euclidean norm; We assume

that f ∈ Sp(m,L), i.e. f is strongly convex and ∇f is

Lipschitz continuous.

In this paper, we provide a new bound on the convergence

rate of NAM when solving (1).

NAM has wide applications in machine learning. It is the

base of the well-known FISTA algorithm largely used to solve

problems arising in signal processing [1], and it was also

extensively applied in compressed sensing, as for instance in

[2], [3]. A trace norm regularization using NAM was proposed

in [4], which has applications in multi-task learning, matrix

classification and matrix completion. Even to train deep neural

networks, it was shown that NAM with a careful initialization

is able to achieve state-of-the-art accuracy [5].

NAM is parametrized by α > 0 and β ≥ 0 and takes the

form in Algorithm 1. We assume that α and β are fixed. A

classical choice for these parameters is [6]

α = 1/L, β = (
√
κ− 1)/(

√
κ+ 1), (2)
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general f , analytical expression not known)

τNG (Nesterov’s bound for general f )

τBP (Best possible rate for any 1st order method)

τNQ (Nesterov’s bound for quadratics)

τLQ (Lessard et al. bound for quadratics.)

Fig. 1. Different known linear rate bounds for NAM.

where κ = L/m. We define an upper bound on the conver-

gence rate of NAM, for fixed α, β and function f , as any

τ ∈ [0, 1] for which

‖xt − x∗‖ ≤ Cτ t‖x0 − x∗‖, (3)

where C > 0 is a constant, and x∗ is a fixed point of

Algorithm 1. Choosing α and β according to (2), [6] uses

the technique of estimate sequences and obtains

τ = τNG ,

√

1− 1/
√
κ. (4)

In addition, if f is quadratic, then

τ = τNQ , 1− 1/
√
κ. (5)

In [6] it was also shown that any first order method must obey

τ ≥ τBP , 1− 2/
√
κ+ 1. (6)

Several recent works have revisited NAM and computed

bounds on its convergence rate based on different techniques.

Although these re-derivations have increased our understand-

ing of NAM, and in some cases even inspiring new variations,

they have not improved previous results. A partial exception

is [7], where they reduce computing a bound on the rate of

Algorithm 1 Nesterov’s accelerated method (parameters α, β)

1: Initialize x0, x1

2: repeat

3: yt = (1 + β)xt − βxt−1

4: xt+1 = yt − α∇f(yt)
5: until stop criterion
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us to find an explicit convergence rate τ = τ(α, β, L,m): just

find P , λ, ρ and τ satisfying the conditions above.

Unfortunately, [7] does not give an explicit expression for

τ as a function of κ, α and β. Our main result in this paper

provides such an explicit formula when α = 1/L. To arrive

at this result, we first prove a series of intermediate steps.

Theorem 3. Equation (9) holds if β > 0, κ > 1, λ = α =
L = 1, ρ = τ > 0, τ is such that

− 4(−κ+ 1)2β2(−2 + ω) + ω(κ− 1 + κω)2

− 4(−κ+ 1)βω(−3κ+ 1 + κω) = 0, (11)

where ω = τ2 , and P =
[

a b c
b d e
c e f

]

, where

a = −
(

1
β
+ 2

)

ω + 2(β + 2) + β(s−1)
ω

− 2(β + 1)s, (12)

b = 1
2 ((2β + 1)(s− 1) + ω) , (13)

c = β − ω(s+ω−1)
2β(s−1) − (β + 1)s− ω + 1, (14)

d = (1− s)β, (15)

e = ω − (1− s)β, (16)

f = ω2

β−βs
. (17)

Note that ω in (12)-(17) satisfies (11) and we defined s = κ−1.

Remark 4. Note that (11) is a third degree polynomial in ω
with real coefficients, which always has a real root. Moreover,

all roots have a closed form expression. This defines τ =
τ(κ, β) through τ2 = ω.

Proof of Theorem 3. Let

H =

[

H1 H2

H>
2 H3

]

(18)

be the left hand side of (9) multiplied by −1, where H1, H2

and H3 are 2 × 2 matrices and H>
2 denotes the transpose of

H2. To show that H is positive semidefinite we are going to

use the following property of the Schur complement [15]: H
is positive semidefinite if and only if

H3 � 0, (19)

H1 −H2H
†
3H

>
2 � 0, (20)

(I −H3H
†
3)H

>
2 = 0, (21)

where H†
3 is the pseudoinverse of H3 [16].

To check that conditions (19)–(21) hold, we first replace

λ = α = L = 1 and formulas (12)–(17) in H . Hence, for (19)

we have

H3 =

[

ω3

β−sβ
−ω

−ω β−sβ
ω

]

(22)

whose eigenvalues are 0 and 1
ω

(

β(1− s) + ω4

β(1−s)

)

. Both

are nonnegative since s = κ−1 < 1, β > 0 and ω > 0.

Now we check (21). H3 has no inverse but it has an explicit

pseudoinverse given by

H†
3 =





− (s−1)βω5

(ω4+(s−1)2β2)2
− (s−1)2β2ω3

(ω4+(s−1)2β2)2

− (s−1)2β2ω3

(ω4+(s−1)2β2)2
− (s−1)3β3ω

(ω4+(s−1)2β2)2



 . (23)

Replacing this expression in the left hand side of (21) confirms

that it holds true. Finally, we check (20). After a simple, but

tedious, calculation one can obtain

H1 −H2H
†
3H

>
2 =

[

−4β2(s−1)2(ω−2)−4β(s−1)ω(s+ω−3)+ω(−s+ω+1)2

4β(s−1) 0

0 0

]

.

(24)

Let δ = δ(ω, s, β) be the numerator of the top-left ele-

ment in the matrix above. A direct calculation shows that

κ2δ(ω, κ−1, β) is the left hand side of (11), which is zero by

assumption. Hence, H1−H2H
†
3H

>
2 = 0 and (20) is true.

Let τ = τ(κ, β) be the smallest (real) solution of (11) such

that τ ∈ (0, 1). Our next theorem gives an expression for the

choice of β = β(κ) that minimizes τ(κ, β) for each κ > 1.

Theorem 5. Let β(κ) minimize τ(κ, β), for fixed κ > 1. We

have

β(κ) =
2κ−

√
2κ− 1− 1

2
(

κ+
√
2κ− 1

) , (25)

τ(κ, β(κ)) =

√

1−
√
2κ− 1

κ
. (26)

Proof. Note that (11) is a quadratic polynomial in β. Its zeros

are

β =
x±√

y

z
, (27)

where

x = (κ− 1)ω(κ(ω − 3) + 1), (28)

y = 2(κ− 1)2(ω − 1)ω
(

κ
(

κ(ω − 1)2 − 2
)

+ 1
)

, (29)

z = 2(κ− 1)2(ω − 2). (30)

For each κ > 1, we want to find the smallest τ ∈ (0, 1)
for which we still have real roots in the above equation.

This is the same as finding the smallest ω ∈ (0, 1) for

which
(

κ
(

κ(ω − 1)2 − 2
)

+ 1
)

, a quadratic function of ω, is

nonnegative. This is easy to find, yielding

ω = 1−
√
2κ− 1

κ
, (31)

for which we have

β =
x

y
=

ω(κ(ω − 3) + 1)

2(κ− 1)(ω − 2)
= −−2κ+

√
2κ− 1 + 1

2
(

κ+
√
2κ− 1

) . (32)

Theorem 6. If τ and β are chosen as (25) and (26), re-

spectively, and the entries in P according to (12)–(17), then

P � 0.

Proof. Let P ′ be P with its rows and columns permuted such

that the first, second and last row/column become the last,

second and first row/column. Note that P ′ and P have the

same spectrum. We are going to show that all the principal

minors of P ′ are strictly positive, a necessary and sufficient



condition for positive definitiveness known as Sylvester’s

criterion [17].

Replacing (12)–(17) in P ′, the first minor is given by

f =
κω2

β(κ− 1)
> 0. (33)

The second minor is
∣

∣

∣

∣

d e
e f

∣

∣

∣

∣

=
β(κ− 1)(β(−κ) + β + 2κω)

κ2
, (34)

whose sign is dictated by β(−κ) + β + 2κω and which, by

substituting (25)–(26), becomes

β(−κ)+β+2κω =
(κ− 1)

(

2κ+
√
2κ− 1− 3

)

2
(

κ+
√
2κ− 1

) > 0, (35)

since κ ≥ 1.

The third minor is just the determinant of P ′, which is

1
ω
β3

(

1
κ
− 1

)3
(ω − 1) + β2

(

1
κ
− 1

)2 ( 1
κ
+ 3ω − 5

)

+ 2β
(

1
κ
− 1

)

ω
(

1
κ
+ ω − 3

)

− 1
2ω

(

− 1
κ
+ ω + 1

)2
. (36)

We can use (11) to simplify this expression to

β2(κ− 1)2((ω − 1)(β(−κ) + β + κω) + ω)

κ3ω
, (37)

whose sign is dictated by (ω − 1)(β(−κ) + β + κω) + ω. If

we substitute (25)–(26) we obtain

(ω − 1)(β(−κ) + β + κω) + ω =
(κ− 1)

(√
2κ− 1− 1

)

2κ
(

κ+
√
2κ− 1

)

> 0
(38)

since κ > 1.

We now provide our main result, which directly follows

from our previous theorems and a simple rescaling argument.

Theorem 7. Let f ∈ Sp(m,L) and κ = L/m ≥ 1. Consider

Algorithm 1 to solve the optimization problem (1). If α = 1
L

and β = 2κ−
√
2κ−1−1

2(κ+
√
2κ−1)

, then

‖xt − x∗‖ ≤ C0C1 τ
t, (39)

where C0 =
√

‖x1 − x∗‖2 + ‖x0 − x∗‖2, C1 > 0 is a

function of κ, and

τ =

√

1−
√
2κ− 1

κ
. (40)

Proof. We can assume, without loss of generality, that κ > 1.

The case κ = 1 follows by a continuity argument, applying a

small quadratic perturbation to f and letting the perturbation

converge to zero.

The convergence rate of Algorithm 1 on f with α = 1/L is

the same as its convergence rate on f̂ = f/L ∈ Sp(m, 1) with

α = 1. In this setting, Theorem 3 and Theorem 6 tell us that

the conditions to apply Theorem 2 hold for our choice of α
and β. Furthermore, according to Theorem 5, for this choice

of α and β, the convergence rate τ satisfies (40).

IV. THE PATHWAY TOWARDS THE PROOF

The reader might have noticed that our previous proofs

amount to substituting expressions into conditions and sub-

sequently checking that these conditions are satisfied. It is

enlightening to explain how we obtained these expressions in

the first place. Specifically, how did we obtain (12)–(17) from

which all other formulas follow? In a nutshell, we built our

ansatz based on numerical experimentation. Reveling this path

might be useful for other researchers to use the IQC framework

to derive explicit formulas for other algorithms as well.

First, we reduce the number of variables in the problem by

setting λ = 1, ρ = τ and α = L = 1.

Second, we fix β > 0 and κ ∈ (0, 1), and use a convex

optimization solver to numerically find the smallest τ for

which (9) is satisfied under the assumption that P � 0. Let

H be the right hand side of (9) multiplied by −1. To find this

τ , we start with τ = 0.5 and check if the SDP

min
P

1 s.t. H � 0 and P � 0 (41)

has a feasible solution2. In the affirmative case, we reduce

τ , otherwise we increase τ . Notice that the eigenvalues of H
increase monotonically with τ . Hence, we can use bisections to

find the smallest possible τ in a few steps. After this procedure

is done, we check if P � 0. If this does not hold, we try a

different β and/or κ.

Third, we repeat this procedure for several pairs of (β, κ).
For each pair, we obtain numerical values for P and H such

that H � 0 and P � 0 hold. From these numerical values, we

try to identify some very simple properties that H or P might

satisfy for all tested values of β and κ. Labeling the entries

of P as in Theorem 3, the properties that we can easily guess

based on our numerical experiments are the following:

1) Recall that P = P> =
[

a b c
b d e
c e f

]

. Then,

e = ω − d, (42)

d = β(1−m). (43)

2) Let ∆i be the principal minor of H obtained by remov-

ing the ith row and column. We observe ∆i = 0 for

i = 1, . . . , 4;

3) Let ∆1,2;1,2 be the principal minor of H obtained from

removing the 1st and 2nd column/row from H . We

observe that ∆1,2;1,2 = 0.

Fourth, we replace (42) and (43) into H and we solve the

condition ∆1 = 0 for a. This leads to

a = 1
ω
(−β + 2cω − fω + βm+ 2ω) . (44)

We substitute this expression into H and solve ∆3 = 0 for b,
yielding

b = 1
2 ((2β + 1)(m− 1) + ω) . (45)

2Note that the standard formulation of convex optimization problems, and
existing solvers, does not allow us to enforce P � 0. This is why we enforce
P � 0 and later check if P � 0.



Again, we substitute this expression in H and solve ∆4 = 0
for c, obtaining

c = 1
z
(x±√

y) , (46)

where

x = −2β(m− 1)ω((β + 1)(m− 1)− f)

− (2β + 1)(m− 1)ω2 + ω3, (47)

y = ω(−4β2(m− 1)2(ω − 2)− 4β(m− 1)ω(m+ ω − 3)

+ ω(−m+ ω + 1)2)(βf(m− 1) + ω2), (48)

z = 2β(m− 1)ω. (49)

We substitute the expression for c with + sign in H and solve

∆1,2;1,2 = 0 for f . This leads to

f = − ω2

β(m− 1)
. (50)

Finally, we eliminate f , d and c from equations (42), (44)

and (46). This leads to (12)–(17), observing that m = s = κ−1

when L = 1. Note that (11) can be obtained from (12)–(17)

by forcing H � 0 (see the proof of Theorem 3).

V. NUMERICAL RESULTS AND DISCUSSION

We first note that our optimal choice for β in (25) is

numerically very close, but not equal, to Nestervo’s choice

in (2); see Figure 3 (left). Our convergence rate for NAM

is almost indistinguishable to τLG in Figure 1, and it is

indistinguishable from the curve obtained by running the

Matlab code of [7] for the plot of τLG with our optimal choice

of α and β. However, plotting τLG for the choice in (7) gives a

numerical rate that is better than the one derived in this paper;

see Figure 3 (right). This shows that we have not extracted

the best possible convergence rate for NAM from the IQC

framework. Indeed, we assumed that ρ = τ and α = 1/L
which might be suboptimal. We did so because we were unable

to find an ansatz without restricting α or ρ. There are too many

free variables to perform closed form calculations, e.g. could

not solve some of the resulting polynomial equations.

We know that any bound produced by the IQC-framework

must be above or equal to τLQ in Figure 3. It is an important

open question to know what is the best possible bound that

the IQC-framework can produce. Can it reach τLQ?

VI. CONCLUSION AND FUTURE WORK

We have derived a new, improved, and explicit convergence

rate of Nesterov’s accelerated method for strongly convex

functions. Our numerical experiments using the IQC frame-

work [7] show that our results can be further improved. Future

work should include deriving better and explicit convergence

rates using the IQC framework, and demonstrating that these

cannot be improved. It would also be important to know if

IQC allows us to prove the best possible upper bound on

the convergence rate of Nesterov’s method. To do so, one

would have to produce a family of “bad” functions for which

the convergence rate of Nesterov’s method matches the rate

obtained from IQC.
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