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Abstract. A Stick graph is an intersection graph of axis-aligned seg-
ments such that the left end-points of the horizontal segments and the
bottom end-points of the vertical segments lie on a “ground line,” a
line with slope −1. It is an open question to decide in polynomial time
whether a given bipartite graph G with bipartition A∪B has a Stick rep-
resentation where the vertices in A and B correspond to horizontal and
vertical segments, respectively. We prove that G has a Stick representa-
tion if and only if there are orderings of A and B such that G’s bipartite
adjacency matrix with rows A and columns B excludes three small ‘for-
bidden’ submatrices. This is similar to characterizations for other classes
of bipartite intersection graphs.
We present an algorithm to test whether given orderings of A and B

permit a Stick representation respecting those orderings, and to find such
a representation if it exists. The algorithm runs in time linear in the size
of the adjacency matrix. For the case when only the ordering of A is
given, we present an O(|A|3|B|3)-time algorithm. When neither ordering
is given, we present some partial results about graphs that are, or are

not, Stick representable, and we give an exact O(1.3n
2

)-time decision
algorithm, where n = |A|+ |B|.

1 Introduction

LetO be a set of geometric objects in the Euclidean plane. The intersection graph
of O is a graph where each vertex of G corresponds to a distinct object in O, and
two vertices are adjacent in G if and only if the corresponding objects intersect.
Recognition of intersection graphs that arise from different types of geometric
objects such as segments, rectangles, discs, intervals, etc., is a classic problem in
combinatorial geometry. Some of these classes, such as interval graphs [2], can
be recognized in polynomial-time, whereas many others are NP-hard [4, 26, 28].
There are many beautiful results that characterize intersection classes in terms of
a vertex ordering without certain forbidden patterns, and recently, Hell et al. [19]
unified many previous results by giving a general polynomial time recognition
algorithm for all cases of small forbidden patterns.





Although this characterization does not (yet) give us a polynomial time al-
gorithm to recognize Stick graphs, it allows us to make some progress. Given
a bipartite graph G with vertex bipartition A ∪ B, we want to know if G has
a Stick representation with A and B corresponding to horizontal and vertical
segments, respectively. It is easy to show that a solution to this problem is com-
pletely determined by a total ordering σ of the vertices of G corresponding to the
order (from left to right) in which the segments touch the ground line. A natural
way to tackle the recognition of Stick graphs is as a hierarchy of problems, each
(possibly) more difficult than the next:

(i) Fixed As and Bs: In this case an ordering, σa, of the vertices in A and
an ordering, σB , of the vertices in B are given, and the output ordering
σ must respect these given orderings. Because of our forbidden submatrix
characterization, this problem can be solved in polynomial time.

(ii) Fixed As: In this case only the ordering σA is given.
(iii) General Stick graphs: In this case, neither σA nor σB is given, i.e., there

is no restriction on the ordering of the vertices.

Our Results: We give an algorithm with run-time O(|A||B|) for problem (i).
This is faster than naively looking for the forbidden submatrices. (And in fact,
we use our algorithm to prove the forbidden submatrix characterization). Fur-
thermore, the algorithm will find a Stick representation when one exists.

We give an algorithm for problem (ii) with run time O(|A|3|B|3) that uses the
forbidden submatrix characterization and reduces the problem to 2-Satisfiability.
For problem (iii), recognizing Stick graphs, we give some conditions that ensure
a graph is a Stick graph, and some conditions that ensure a graph is not a Stick
graph. We also give an exact recognition algorithm using 3-SAT with run-time
O(1.3n

2

). This is better than a naive exponential time algorithm, and may be
reasonable in practice since SAT solvers can often handle instances with a million
variables [23].

Related Work: We now review the research related to the recognition of inter-
section graphs, in particular those that are bipartite.

Interval graphs, i.e., intersection graph of horizontal intervals on the real
line, can be recognized in linear time [2, 13]. Bipartite interval graphs with a
fixed bipartition are known as interval bigraphs (IBG) [14,29], and can be recog-
nized in polynomial time [29]. In contrast to the interval graphs, no linear-time
recognition algorithm is known for IBG.

Many bipartite graph classes have been characterized in terms of forbidden
submatrices of the graph’s bipartite adjacency matrix, and a rich body of re-
search examines when the rows and columns of a matrix can be permuted to
avoid forbidden submatrices [25]. For example, a graph G is chordal bipartite if
and only if M(G) can be permuted to avoid the matrix γ1 in Fig. 2 [25], which
led to a polynomial-time algorithm [27]. G is a bipartite permutation graph if
and only if M(G) can be permuted to avoid γ1, γ2, and γ3 [11].

A graph is a two-directional orthogonal ray (2DOR) graph if it admits an
intersection representation of upward and rightward rays [32, 33]. A graph is
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γ1 =

[

1 0
1 1

]

γ2 =

[

1 0
0 1

]

γ3 =

[

1 1
0 1

]

γ4 =

[

1 0 1
* 1 *

]

γ5 =





* 1 *
1 0 1
* 1 *





Fig. 2. Forbidden submatrices, where ∗ stands for either 0 or 1.

a 2DOR graph if and only if its incidence matrix admits a permutation of its
rows and columns that avoids γ1 and γ2 [32]. There is a linear-time algorithm to
recognize 2DOR graphs [12,32]. If there are 3 or 4 allowed directions for the rays,
then the graphs are called 3DOR or 4DOR graphs, respectively. Felsner et al. [15]
showed that if the direction (right, left, up, or down) for each vertex is given,
then the existence of a 4DOR representation respecting the given directions can
be decided in polynomial time. If the horizontal elements are segments and the
vertical elements are rays, then the corresponding intersection graphs are called
SegRay graphs [7–9, 24]. A graph G is a SegRay graph if and only if M(G) can
be permuted to avoid γ4 [10].

The time-complexity questions for 3DOR, 4DOR and SegRay are all open.
The class of segment graphs contains the graphs that can be represented as

intersections of segments (with arbitrary slopes and intersection angles). Every
planar graph has a segment intersection representation [6]. Restricting to axis-
aligned segments gives rise to grid intersection graphs (GIG) [26]. A bipartite
graph is a GIG graph if and only if its incidence matrix admits a permutation of
its rows and columns that avoids γ5 [18]. If all the segments must have the same
length, then the graphs are known as unit grid intersection graphs (UGIG) [28].
The recognition problem is NP-complete for both GIG [26] and UGIG [28]. We
note that 4DOR is a subset of UGIG but Stick is not [8].

Researchers have examined further restrictions on GIG. For example, the
graphs that admit a GIG representation with the additional constraint that all
the segments must intersect (or be “stabbed by”) a ground line form the stabbable
grid intersection (StabGIG) graph class [8].

Another class of intersection graphs that restricts the objects on a ground
line is defined in terms of hooks. A hook consists of a center point on the ground
line together with an incident vertical segment and horizontal segment above
the ground line. Hook graphs are intersection graphs of hooks [5, 21, 34], e.g.,
see Fig. 1(d). Hook graphs are also known as max point-tolerance graphs [5] and
heterozygosity graphs [17]. The bipartite graphs that admit a Hook representa-
tion are called BipHook [8]. The complexities of recognizing the classes StabGIG,
BipHook, and Stick are all open [8]. Chaplick et al. [8] examined the containment
relations of these graph classes.

Grounded segment representations are a generalization of Stick representa-
tions, where the segments can have arbitrary slopes, e.g., see Fig. 1(e). Note
that the segments are still restricted to lie on the same side of the ground line.
Cardinal et al. [4] showed that the problem of deciding whether a graph admits
a grounded segment representation is ∃R-complete. We refer to [3, 4] for other

4



related classes such as outersegment and outerstring graphs, and for the study
of their containment relations.

The following table summarizes the time complexities of recognizing different
classes of bipartite intersection graphs, where n and m are the sizes of the two
vertex sets of the bipartition.

Graph Class Time Complexity Ref

Chordal Bipartite Graphs O((n+m)2), or
|E| log(n+m)

[27, 35]

Bipartite Permutation Graphs O(nm)-time [36]

2-Directional Ray Graphs (2DOR) O(nm)-time [12,32]

3- or 4-Directional Ray Graphs (3DOR, 4DOR) Open [12,32]

4-DOR with given directions for vertices f(n,m)-timea [15]

3-DOR with a given bipartition (A ∪B), and an
ordering for As, i.e., vertical rays

O((n+m)2)-time [15]

Grid Intersection Graphs (GIG) NP-complete [26]

Unit Grid Intersection Graphs (UGIG) NP-complete [28]

Grounded Segment Intersection Graphs ∃R-complete [4]

StabGIG, SegRay, Hook, BipHook and Stick Graphs Open [8, 22]

a Multiplication time for two (n+m)× (n+m) matrices

2 Fixed As and Bs

In this section we study Stick representations of graphs with a fixed bipartition
of the vertices and fixed vertex orderings for each vertex set. We call this problem
StickAB , defined formally as follows.

Problem: Stick Representation with Fixed As and Bs (StickAB)
Input: A bipartite graph G = (A∪B,E), an ordering σA of the vertices in
A, and an ordering σB of the vertices in B.
Question: Does G admit a Stick representation such that the ith horizontal
segment on the line ` corresponds to the ith vertex of σA and the jth vertical
segment on ` corresponds to the jth vertex of σB?

We first present an O(|A||B|)-time algorithm for StickAB . A Stick represen-
tation is totally determined by the order σ of the segments’ intersection with the
ground line (details in the proof of Lemma 1). Thus the idea of the algorithm
is to impose some ordering constraints between the vertices of A and B based
on some submatrices of the adjacency matrix of G. We show that the required
Stick representation exists if and only if there exists a total order σ of (A ∪ B)
that satisfies the constraints and preserves the given orderings σA and σB . We
now describe the details.
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see Figure 1(c). This is a “topological order” of H. Initiate the drawing of the
corresponding orthogonal segments in this order on the ground line `. This de-
termines the y-coordinate of every a ∈ A and the x-coordinate of every b ∈ B.
For each vertex a ∈ A, let maxB(a) be the neighbor of a in G with the largest
index. We extend the horizontal segment corresponding to a to the right until
the x-coordinate of maxB(a). Similarly, for each vertex b ∈ B, let minA(b) be
the neighbor of b in G with the minimum index. We extend the vertical segment
corresponding to b upward until the y-coordinate of minA(b).

We must show that the resulting drawing does not contain any forbidden
intersection. Suppose by contradiction that the segments of aj and bp intersect,
but they are not adjacent in G, i.e., mj,p = 0. We now have aj ≺ bp, and
the entries bq = maxB(aj) and ai = minA(bp) give the submatrix described in
Condition C2, thus the constraint bp ≺ aj applies, a contradiction. �

An algorithm to solve StickAB follows immediately, and can be implemented
in linear time in the size of the adjacency matrix M .

Theorem 1. There is an O(|A||B|)-time algorithm to decide the StickAB prob-
lem, and construct a Stick representation if one exists.

Proof. The algorithm was given above: We construct the directed graph H from
the 0-1 matrix M and test if H is acyclic. This correctly decides StickAB by
Lemma 1. Furthermore, if H is acyclic, then we can construct a Stick represen-
tation as specified in the proof of Lemma 1. Pseudocode for the algorithm is
given in Appendix A.

The matrix M has size O(nm) where n = |A| and m = |B|, and the graph
H has n +m vertices and O(nm) edges. We can test acyclicity of a graph and
find a topological ordering in linear time. Also, the construction of the Stick
representation is clearly doable in linear time.

Thus we only need to give details on constructing H in time O(nm). We
can construct the edges of H that correspond to σA and σB in time O(n+m).
The edges arising from constraints C1 correspond to the 1’s in the matrix M ,
so we can construct them in O(nm) time. The edges arising from constraints C2

correspond to some of the 0’s in the matrix M . Specifically, a 0 in position mj,p

gives a C2 constraint bp ≺ aj if and only if there is a 1 in row j to the right of
the 0 and a 1 in column p above the 0. We can flag the 0’s that have a 1 to their
right by scanning each row of M from right to left. Similarly, we can flag the 0’s
that have a 1 above them by scanning each column of M from bottom to top.
These scans take time O(nm). Finally, if a 0 in M has both flags, then we add
the corresponding edge to H. The total time is O(nm). �

Lemma 1 also yields a forbidden submatrix characterization for StickAB .

Theorem 2. An instance of StickAB with graph G = (A∪B,E) has a solution
if and only if G’s ordered adjacency matrix M has no ordered submatrix of the
following form:
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P1 =

bp bq br
[ ]

ai ∗ 1 ∗
aj ∗ 0 1
ak 1 ∗ ∗

, P2 =

bp bq
[ ]

ai 1 ∗
aj 0 1
ak 1 ∗

, P3 =

bp bq br
[ ]

ai ∗ 1 ∗
aj 1 0 1

.

Observe that P2 and P3 are special cases of P1 with p=q and j=k, respectively.

Proof. We will use the graph H that we constructed above and used in Lemma 1.
By Lemma 1, the theorem statement is equivalent to the statement that M has
a submatrix P1, P2 or P3 if and only if H has a directed cycle.

We first show that if the matrix M has one of the ordered submatrices
P1, P2, P3 then H has a directed cycle. For P1, the cycle in H is ak ≺ bp (by C1),
bp ≺ bq (by σB), bq ≺ aj (by C2), aj ≺ ak (by σA). For P2, the cycle is bp ≺ aj
(by C2), aj ≺ ak (by σA), ak ≺ bp (by C1). For P3, the cycle is bq ≺ aj (by C2),
aj ≺ bp (by C1), bp ≺ bq (by σB).

To prove the other direction, suppose that H has a directed cycle O. We
will show that M has one of the submatrices P1, P2, P3. Let bq be the rightmost
vertex of O in σB , and let (bq, z) be the outgoing edge of bq in O. Since bq is
the rightmost vertex of O in σB , z must be a vertex aj of A. The constraint
bq ≺ aj can only be added by C2. Therefore, we must have the configuration

bq br
[ ]

ai 1 *

aj 0 1 . The path can now continue from aj following zero or more A vertices,

but to complete the cycle, it eventually needs to reach a vertex bp of B. Since
bq is the rightmost in σB , bp must appear either before bq or coincide with bq.
First suppose that bp 6= bq. If the outgoing edge of aj is (aj , bp), then we obtain
the configuration P3. Otherwise, the path visits several vertices of A and then
visits bp, and we thus obtain the configuration P1.

Suppose now that bp = bq. In this case the outgoing edge of aj cannot be
(aj , bp), because such an edge can only be added by C1, which would imply
mj,p = mj,q = 1, violating the configuration above. If the path visits several
vertices of A and then visits bp(= bq), then there must be a 1 in the qth column
below the jth row. We thus obtain the configuration P2. �

Bipartite Graphs Representable for All Orderings: The above forbidden
submatrix characterization allows us to characterize the bipartite graphs G =
(A∪B,E) that have a Stick representation for every possible ordering of A and
B. Observe that the forbidden submatrices P2, P3, P1 correspond, respectively,
to the bipartite graphs shown in Figures 4(a)–(c). We can construct 22 = 4
graphs from Figure 4(a) based on whether each of the dotted edges is present
or not. Similarly, we can construct 22 = 4 graphs from Figure 4(b), and 25 = 32
graphs from Figure 4(b). Let H be the set that consists of these 40 graphs. From
Theorem 2 we immediately obtain:

Theorem 3. A bipartite graph G = (A ∪ B,E) admits a Stick representation
for every possible ordering of A and B if and only if G does not contain any
graph of H.
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Let F be the resulting 2-SAT formula, which can be solved in linear time in
the input size [1], i.e., O((|A|+ |B|)2) time. If F does not have a solution, then
there does not exist any ordering of the Bs that avoids the forbidden patterns.
Thus G does not admit the required Stick representation. If F has a solution,
then there exists an ordering σB of Bs that together with σA avoids all the
forbidden patterns. By Theorem 2, G admits the required Stick representation,
and it can be constructed from σA and σB using Theorem 1.

Thus the time complexity of the algorithm is dominated by the time to
construct the 2-SAT formula, which is O(|A|3|B|3). �

Bipartite Graphs Representable for All A Orderings: We also considered
the class of bipartite graphs G = (A ∪B,E) such that for every ordering of the
vertices of A there exists a Stick representation. We will call this the Stick∀A
class. Although we do not have a characterization of the Stick∀A class, we de-
scribe some positive and negative instances below in Remark 1 and Remark 2,
with proofs in Appendix B.

Remark 1. Any bipartite graph G = (A ∪ B,E) with at most three vertices in
A belongs to the Stick∀A class.

Remark 2. A graph does not belong to Stick∀A if its bipartite adjacency matrix

contains the submatrix













a1 1 ∗

a2 0 1

a3 1 0

a4 ∗ 1
. (Here the columns are unordered.)

4 Stick graphs

In this section we examine general Stick representations, i.e., we do not impose
any constraints on the ordering of the vertices.

Problem: Stick Representation
Input: A bipartite graph G = (A ∪B,E).
Question: Does G admit a Stick representation such that the vertices in A

and B correspond to horizontal and vertical segments, respectively?

It is an open question to find a polynomial time algorithm for the above
problem of recognizing Stick graphs. In this section we give some partial results.

We begin with some positive instances (Remarks 3–4) and some negative
instances (Remark 5). The proofs of these remarks are included in Appendix C.
We need a few definitions to state the remarks, as follows.

A matrix has the simultaneous consecutive ones property if the rows and
columns can be permuted so that the 1’s in each row and each column appear
consecutively [30]. A one-sided drawing of a planar bipartite graph G = (A ∪
B,E) is a planar straight-line drawing of G, where all vertices in A lie on the
x-axis, and the vertices of B lie strictly above the x-axis [16].
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Remark 3. Let G = (A∪B,E) be a bipartite graph and let M be its adjacency
matrix, where the rows and columns correspond to As and Bs, respectively.
If M has the simultaneous consecutive ones property, then G admits a Stick
representation, which can be computed in O(|A||B|) time.

Remark 4. Let G = (A ∪ B,E) be an n-vertex bipartite graph that admits a
one-sided planar drawing. Then G is a Stick graph, and its Stick representation
can be computed in O(n2) time.

Remark 5. Let H be the graph obtained by deleting a perfect matching from
a complete bipartite graph K4,4. Any graph G = (A ∪ B,E) containing H as
an induced subgraph does not admit a Stick representation. Since H is a planar
graph, not all planar bipartite graphs are Stick graphs.

Recognition Algorithm: We now give an exact O(1.3n
2

)-time algorithm to
decide whether an n-vertex bipartite graph with a fixed bipartition admits a Stick
representation. We use 3-SAT, i.e., a CNF (conjunctive normal form) formula
such that each of its clauses contains at most three literals. Let G = (A∪B,E) be
the given bipartite graph. We create a 3-SAT formula Φ such that Φ is satisfiable
if and only if G admits a Stick representation. We now describe the algorithm
in detail.

For each pair of vertices v, w of G, we create variables pv≺w and pw≺v

(representing the ordering of v and w on the ground line), and add clauses
(¬pv≺w ∨ ¬pw≺v) ∧ (pv≺w ∨ pw≺v) to enforce pv≺w = ¬pw≺v. We now express
the conditions C1 and C2 from Section 2 as 3-SAT clauses.

Φ1: (Condition C1.) If mi,p = 1, then set pai≺bp = 1.
Φ2: (Condition C2.) We must express the condition that if the ordered sub-

matrix

bp bq
[ ]

ai 1 ∗

aj 0 1 exists, then pbp≺aj
= 1. Thus, if mi,p = 1,mjq = 1 and

mj,p = 0, then we add the clause (¬pai≺aj
∨ ¬pbp≺bq ∨ ¬paj≺bp).

Φ3: For each triple u, v, w of vertices, add the clause (¬pu≺v ∨ ¬pv≺w ∨ pu≺w).
Intuitively, these are transitivity constraints, which would ensure a total
ordering on the ground line.

Let Φ be the resulting 3-SAT formula. We now have the following:

Lemma 2. The 3-SAT Φ is satisfiable if and only if G admits the required in-
tersection representation.

Proof. First assume that Φ is satisfiable. We first claim that by the clauses of Φ3,
one can obtain a total order τ of the vertices on the ground line. Suppose for a
contradiction that there exists a cycle, e.g., pu1≺u2

, pu2≺u3
, . . . , puk−1≺uk

, puk≺u1

are all set to 1. Consider such a cycle where k is minimal. We first claim that
k > 3. By construction of Φ3, k cannot be equal to 3. In addition, if k = 2,
then we have clauses that ensure that pu1≺u2

and pu2≺u1
cannot have the same

truth value. Observe that if k > 3, then by the construction of Φ3, we can find
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a smaller cycle pu1≺u3
, . . . , puk−1≺uk

, puk≺u1
, which contradicts that the cycle is

minimal.
Since Φ1 and Φ2 impose the constraints of Lemma 1, one can construct the

required Stick representation using τ .
For the other direction, assume that a Stick representation exists. We will

construct a satisfying truth assignment for Φ. For each v, w, if v precedes w on
the ground line, then we set pv≺w to 1, and pw≺v to 0, which is also consistent
with Φ3. If two segments ai and bp intersect, then ai must precede bp. Therefore,
we set pai≺bp to be 1 and pbp≺ai

to be 0, which is consistent with Φ1. Finally, if
ai ≺ aj ≺ bp ≺ bq, and we have the submatrix as described in the construction of
Φ2 then aj and bp must intersect. Thus the clauses added in Φ2 must be satisfied.
�

Algorithm 3 in Appendix C gives pseudocode for our algorithm. An instance
of 3-SAT with k variables can be solved in O(1.3k) time [20]. Note that we have
a polynomial number of clauses and the number of variables is O(n2), where
n = |A|+ |B|. We thus obtain the following theorem.

Theorem 5. Given an n-vertex bipartite graph G = (A∪B,E), one can decide

whether G admits a Stick representation in O(1.3n
2

f(n)) time, where f(·) is a
polynomial in n.

Our 3-SAT formulation is in fact a ‘mixed Horn formula’ [31] with at most
three literals per clause. Therefore, an interesting direction of research would be
to find faster exponential-time algorithms for such mixed Horn 3-SAT.

5 Open Problems

1. What is the complexity of recognizing Stick graphs? Is the problem NP-
complete? By Theorem 2 the problem is equivalent to ordering the rows and
columns of a 0-1 matrix to exclude the 3 forbidden submatrices given in the
Theorem statement. Note that these forbidden submatrices involve 5 or 6 rows
and columns (vertices of the graph) so the results of Hell et al. [19], which apply
to patterns of at most 4 vertices in a bipartite graph, do not provide a polynomial
time algorithm.

2. Can we improve the time complexity of the recognition algorithm for graphs
with fixed As?
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A Fixed As and Bs

Algorithm 1 Algorithm for Fixed-A-Fixed-B-Stick Recognition

1: Input: A bipartite graph G = (A∪B,E), an ordering σA and an ordering σB

2: M ← A matrix representation of G whose rows follow the ordering σA, and columns
follow the ordering σb

3: H ← A graph with vertex set (A∪B) but without any edge.
4: for each consecutive vertices ai−1, ai in σA do add the edge (ai−1, ai) to H

5: for each consecutive vertices bj−1, bj in σB do add the edge (bj−1, bj) to H

6: for each entry mi,j = 1 in M do add the edge (ai, bj) to H

7: for each ai, aj , bp, bq (respecting σA and σB) of the form

bp bq
[ ]

ai 1 ∗
aj 0 1

do add the

edge (bp, aj) to H

8: if H contains a cycle then return false //No solution exists

9: σ ← A topological ordering of the vertices of H
10: return σ

B Fixed As

Proof (Remark 1).

The proof is by construction. For any ordering σA, we can categorize the
columns into at most eight categories (assuming A has exactly three vertices,
the other cases are straightforward). We then organize those categories in the

following order:

b1 b2 b3 b4 b5 b6 b7 b8
[ ]

a1 1 0 1 0 0 1 1 0
a2 0 1 1 0 1 1 0 0
a3 0 0 0 1 1 1 1 0

. It is now straightforward to see that

the resulting ordering corresponds to the required Stick representation, e.g., see
Fig. 5(a). �

Proof (Remark 2).

We refer the reader to Fig. 5(b). Any σA consistent with the given matrix

would serve as a negative instance, as follows. The adjacency matrix

b1 b2
[ ]

a1 1 *
a2 0 1
a3 1 0
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C Free As and Free Bs

Algorithm 3 Algorithm for Stick Recognition

1: Input: A bipartite graph G = (A ∪B,E)
2: Φ← A 3-SAT with variables of the form pu≺w and pw≺u, for every pair of vertices

u,w of G.
3: for each pair of vertices u,w of G do add clauses (¬pv≺w∨¬pw≺v)∧(pv≺w∨pw≺v).

4: for each edge (ai, bj) in G do set pai≺bk ← true, and pbk≺ai
← false.

5: for each ai, aj , bk, bl do

6: if mi,p = 1,mjq = 1 and mj,p = 0 then add (¬pai≺aj
∨ ¬pbp≺bq ∨ ¬paj≺bp)

7: for each triple u, v, w of vertices of G do add the clause (¬pu≺v ∨¬pv≺w ∨pu≺w).

8: if Φ does not admit an affirmative answer then return false //No solution exists

9: σ ← A total ordering of vertices determined by any solution of Φ
10: return σ

Proof (Remark 3).

One can determine whether M has the simultaneous consecutive one’s prop-
erty in O(|A||B|) time [30], and if so, then one can construct such a matrix M ′

within the same time complexity.

We now show how to construct the Stick representation from M ′. For each
row (resp., column), we draw a horizontal (resp., vertical) segment starting from
the rightmost (resp., topmost) 1 entry. We extend the horizontal segments to
the left and vertical segments downward such that they touch a ground line `,
e.g., see Fig. 6(a)–(b).

Let the resulting drawing be D, which may contain many unnecessary cross-
ings. However, for each unnecessary crossing, we can follow the segments involved
in the crossings upward and rightward to find two distinct 1 entries. Since the
matrix has the simultaneous ones property, the violated entries in each row
(column) must lie consecutively at the left end of the row (bottom end of the
column). Therefore, one can find a (+x,−y)-monotone path P that separates
the violated entries from the rest of the matrix, e.g., see the shaded region in
Fig. 6(b).

Let b1, b2, . . . , bk be the bend points creating 90◦ angles towards `. To com-
pute the required Stick representation, we remove these bends one after another,
as follows. Consider the topmost bend point bi, e.g., see b1 in Fig. 6(c). Imagine
a Cartesian coordinate system with origin at bi. Move the rows above bi and
columns to the right of bi towards the upward and rightward directions, respec-
tively, as illustrated in Fig. 6(d). It is straightforward to observe that one now
can construct a ground line `′ through bi such that the violated entries lie in the
region below the path determined by bi+1, . . . , bk. �
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Fig. 8. Graph that does not admit a Stick representation. Its matrix representation
can have all zeros placed on a diagonal.

It suffices to show that H (Fig. 8(a)) does not admit a Stick representation. It
is straightforward to permute the rows and columns of the matrix representation

ofH such that all zeros lie on the main diagonal, e.g.,M =













0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

. Therefore, for

every permutation of rows and columns, we can pick the two columns that have

zeros in the middle two rows to obtain the configuration













1 *
0 1
1 0
* 1

. As we discussed in

Sec. 3, there cannot be any Stick representation with this row ordering. Conse-
quently, the graph H, as well as no graph containing H as an induced subgraph,
can have a Stick representation.

Since H is a planar graph (see Fig. 8(b)), not all planar bipartite graphs are
Stick graphs. �
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